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Agenda

e Recap of rational herding
e Observational learning in a network

e DeGroot learning

Reading: Golub and Sadler (2016), “Learning in Social Networks"

Supplement: Acemoglu et al., (2011), “Bayesian Learning in
Social Networks;” Golub and Jackson (2010), “Naive Learning in
Social Networks and the Wisdom of Crowds”
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The Classic Herding Model

Two equally likely states of the world 6 € {0, 1}
Agents n = 1,2, ... sequentially make binary decisions z,, € {0, 1}
Earn payoff 1 for matching the state, payoff 0 otherwise

Each agent receives a binary signal s,, € {0, 1}, observes history
of actions

Signals i.i.d. conditional on the state:

1
P(sn =0]0=0)=P(s, =16 =1) =g > 3
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Rational Herding

Last time we showed in any PBE of the social learning game, we
get herd behavior
e All agents after some time ¢ choose the same action

With positive probability, agents herd on the wrong action

Inefficiency reflects an informational externality

e Agents fail to internalize the value of their information to
others
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Observational Learning: A Modern Perspective
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Observational Learning: A Modern Perspective

We observe more of what other people do...
...but observing entire history is less reasonable

How does the observation structure affect learning?
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A Souped-up Model

Two states of the world ¢ € {0, 1}, common prior ¢y = P(# = 1)
Agents n = 1,2, ... sequentially make binary decisions z,, € {0,1}

Earn payoff u(z,, 0), arbitrary function satisfying

il , 10 ORI8 (0 07> u(l,0)

Each agent receives a signal s,, € S in an arbitrary metric space

Signals are conditionally i.i.d. with distributions [y
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The Observation Structure

Agent n has a neighborhood B(n) C {1,2,...,n — 1}, observes
xy for k € B(n)

Information set Z,, = {s,, B(n),xx Vk € B(n)}

Neighborhoods drawn from a joint distribution Q that we call the
network topology

e Q is common knowledge

e For this class, assume {B(n)},cn are mutually independent

Study perfect Bayesian equilibria o of the learning game:

o, = argmax E, [u(z,0)|Z,]
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A Complex Inference Problem

xo =0 ¥y =
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Learning Principles

Cannot fully characterize decisions, focus on asymptotic
outcomes

Two learning principles:
e The improvement principle

e The large-sample principle

Corresponding learning metrics: diffusion vs. aggregation
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Private and Social Beliefs

Define the private belief p,, = P(6 = 1| s,,), distribution Gy
Social belief ¢, =P (0 = 1| B(n), xx, k € B(n))
Support of private beliefs [, J]

B =inf{r € [0,1] : P(p <7) > 0}

B =sup{r €[0,1] : P(p; <r) <1}

The expert signal s, binary with

Bf=1]s=0) = F™R@=1[s=1)=73
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Learning Metrics

Information diffuses if

liminf E, [u(x,,0)] > Elu(s,0)] = u”

n—oo

Information aggregates if

lirmelEs e — = 1

n—o0

A network topology Q diffuses (aggregates) information if
diffusion (aggregation) occurs for every signal structure and every

equilibrium strategy profile
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Diffusion vs. Aggregation

If 1 — 3 =0 =1, the two metrics coincide

e We say private beliefs are unbounded

It ﬁ > (0 and 3 < 1, private beliefs are bounded

e Diffusion is weaker condition than aggregation

In complete network, aggregation iff unbounded private beliefs
(Smith and Sorensen, 2000)

Our definition emphasizes role of network

e Complete network diffuses, does not aggregate, information
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Necessary Conditions for Learning

Basic requirement: sufficient connectivity

An agent's personal subnetwork B(n) includes all m < n with a
directed path to n

Theorem
If Q diffuses information, we must have expanding subnetworks:

lim P(|B(n)| < K) =0

n—oo

for all K € N
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The Improvement Principle

Intuition: | can always pick a neighbor to copy
e Whom do | imitate?

e Can | improve?

A heuristic approach: look at neighbor with largest index B(n)

e If we have expanding subnetworks, then P(B(n) < K) — 0 as
n — oo for any fixed K

e Key idea: imitate this neighbor if my signal is weak, follow my
signal if it is strong

Suboptimal rule, but it gives a lower bound on performance

e Rational agents must do (weakly) better
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Two Lemmas

Lemma

Suppose Q has expanding subnetworks, and there exists a
continuous increasing Z such that Z(u) > u for all u < u*, and

Eq|u(zn, 0)] 2 Z(Eo|u(rg,,0)])

Then Q diffuses information.

