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Agenda 

• Recap of rational herding 
• Observational learning in a network 
• DeGroot learning 

Reading: Golub and Sadler (2016), “Learning in Social Networks” 

Supplement: Acemoglu et al., (2011), “Bayesian Learning in 
Social Networks;” Golub and Jackson (2010), “Naïve Learning in 
Social Networks and the Wisdom of Crowds” 
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The Classic Herding Model 

Two equally likely states of the world � 2 {0, 1} 

Agents n = 1, 2, ... sequentially make binary decisions xn 2 {0, 1} 

Earn payo˙ 1 for matching the state, payo˙ 0 otherwise 

Each agent receives a binary signal sn 2 {0, 1}, observes history 
of actions 

Signals i.i.d. conditional on the state: 

1
P(sn = 0 | � = 0) = P(sn = 1 | � = 1) = g > 2 
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Rational Herding 

Last time we showed in any PBE of the social learning game, we 
get herd behavior 
• All agents after some time t choose the same action 

With positive probability, agents herd on the wrong action 

Ineÿciency reflects an informational externality 
• Agents fail to internalize the value of their information to 

others 
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Observational Learning: A Modern Perspective 
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Observational Learning: A Modern Perspective 

We observe more of what other people do... 

...but observing entire history is less reasonable 

How does the observation structure a˙ect learning? 
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A Souped-up Model 

Two states of the world � 2 {0, 1}, common prior q0 = P(� = 1) 

Agents n = 1, 2, ... sequentially make binary decisions xn 2 {0, 1} 

Earn payo˙ u(xn, �), arbitrary function satisfying 

u(1, 1) > u(0, 1), u(0, 0) > u(1, 0) 

Each agent receives a signal sn 2 S in an arbitrary metric space 

Signals are conditionally i.i.d. with distributions F� 
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The Observation Structure 
Agent n has a neighborhood B(n) � {1, 2, ..., n − 1}, observes 
xk for k 2 B(n) 

Information set In = {sn, B(n), xk 8 k 2 B(n)} 

Neighborhoods drawn from a joint distribution Q that we call the 
network topology 
• Q is common knowledge 
• For this class, assume {B(n)}n2N are mutually independent 

Study perfect Bayesian equilibria ̇  of the learning game: 

˙n = arg max E˙ [u(x, �) | In] 
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A Complex Inference Problem 

1

x1 =?

2

x2 = 0

3

x3 = 1

4

x4 =?

5

Evan Sadler Social Learning 9/38 



Learning Principles 

Cannot fully characterize decisions, focus on asymptotic 
outcomes 

Two learning principles: 
• The improvement principle 
• The large-sample principle 

Corresponding learning metrics: di˙usion vs. aggregation 

Evan Sadler Social Learning 10/38 



Private and Social Beliefs 
Define the private belief pn = P(� = 1 | sn), distribution G� 

Social belief qn = P (� = 1 |B(n), xk, k 2 B(n)) 

Support of private beliefs [�, �] 

� = inf{r 2 [0, 1] : P(p1 � r) > 0} 

� = sup{r 2 [0, 1] : P(p1 � r) < 1} 

The expert signal s̃, binary with 

P(� = 1 | s̃ = 0) = �, P(� = 1 | s̃ = 1) = � 
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Learning Metrics 

Information di˙uses if 

lim inf E˙ [u(xn, �)] � E[u(s̃, �)] � u � 
n!1 

Information aggregates if 

lim P˙(xn = �) = 1 
n!1 

A network topology Q di˙uses (aggregates) information if 
di˙usion (aggregation) occurs for every signal structure and every 
equilibrium strategy profile 
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Di˙usion vs. Aggregation 

If 1− � = � = 1, the two metrics coincide 
• We say private beliefs are unbounded 

If � > 0 and � < 1, private beliefs are bounded 
• Di˙usion is weaker condition than aggregation 

In complete network, aggregation i˙ unbounded private beliefs 
(Smith and Sorensen, 2000) 

Our definition emphasizes role of network 
• Complete network di˙uses, does not aggregate, information 
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Necessary Conditions for Learning 

Basic requirement: suÿcient connectivity 

An agent’s personal subnetwork B̂(n) includes all m < n with a 
directed path to n 

Theorem 
If Q di˙uses information, we must have expanding subnetworks: 

lim 
n!1 

P(|B̂(n)| < K) = 0 

for all K 2 N 
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The Improvement Principle 

Intuition: I can always pick a neighbor to copy 
• Whom do I imitate? 
• Can I improve? 

