
6.207/14.15: Networks 
Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, 

Centralities 
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Networks: Lectures 4, 5 & 6 Outline 

Outline 

Dynamical systems. Linear and Non-linear. 
Convergence. Linear algebra and Lyapunov functions. 

Markov chains. 
Positive linear systems. Perron-Frobenius. 
Random walk on graph. 

Centralities. 
Eigen centrality. Katz centrality. 
Page Rank. Hubs and Authorities. 

Reading: 
Newman, Chapter 6 (Sections 6.13-14). 
Newman, Chapter 7 (Sections 7.1-7.5). 
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Networks: Lectures 4, 5 & 6 Dynamical systems 

Dynamical systems 

Discrete time system: time indexed by k 
let x(k) 2 Rn denote system state
e.g. amount of labor, steele and coal available in an economy

System dynamics: for any k ≥ 0 

x(k + 1) =  F (x(k)) (1) 

for some F : Rn ! Rn

Primary questions: 
?Is there an equilibrium x? 2 Rn, i.e.  x = F (x?).

If so, does x(k) ! x? and how quickly. 
3
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Networks: Lectures 4, 5 & 6 Dynamical systems 

Linear dynamical systems 

Linear system dynamics: for any k ≥ 0 

x(k + 1) =  Ax(k) +  b (2) 

for some A 2 Rn⇥n and b 2 Rn

example: Leontif’s input-output model of economy 

We’ll study 
Existence and characterization of equilibrium. 
Convergence. 

Initially, we’ll consider b = 0 
Later, we shall consider generic b 2 Rn
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Networks: Lectures 4, 5 & 6 Dynamical systems 

Linear dynamical systems 

Consider 

x(k) =  Ax(k – 1) 
= A ⇥ Ax(k – 2)
· · ·
= Ak x(0) 

So what is Ak ? 

For n = 1, let A = a 2 R+:
8
0 if  0   a < 1>

k

k!•
< 

x(k) =  a x(0) ! x(0) if a = 1>
• if 1 < a.: 
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Networks: Lectures 4, 5 & 6 Dynamical systems 

Linear dynamical systems 

For n > 1, if A were diagonal, i.e. 
0 

BB

1 

CC
a1

a2A = @ . . .
a
n

A 

Then 
0 

BB

1 

CC

ka1
ak2Ak = @ . . .

a

A
k

n

and, likely that we can analyze behavior x(k) 
but, most matrices are not diagonal 
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Networks: Lectures 4, 5 & 6 Dynamical systems 

Linear dynamical systems 

Diagonalization: for a large class of matrices A, 

0 

BB
l1

l2

1
it can be represented as A = SLS–1, where diagonal

 
 matrix

CCL = @ . . .
l
n

A 

and S 2 Rn⇥n is invertible matrix

Then 

x(k) =  (SLS–1)k x(0) 
= SLk S–1 x(0) = S Lk c 

where c = c(x(0)) = S–1x(0) 2 Rn
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Linear dynamical systems 

Suppose 

S = 

0

@s1 . . .  s
n 

1

A 

Then 

x(k) =  SLk c 
n

= Â ci lk

i si
i=1 
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Networks: Lectures 4, 5 & 6 Dynamical systems 

Linear dynamical systems 

Let 0  |l
n

|  |l
n 1|    · ·  ·    |l2| < |l1|

Then 
8
0 if  |l1| < 1>

k!•
<

kx(k)k ! |c1|ks1k if |l1| = 1>:• if |l1| > 1

moreover, for |l1| > 1,

k

kl 1 x(k) – c1s1k !  0.
9

x(k) =
n

Â
i=1

c
i

l
i

ks
i

= lk

1

⇣
c1s1 +

n

Â
i=2

c
i

� l
i

l1

�
k

s
i

⌘
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Networks: Lectures 4, 5 & 6 Dynamical systems 

Diagonalization 

When can a matrix A 2 Rn⇥n be diagonalize?
When A has n distinct eigenvalues, for example 
In general, all matrices are block-diagonalizable a la Jordan form 

Eigenvalues of A 
Roots of n order (characteristic) polynomial: det(A  – lI ) = 0  
Let they be l1, . . . ,  l

n

Eigenvectors of A 
Given l

i , let  s
i 6= 0 be such that As

i = l
i si

Then s
i is eigenvector corresponding to eigenvalue l

i

If all eigenvalues are distinct, then 
eigenvectors are linearly independent 

10
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Networks: Lectures 4, 5 & 6 Dynamical systems 