Lemma

There exists a continuous increasing Z with Z(u) > u for all
u < u* such that

Eolu(zn,0)] 2 Z(Eq|u(zm, 0)])

for any m € B(n).
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A Key Assumption: Independent Neighborhoods

Our two lemmas imp
sufficiently connected

y that information diffuses in any
network

e Relies on indepenc

ence of neighborhoods

If neighborhoods are correlated, the fact that | observe someone
is related to how informative their choice is
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Failure to Aggregate

Proposition (Acemoglu et al., 2011, Theorem 3)

The topology Q) fails to aggregate information if any of the
following conditions hold:

B(n)={1,2,...n—1}
|1B(n)| <1 for all n
|1B(n)| < M for all n and some M € N, and

lim max m = oo almost surely
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The Large-Sample Principle

Intuition: | can always learn from many independent observations

Limiting connectively can create “sacrificial lambs:” B(m) = ()

Proposition

Suppose there exists a subsequence {m;} such that

ZP(B(’”%) = () =00, and lim P(m; € B(n)) =1

n—0o0

for all 1. Then Q aggregates information.

Follows from a martingale convergence argument
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Heterogeneous Preferences

Key limitation so far: everyone has the same preferences
Give each agent n a type t,, € (0,1)

Payoffs
10+t ifz=0

e, O )= _
\(9+1—t if x =1

The type t parameterizes the relative cost of error in each state
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Failure of the Improvement Principle

Copying a neighbor no longer guarantees same utility

e Copying works better when neighbor's preferences are close to
own

Assume

e B(n)={n—1} for all n

e Odds have type % evens have type %
e Go(r) =2r —r* and Gy(r) = r?

Can show inductively that all odds (evens) err in state 0 (state 1)
with probability at least 3 (homework problem)
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Robust Large-Sample Principle

With full support in preference distribution, preferences can
counterbalance social information

e Some agents will act on signals

e No need for sacrificial lambs

Proposition

Suppose preference types are i.i.d. with full support on (0,1),
and there exists an infinite sequence {m;} such that

lim P(m; € B(n)) = 1

n—o0

for all i. Then information aggregates.
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Remarks on the SSLM

Clear understanding of learning mechanisms
e |mprovement vs. Large samples

e Different effects of preference heterogeneity

Rationality is a very strong assumption...

e but proofs are based on heuristic benchmarks

Can’t say much about rate of learning, influence
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A Different Approach

Look at a model of heuristic learning based on DeGroot (1974)
Finite set IV of agents, time is discrete

At time t, agent ¢ has a belief or opinion z;(t) € [0, 1]
e How likely is it the state is 17
e How good is politician X7

A simple update rule:

zi(t) = > Wyz;(t — 1)

jEN

Think of W as a weighted graph
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DeGroot Updating

Assumptions:
e The z;(0) are given exogenously
e The matrix W is an n X n matrix with non-negative entries

* For each i we have > ..y W;; =1

Take a weighted average of friends’ opinions

Simple example:
e Consider an unweighted graph G, agent ¢ has degree d;

o W, = d%; for each neighbor j of ¢, and W;; = 0 for each
non-neighbor
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Matrix Powers and Markov Chains

Can rewrite the update rule as

x(t) = Wl - — " x(@i==>W x(0)

Reduction to dynamics of matrix powers

Entries in each row sum to 1, so this is a row-stochastic matrix

e Correspond to transition probabilities for an n-state Markov
chain

How to think about W,

o % = W, influence of j on i's time ¢ opinion

o W, sums over all paths of indirect influence
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The Long-Run Limit

Does each individual's estimate settle down to a long-run limit?

e Does lim; o x;(t) exist?

Do agents reach a consensus? |f so, what does it look like?

e How do long-run beliefs depend on W and the initial estimates
x(0)7?

Start with strongly connected networks

e The network WV is strongly connected if there is a directed
path from ¢ to j for every 7,7 € N

Call W primitive it there exists g such that every entry of W1 is
strictly positive

e Equivalent to aperiodicity in the network
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The Long-Run Limit

Theorem

Suppose W is strongly connected and aperiodic. The limit
lim; o x;(t) exists and is the same for each i.