A heuristic approach: look at neighbor with largest index B(n) 
• If we have expanding subnetworks, then P(B(n) < K) ! 0 as 

n !1 for any fixed K 

• Key idea: imitate this neighbor if my signal is weak, follow my 
signal if it is strong 

Suboptimal rule, but it gives a lower bound on performance 
• Rational agents must do (weakly) better 
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Two Lemmas 
Lemma 
Suppose Q has expanding subnetworks, and there exists a 
continuous increasing Z such that Z(u) > u for all u < u�, and 

E˙[u(xn, �)] � Z(E˙[u(xB(n), �)]) 

Then Q di˙uses information. 

Lemma 
There exists a continuous increasing Z with Z(u) > u for all 
u < u� such that 

E˙[u(xn, �)] � Z(E˙[u(xm, �)]) 

for any m 2 B(n). 
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A Key Assumption: Independent Neighborhoods 

Our two lemmas imply that information di˙uses in any 
suÿciently connected network 
• Relies on independence of neighborhoods 

If neighborhoods are correlated, the fact that I observe someone 
is related to how informative their choice is 
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Failure to Aggregate 

Proposition (Acemoglu et al., 2011, Theorem 3) 
The topology Q fails to aggregate information if any of the 
following conditions hold: 
• B(n) = {1, 2, ..., n − 1}
• |B(n)| � 1 for all n 

• |B(n)| � M for all n and some M 2 N, and 

lim 
n!1 

max 
m2B(n) 

m = 1 almost surely 
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The Large-Sample Principle 

Intuition: I can always learn from many independent observations 

Limiting connectively can create “sacrificial lambs:” B(m) = ; 

Proposition 
Suppose there exists a subsequence {mi} such that X 

i2N 

P(B(mi) = ;) = 1, and lim 
n!1 

P(mi 2 B(n)) = 1 

for all i. Then Q aggregates information. 

Follows from a martingale convergence argument 
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Heterogeneous Preferences 

Key limitation so far: everyone has the same preferences 

Give each agent n a type tn 2 (0, 1) 

Payo˙s 8 <1− � + t if x = 0 
u(x, �, t) = :� + 1− t if x = 1 

The type t parameterizes the relative cost of error in each state 
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Failure of the Improvement Principle 

Copying a neighbor no longer guarantees same utility 
• Copying works better when neighbor’s preferences are close to 

own 

Assume 
• B(n) = {n − 1} for all n 

• Odds have type 1
5 , evens have type 4

5 

• G0(r) = 2r − r2 and G1(r) = r2 

Can show inductively that all odds (evens) err in state 0 (state 1) 
with probability at least 1

4 (homework problem) 
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Robust Large-Sample Principle 

With full support in preference distribution, preferences can 
counterbalance social information 
• Some agents will act on signals 
• No need for sacrificial lambs 

Proposition 
Suppose preference types are i.i.d. with full support on (0, 1), 
and there exists an infinite sequence {mi} such that 

lim 
n!1 

P(mi 2 B(n)) = 1 

for all i. Then information aggregates. 
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Remarks on the SSLM 

Clear understanding of learning mechanisms 
• Improvement vs. Large samples 
• Di˙erent e˙ects of preference heterogeneity 

Rationality is a very strong assumption... 
• but proofs are based on heuristic benchmarks 

Can’t say much about rate of learning, influence 
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A Di˙erent Approach 
Look at a model of heuristic learning based on DeGroot (1974) 

Finite set N of agents, time is discrete 

At time t, agent i has a belief or opinion xi(t) 2 [0, 1] 
• How likely is it the state is 1? 
• How good is politician X? 

A simple update rule: X 
xi(t) = Wijxj(t − 1) 

j2N 

Think of W as a weighted graph 
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DeGroot Updating 

Assumptions: 
• The xi(0) are given exogenously 
• The matrix W is an n × n matrix with non-negative entries P • For each i we have j2N Wij = 1 

Take a weighted average of friends’ opinions 

Simple example: 
• Consider an unweighted graph G, agent i has degree di 

• Wij = 
d
1 
i 

for each neighbor j of i, and Wij = 0 for each 
non-neighbor 
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Matrix Powers and Markov Chains 
Can rewrite the update rule as 

x(t) = Wx(t − 1) =) x(t) = W tx(0) 

Reduction to dynamics of matrix powers 

Entries in each row sum to 1, so this is a row-stochastic matrix 
• Correspond to transition probabilities for an n-state Markov 

chain 

How to think about Wij
t 

• @xi(t) = W t : influence of j on i’s time t opinion
@xj (0) ij

• Wij
t sums over all paths of indirect influence 
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The Long-Run Limit 
Does each individual’s estimate settle down to a long-run limit? 
• Does limt!1 xi(t) exist? 

Do agents reach a consensus? If so, what does it look like? 
• How do long-run beliefs depend on W and the initial estimates 

x(0)? 

Start with strongly connected networks 
• The network W is strongly connected if there is a directed 

path from i to j for every i, j 2 N 

Call W primitive if there exists q such that every entry of W q is 
strictly positive 
• Equivalent to aperiodicity in the network 
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The Long-Run Limit 

Theorem 
Suppose W is strongly connected and aperiodic. The limit 
limt!1 xi(t) exists and is the same for each i. 