Diagonalization 

If all eigenvalues are distinct, then 
eigenvectors are linearly independent 

Proof. Suppose not and let s1, s2 are linearly dependent. 
that is, a1s1 + a2s2 = 0 for some a1, a2 6= 0
that is, a1As1 + a2As2 = 0, and  hence  a1l1s1 + a2l2s2 = 0 
multiplying first equation by l2 and subtracting second 

a1(l2 – l1)s1 = 0 

that is, a1 = 0; similarly, a2 = 0. Contradiction. 
argument can be similarly extended for case of n vectors. 
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Diagonalization 

If all eigenvalues are distinct (l
i 6= l

j , i 6= j), then
eigenvectors, s1, . . .  , s

n

, are linearly  independent  

Therefore, we have invertible matrix S , where

S = 

0

@s1 . . .  s
n 

1

A 

Consider diagonal matrix of eigenvalues 
0

@ 
l1

1

AL = . . .
l
n
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Diagonalization 

Consider 

AS 

0 

@

0 

@

1

Al1s1 . . .  l
n

s
n = 

s1 . . .  s
n 

0

@ 

1

A 

1

A 
l1

.= . .
l
n

✓
0 1

= SL 

Therefore, we have diagonalization A = SLS–1

Remember: not every matrix is diagonalizable, e.g. A = 
0 0

◆ 
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Networks: Lectures 4, 5 & 6 Dynamical systems 

Linear dynamical systems 

Let us consider linear system with b 6= 0:

x(k + 1) =  Ax(k) +  b 

= A(Ax(k – 1) +  b) +  b = A2 x(k – 1) +  (A + I )b 
. . .

⇣ 
k  – 1

Â –1
⌘
b.= Ak Ak – jx(0) +

k – 1n

Â 

j=0 

Let A = SLS–1, c = S–1x(0) and d = S–1b. Then

Â jc
i si l

k

i

x(k + 1) =  + d
i si ( l )

i 
i =1 j=0 

14
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Networks: Lectures 4, 5 & 6 Dynamical systems 

Linear dynamical systems 

Let A = SLS–1, c = S–1x(0) and d = S–1b. Then

=0 
Â

k 1n

Â 
j

jc
i si l

k

i

x(k + 1) =  + d
i si ( )l

i 
i =1 

Let 0  |l
n

|  |l
n 1|    · ·  ·    |l2|  |l1|. Then

If |l1| 1, the sequence is divergent (! •) 
If |l1| < 1, it converges as 

n d
iÂk!•

x(k) ! s
i

1 – l
i

i=1 0

@ 
1 

1 – l1

1

A= S . . .
1 

1 – l
n

S–1b = (I – A)–1b 
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Linear dynamical systems 

For linear system, equilibrium x? should satisfy 

x ? = Ax? + b 

The solution to the above exists when A does not have an eigenvalue 
equal to 1, which is 

x ? = (I – A)–1b 

But, as discussed, it may not be reached unless |l1| < 1!
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Networks: Lectures 4, 5 & 6 Dynamical systems 

Nonlinear dynamical systems 

Consider nonlinear system 

x(k + 1) =  F (x(k)) 
= x(k) +  (F (x(k)) – x(k)) 
= x(k) +  G (x(k)) 

where G (x) = F  (x) – x 

Continuous approximation of the above (replace k by time index t) 

dx(t) 
= G (x(t))

dt 

When does x(t) ! x??
17



�

�

�

Networks: Lectures 4, 5 & 6 Dynamical systems 

Lyapunov function 

Let there exist a Lyapunov (or Energy) function V : Rn ! R+

Such that 

?1. V is minimum at x

dV (x(t)) ?2. 
dt < 0 if  x(t) 6= x

?
that is, rV (x(t))T 

G (x(t)) < 0 if  x(t) 6= x

?Then x(t) ! x

18
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Networks: Lectures 4, 5 & 6 Dynamical systems 

Lyapunov function: An Example 

A simple model of Epidemic 
Let I (k) 2 [0, 1] be fraction of population that is infected
and S(k) 2 [0, 1] be the fraction of population that is susceptible to
infection 
Population is either infected or susceptible: I (k) +  S(k) =  1 

Due to “social interaction” they evolve as 

I (k + 1) =  I (k) +  bI (k)S(k) 
S(k + 1) = S (k) – bI (k)S(k) 

where b 2 (0, 1) is a parameter captures “infectiousness”

Question: what is the equilibrium of such a society? 
19
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Networks: Lectures 4, 5 & 6 Dynamical systems 