Proof:

e The sequence max; x;(t) is monotonically decreasing
e The sequence min; x;(t) is monotonically increasing

e Primitivity ensures the two extreme agents put at least weight
w > 0 on each other after q steps

e Distance between max and min decreases by factor at least
1 — w after every q steps
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Influence on the Consensus

lim x(¢) = lim W"x(0)

t—0o0 t— 00

The matrix powers must converge

Moreover, since agents reach consensus, it must be that all rows
of W* converge to the same vector 7

x(00) = 7' x(0) = ) mz;(0)

1€N

The coefficient 7; gives the influence of agent ¢ on the consensus
e Depends only on the network W, not on initial estimates x(0)

Vector 7t must satisfy
W=

Left eigenvector with eigenvalue 1
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Influence on the Consensus

Theorem
If W is strongly connected and primitive, then for all i

g, #ilt) =

where T; is the left eigenvector centrality of © in W

Note vector 7t is also the unique stationary distribution of the
Markov chain with transition probabilities given by W

Can also be seen as a consequence of the Perron-Frobenius
Theorem from linear algebra
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Beyond Strong Connectedness

If network not strongly connected, can decompose into strongly
connected subgraphs

e Equivalent to reduction of a Markov chain to closed
communicating classes

e Analyze each subgraph separately using earlier result

Agents ¢ and j are is same communicating class if there is a
directed path from 7 to 7 and vice versa

No longer guarantee consensus

e Consensus within communicating classes, not necessarily
across

Small amount of communcation across classes makes large
(discontinuous) difference in asymptotic outcomes
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When is Consensus Correct?

Are large populations able to aggregate information?

Suppose there is some true state i € [0, 1], and agents begin
with noisy estimates of

e Suppose the x;(0) are i.i.d. random variables with mean p,
variance o*

Consider an infinite sequence of networks {17/ (") > 1, population
getting larger

If (") (00) is the consensus estimate in network 7, do these
estimates converge to 11 as n — o0?
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When is Consensus Correct?

Theorem (Golub and Jackson, 2010)

The consensus beliefs x'™ (c0) converge in probability to 1 if and
only if

lim max 7T( W —
n—oo 7)

The influence of the most central agent in the network converges

to zero

Proof:

e We have Var [x(”)(oo) — ,u} =0 Z(")) o’
(n)

e Converges to zero if and only if max; m,” — 0

e If not, no convergence in probability

e |f it does, Chebyshev's inequality implies convergence in
probability
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Speed of Convergence

Consensus might be irrelevant if it takes too long to get there
e How long does it take for differences to get “small”?

e What network properties lead to fast or slow convergence?
Note, first question depends both on network and initial
estimates

e |f we start at consensus, we stay there

Focus on worst-case convergence time, highlight role of network
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A Spectral Decomposition

Lemma
For “generic” W, we may write

W= \P
=1

where
1 = A, A, ..., A\, are n distinct eigenvalues of W

P, is a projection onto the eigenspace of )\
P1 = W and PlX(O) = X(OO)
P1 =0 foralll > 1, where 1 is a vector of all ones

All other eigenvalues strictly smaller in absolute value than
A =1
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Speed of Convergence

Theorem
For generic WV,

1
5\)\2|t —(n — 2)|)\3|t < sup
x(0)€(0,1]™

Note || - ||oc denotes the supremum norm, largest deviation from
consensus among all agents

Clear answer to first question: rate of convergence depends on
second largest eigenvalue

e Larger A\, (i.e. smaller spectral gap) implies slower convergence
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Segregation and Slow Convergence

What network features correspond to large |As|?

On an intuitive level, we get slow convergence in highly
“segregated” networks

Define the bottleneck ratio

: Z'GM,' v TiWij
W, =Ry, =407
MgNl ieM T
W(M)Z§

Small when some influential group pays little attention to those
outside itself

e Can use to bound size of | ;]
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Wrap Up

Limited ability to learn through observation
e Information externality creates inefficiency

e Heterogeneity may help or hurt depending on network
properties

Naive learning model gives measures of influence, learning rate

Next time: moving on to models of diffusion, different influence
mechanism
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