Proof: 
• The sequence maxi xi(t) is monotonically decreasing 
• The sequence mini xi(t) is monotonically increasing 
• Primitivity ensures the two extreme agents put at least weight 

w > 0 on each other after q steps 
• Distance between max and min decreases by factor at least 

1− w after every q steps 
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Influence on the Consensus 

lim x(t) = lim W tx(0)
t!1 t!1 

The matrix powers must converge 

Moreover, since agents reach consensus, it must be that all rows 
of W t converge to the same vector ̌  X 

x(1) = ˇT x(0) = ˇixi(0) 
i2N 

The coeÿcient ̌ i gives the influence of agent i on the consensus 
• Depends only on the network W , not on initial estimates x(0) 

Vector ˇ must satisfy 
ˇT W = ˇ 

Left eigenvector with eigenvalue 1 
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Influence on the Consensus 

Theorem 
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X
lim xi(t) = ˇixi(0)
t!1 

i2N 

If W is strongly connected and primitive, then for all i

where ̌ i is the left eigenvector centrality of i in W

Note vector ̌  is also the unique stationary distribution of the 
Markov chain with transition probabilities given by W

Can also be seen as a consequence of the Perron-Frobenius 
Theorem from linear algebra 



Beyond Strong Connectedness 
If network not strongly connected, can decompose into strongly 
connected subgraphs 
• Equivalent to reduction of a Markov chain to closed

communicating classes
• Analyze each subgraph separately using earlier result

Agents i and j are is same communicating class if there is a 
directed path from i to j and vice versa 

No longer guarantee consensus 
• Consensus within communicating classes, not necessarily

across

Small amount of communcation across classes makes large 
(discontinuous) di˙erence in asymptotic outcomes 
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When is Consensus Correct? 

Are large populations able to aggregate information? 

Suppose there is some true state µ 2 [0, 1], and agents begin 
with noisy estimates of µ
• Suppose the xi(0) are i.i.d. random variables with mean µ,

variance ̇ 2

Consider an infinite sequence of networks {W (n)}1 n=1, population 
getting larger 

If x(n)(1) is the consensus estimate in network n, do these 
estimates converge to µ as n !1? 
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When is Consensus Correct? 
Theorem (Golub and Jackson, 2010) 
The consensus beliefs x(n)(1) converge in probability to µ if and 
only if 

lim 
n!1 

max 
i 

ˇ
(n)
i = 0.

The influence of the most central agent in the network converges 
to zero 

Proof: h i P (n)n• We have V ar x(n)(1)− µ = i=1(ˇi )2˙2

• Converges to zero if and only if maxi ̌ i 
(n) ! 0

• If not, no convergence in probability
• If it does, Chebyshev’s inequality implies convergence in

probability
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Speed of Convergence 

Consensus might be irrelevant if it takes too long to get there 
• How long does it take for di˙erences to get “small”?
• What network properties lead to fast or slow convergence?

Note, first question depends both on network and initial 
estimates 
• If we start at consensus, we stay there

Focus on worst-case convergence time, highlight role of network 
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A Spectral Decomposition 
Lemma 
For “generic” W , we may write 

W t = 
nX

l=1
�t 

lPl

where 
• 1 = �1, �2, ..., �n are n distinct eigenvalues of W
• Pl is a projection onto the eigenspace of �l 

• P1 = W1 and P1x(0) = x(1)
• Pl1 = 0 for all l > 1, where 1 is a vector of all ones

All other eigenvalues strictly smaller in absolute value than 
�1 = 1 
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Speed of Convergence 

Theorem 
For generic W , 

1 
2 |�2|t − (n− 2)|�3|t � sup 

x(0)2[0,1]n
kx(t)−x(1)k1 � (n− 1)|�2|t .

Note k · k1 denotes the supremum norm, largest deviation from 
consensus among all agents 

Clear answer to first question: rate of convergence depends on 
second largest eigenvalue 
• Larger �2 (i.e. smaller spectral gap) implies slower convergence
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Segregation and Slow Convergence 

What network features correspond to large |�2|? 

On an intuitive level, we get slow convergence in highly 
“segregated” networks 

Define the bottleneck ratio P 
i2M,j /2M ̌ iWij(W ) = min P 

M�N i2M ̌ i
ˇ(M)� 1

2

Small when some influential group pays little attention to those 
outside itself 
• Can use to bound size of |�2|
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Wrap Up 

Limited ability to learn through observation 
• Information externality creates ineÿciency
• Heterogeneity may help or hurt depending on network

properties

Naïve learning model gives measures of influence, learning rate 

Next time: moving on to models of di˙usion, di˙erent influence 
mechanism 
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