Lyapunov function: An Example 

Since I (k) +  S(k) =  1, we can focus only on one of them, say S(k) 

Then 

S(k + 1) = S (k) – b(1 – S(k))S(k) 

That is, continuous approximation suggests 

dS(t) 
= – b(1 – S(t))S(t). 

dt 

An easy Lyapunov function is V (S) =  S 

20
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Lyapunov function: An Example 

For V (S) =  S : 

dV (S(t)) dS(t)
= V 0(S(t))

dt dt 
= b(1 – S(t))S(t) 

Then, for S(t) 2 [0, 1) if S(t) 6= 0,

dV (S(t)) 
< 0 

dt 

And V is minimized at 0 

Therefore, if S(0) < 1, then S(t) ! 0: entire population is infected!
21
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Networks: Lectures 4, 5 & 6 Positive linear system 

Positive linear system 

Positive linear system 
Let A = [A

ij ] 2 Rn⇥n be such that A
ij > 0 for  all  1   i , j  n

System dynamics: 

x(k) =  Ax(k – 1), for k   ≥ 1. 

Perron-Frobenius Theorem: let A 2 Rn⇥n be positive
Let l1, . . .  , l

n be eigenvalues such that 

0  |l
n

|  |l
n 1|    · · ·    |l2|  |l1|

Then, maximum eigenvalue l1 > 0 
It is unique, i.e. |l1| > |l2|
Corresponding eigenvector, say s1 is component-wise > 0 

22
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Networks: Lectures 4, 5 & 6 Positive linear system 

Perron Frobenius Theorem 

23

� Why is l1 > 0?

�
T
Let

is
T
non
= {t
-emp

>
ty:
0 :
A
Ax �

=
tx
mi
,
n
for

A
some

T
x
be
2
c
R
a

n

u
+
s
}
e� min ij ij

2
� A1 � Amin1 and Amin > 0 since A > 0

� T is bounded because

�
?
Ax 6� nAmaxx for any x 2 Rn

+, where Amax = max

ij

A

ij

� Let
That

t
is,
=
t
max
here

{t
ex

:
ist
t
s
2
x

T}
� 2 Rn

+
?

such that Ax � t?x
� In fact, it must be Ax = t x .

� Because, if Ax � t

?
x

?
, then A

2
x > t

?
Ax beca

T

use A > 0

� This will contradict t being maximum over

� For any eigenvalue, eigenvector pair (l, z), i.e. Az = lz
� |

th

l
e

||
re

z |
fo

=
re,

|Az
l
| 

t

A

?
|z |

� | | 
� Thus, we have established that eigenvalue with largest norm is t? > 0.
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Networks: Lectures 4, 5 & 6 Positive linear system 

Perron Frobenius Theorem 

Why is eigenvector s1 > 0? 
By previous argument, s1 2 Rn and hence non-negative components+ 
Now As1 has all component > 0 since  A > 0 and  s1 6= 0 
And As1 = l1s1. That is, all components of s1 must be > 0 

Why is |l2| < l1?

Suppose |l2| = l1

Then, we will argue that it is possible only if l2 = l1

If so, we will find contradiction 

24
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Networks: Lectures 4, 5 & 6 Positive linear system 

Perron Frobenius Theorem 

If |l2| = l1 > 0, then l2 = l1

Let r = l1 = |l2| > 0 
Suppose l2 6= r . That  is  either  it  is  real  with  value  r or complex
Then there exists m 1 such  that  lm has negative real part 2 
Let 2e > 0 be smallest diagonal entry of Am

Consider matrix T = Am – eI , which by construction is positive 
l2
m

  – e is its eigenvalue
ce 2

Sin lm 
has negative real part: |l2

m

  – e| > rm
That is, maximum norm of eigenvalue of T is > rm

Am has eigenvalues lm, 1   i  n
i 

m

It’s eigenvalue with largest norm is r
By construction, T  Am and both are positive. Therefore

T k  (Am)k 
and hence lim

k!• kT k k1/k  lim
k!• kAmk k1/k

F F 
Gelfand formula: for any matrix M, max  norm  of  eigenvalues i  s 
equal

to lim
k!• kMk k1/k

A contradiction:  max norm of  evs of  Am 
is rm < |l2

m

  – e| for T !25
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Networks: Lectures 4, 5 & 6 Positive linear system 

Perron Frobenius Theorem 

l2 = l1 = r > 0 is not possible 
Suppose s2 6= s1 and As1 =

 
 rs1 and As2 = rs2

We had argued that s1 > 0
s2 6= 0 is real valued (since null space of A – rI is real value

 
d) At 

least one component of s2 is > 0 (else choose s2 = – s
 
2)

Choose largest a > 0 so  that  u  = s1 – as2 is non-negative
By construction u must have at least one component 0 (else choose 
larger a!) 
And Au = ru 
That is not possible since Au > 0 and  u  has at least one zero 
component 
That is, we can not choose s2 and hence l2 can not be equal to l1

26
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Networks: Lectures 4, 5 & 6 Positive linear system 

Positive linear system 

More generally, we call A positive system if 
A ≥ 0 component-wise

For some integer m ≥ 1, Am > 0 
If eigenvalues of A are l

i , 1   i  n
Then eigenvalues of Am are lm, 1   i  m

i 
The Perron-Frobenius for Am implies similar conclusions for A 

Special case of positive systems are Markov chains 
we consider them next 
as an important example, we’ll consider random walks on graphs 

27



�

�
�

�
�

Networks: Lectures 4, 5 & 6 Markov chains 

An Example 

Shu✏ing cards 

A special case of Overhead shu✏e: 
choose a card at random from deck and place it on top 

How long does it take for card deck to become random? 
Any one of 52! orderings of cards is equally likely 

28
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An Example 

Markov chain for deck of 2 cards 

Two possible card order: (1, 2) or (2, 1) 
Let X

k denote order of cards at time k ≥ 0 

P(X
k+1 = (1, 2)) = P(X

k = (1, 2) and card 1 chosen)+ 
P(X

k = (2, 1) and card 1 chosen) 
= P(X

k = (1, 2)) ⇥ 0.5 + P(X
k = (2, 1)) ⇥ 0.5

= 0.5 
29
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Notations 

Markov chain defined over state space N = {1, . . .  , n}
        X

k 2 N denote random variable representing state at ti
 
me k ≥ 0 

P
ij = P(X

k+1 = j |X
k = i) for all i , j 2 N and all k ≥ 0

P(X
k+1 = i) =  Â Pji P(X

k = j)
j2N

Let p(k) = [p
i (k)] 2 [0, 1]n, where  p

i (k) =  P(X
k = i)

p
i (k + 1) =  Â pj (k)Pji , 8i 2 N , p(k + 1)T = p(k)T P

j2N 

P = [P
ij ]: probability transition matrix of Markov chain 

non-negative: P ≥ 0 
row-stochastic: Â

j2N Pij = 1 for  all  i 2 N

30
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Stationary distribution 

Markov chain dynamics: p(k + 1) =  PT p(k) 
Let P > 0 (PT > 0): positive linear system 
Perron-Frobenius: PT has unique largest eigenvalue: lmax > 0 

? ?Let p? > 0 be corresponding eigenvector: PT p = lmaxp
?We claim lmax = 1 and  p(k) ! p

Recall, kp(k)k !  0 if  lmax < 1 or  kp(k)k !  • if lmax > 1
But Â

i pi (k) =  1 for  all  k , since  Â
i pi (0) =  1 and  

Â pi (k + 1) =  p(k + 1)T 
1 = p(k)T P1

i 

= Â pi (k)Pij = Â pi (k) Â Pij

ij i j 

= Â pi (k).
i 

Therefore, lmax must be 1 and p(k) ! p? (as argued before)
31
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Stationary distribution 

Stationary distribution: if P > 0, then there exists p? > 0 such  that

? ? ? ? p = PT p , p = Â Pji p
j , 8i .i 

j 

k!• ?p(k) ! p 

32

� More generally, above holds when Pk > 0 for some k � 1

� Su�cient structural condition: P is irreducible and aperiodic
� Irreducibility

� for each i 6= j , there is a positive probability to reach j starting from i

� Aperiodicity

� There is no partition of N so that Markov chain state ‘periodically’

rotates through those partitions

� Special case: for each i , P

ii

> 0
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Stationary distribution 

There exists q = [q
i ] > 0 such

Reversible Markov chain with transition matrix P ≥ 0

q
i Pij = q

j Pji , 8 i 6= j 2 N (3) 

Then, stationary distribution, p? exists such that 

 

Because, by (3) and P being stochastic 

Â qj Pji = Â qi Pij

j j 

= q
i (Â Pij )

j 

= q
i

33

p? =
1

(Â
i

q
i

)
q
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Random walk on Graph 

Consider an undirected connected graph G over N = {1, . . .  , n}
It’s adjacency matrix A 
Let k

i be degree of node i 2 N

Random walk on G 
Each time, remain at current node or walk to a random neighbor 
Precisely, for any i , j 2 N

1
8

if i = j2>< 
1P

ij = if A
ij > 0, i 6= j> 2k

i :
0 if  A

ij = 0, i 6= j 

Does it have stationary distribution? If yes, what is it? 

34
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Random walk on Graph 

Answer: Yes, because irreducible and aperiodic. 
?Further, p = k

i /2m, where  m is number of edges
i 

Why? (alternative approach: reversible MC) 
1 ? 1P = (I + D 1A), p = D1, where  D = diag (k

i ), 1 = [1]2 2m 

 1 1?,T ?,T 
p P = 1p (I + D –1A) =  p ?,T + p?,T D –1A2 2 2

?,T= 1 
p + 1 

1

T A 
2 2m 

?,T= 1 
p + 1 

(A1)T , because  A = AT

2 4m 
1 1 1 1?,T ?,T ?,T ?,T= p + [k

i ]
T = p + p = p . 

2 4m 2 2

35
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Eigenvector Centrality 

Stationary distribution of random walk: 
2p? = 1 

 (I + D –1A)p?
p? µ k

i ! Degree centrality!
i 

Eigenvector centrality (Bonacich ’87) 
Given (weighted, non-negative) adjacency matrix A associated with
graph G 
v = [v

i ] be eigenvector associated with largest eigenvalue k > 0 

Av = kv , v = k – 1Av

Then v
i is eigenvector centrality of node i 2 N

v
i = k 1 Â Aij vj

j 

36



�
�

�

�
�

� �
� �

�
� �

� �

Networks: Lectures 4, 5 & 6 Graph dynamics, centrality 

Katz Centrality 

More generally (Katz ’53): 
Consider solution of equation 

v = aAv + b 

for some a > 0 and  b 2 Rn

Then v
i is called Katz centrality of node i 

Recall 
Solution exists if 

det(I – aA) 6= 0
equivalently A doesn’t have a – 1 

as eigenvalue 
But dynamically solution is achieved if 

largest eigenvalue of A is smaller than a–1

1Dynamic range of interest: 0 < a < l (A)max
37
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PageRank 

Goal: assign “importance” to each web-page in WWW 
Utilize it to order pages for providing most relevant search results 

An insight 
If a page is important, and it points to other page, it must be important 
But the influence of a page should not amplify with number of 
neighbors 

Formalizing the insight: v
i be importance of page i 

v
i = a Â Aij vj /kj + b,

j 

for some a > 0 and  b 2 R

38
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PageRank 

PageRank vector v is solution of 

v = aAD–1
v + b1, 

where D = diag (k
i ) and 1 is vector of all 1 

Solution 

v = b(I – aAD–1)–1
1 

= b(I + aAD–1 + a 2(AD–1)2 + . . . ) 1 

That is, PageRank of page i is 
sum of weighted paths in it’s neighborhood plus a constant 

39
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Hubs and Authority 

Goal: assign importance to authors 
By utilizing whose papers are cited by whom 

An additional insight 
A node is important if it points to other important node 
For example, a review article is useful if it points to important works 

Two types of important nodes 
Authorities: nodes that are important due to having useful information 
Hubs: nodes  that  tell  where  important  authorities  are  

40
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HITS: Hyperlink induced topic search 

Formalizing 
x
i and y

i be authority and hub centrality of node i 

x
i is high if it is pointed to by hubs with high centrality 

x
i = a ÂA

ij yj , for some a > 0
j 

y
i is high if it points to authorities with high centrality 

y
i = b Â 

j 
A
ji xj for some b > 0

41



�

� �

�
�
�

Networks: Lectures 4, 5 & 6 Graph dynamics, centrality 

HITS: Hyperlink induced topic search 

Summarizing 

x = aAy 

y = bAT 
x. 

Therefore (with l = (ab)–1) 

x = abAAT 
x , AAT 

x = lx
y = abAT Ay , AT Ay = ly.

HITS algorithm 
Solve for x in AAT 

x = lx for largest eigenvector l > 0 
Recover y = AT 

x 
42
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Networks: Lectures 4, 5 & 6 Graph dynamics, centrality 

HITS: Hyperlink induced topic search 

HITS algorithm: for each i 2 N

x
i = k Â(AAT )

ij xj
j 

y
i = k Â(AT A)

ij yj .
j 

(AAT )
ij = Â

k Aik Ajk

Shared citations for i and j 
Important authorities are cited by (many) others together 

(AT A)
ij = Â

k Aki Aki

Shared references of i and j 
Important hubs refer to (many) others together 
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