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Problem Set #4 - Solutions
14.30 - Intro. to Statistical Methods in Economics
Instructor: Konrad Menzel

Due: Tuesday, March 17, 2009

Question One

Suppose that the PDF of X is as follows:

fz) =

e ™ forz>0
0 forz <0’

1. Determine the PDF for Y = X32.

e Solution to 1: In order to find the PDF, we can use the CDF or “2-Step”
method. We write:

RG) = PO <y =PXi<y= [ | fro)s

= /mgyz [x(z)dx

2

Yy
= / e “dx
0

= ()

Fy(y) = 1—eV
fry) = 2ye¥

for y > 0 and zero for y < 0.
2. Determine the PDF for W = X for k € N.

e Solution to (2): This is just a straightforward generalization of part 1. We



can write:

Fww) = P(W <w)=P(X} gw)=f_  fxle)ds

ng
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Fuf('lu) = l—B_wk
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for w > 0 and zero for w < 0.

Question Two

Suppose that the PDF of a random variable X is as follows:

2

=zr forO<axz<5b
flz)=4® .

0 otherwise

Also, suppose that Y = X (5—X). Determine the PDF and CDF of Y. You can solve
this in two ways. First, you can compute fy(y) using the formula given in class:

) = £l ) | 107 0)

taking care that g(z) is piece-wise monotonic. Second, you can solve this by finding
Fy(y) = P[Y < y] directly, as we did in recitation. You will receive extra-credit if
you can do it both ways.

e Solution: We first need to find the inverse function, ¢~'(y) = z. By solving we
obtain:

Y = X(5-X)

0 = —X*+5X-Y
% 5425 —4Y
2

Now, we can apply the transformation result above since we do have a piecewise
monotonic function, g(x), with two roots over the interval. Since we know it is
a parabola, we solve for where the derivative is zero in order to obtain the two



monotonic pieces (one will be monotonically increasing, the other decreasing).
So, we find

g'(a:)=5—23:=0:>$=g.

So, it turns out that at the midpoint, we have a maximum (since the second
derivative is negative).

We now simply apply the formula to the two halves of the function and add
them together:
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To get the CDF, we just integrate:
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Fy(y) = 1— g\/25 — 4y.
Both the PDF and CDF are defined on the interval 0 < y < 24—5 and the PDF is

zero otherwise and the CDF is zero for y < 0 and one for % < y. Now, just to
check our answer (and for extra credit), we will also use the CDF or “2-Step”




Fy(y) = P(Y <y)=P(X(5-X)<y)= [ fx(x)d
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on the interval 0 < y < % We got the same answer! Great!

Question Three

(Bain/Engelhardt, p. 226)

(6 points) Let X be a random variable that is uniformly distributed on [0, 1] (i.e.
f(z) = 1 on that interval and zero elsewhere). Use two techniques from class (“2-
step”/CDF technique and the transformation method) to determine the PDF of each
of the following:

1. Y =Xz,

e Solution to (1): First, g(z) = z1 = ¢~ '(y) = y*
technique, we get

Frly) = POV <y)=POCt <) = [ | fx(o)is

”

Using the “2-step

()5
Fry) = v
fry) = 4°



Using the transformation technique (after checking that g(z) is monotonic
on the nonzero support of f(z)), we get

frly) = fx(g‘l(y))‘%g‘l(y)’

fx(yd)
= 1|4y’
frly) = 4°

where fy (y) is defined above on [0, 1] and zero otherwise.

d 4
&gy

- W=e*.

e Solution to (1): First, g(z) = e * = g '(w) = —logw (note: “log” typ-
ically denotes “In” or the natural log, log base e in economics and many
other sciences). Using the “2-step” technique while paying close attention

to the inequalities, we get

Fw(w) = PW<w)=Ple*<w)= / fx(z)dx

e EF <w
rx>—logw

rx<logw
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Fy(w) = logw
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Using the transformation technique (after checking that g(z) is monotonic
on the nonzero support of f(z)), we get

fwlw) = felg™ )| g™ )
= fx(—logw) %—logw‘
1
= i)
L

fw(y) =

where fy (w) is defined above on [+, 1] and zero otherwise.
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3. Z=1—¢%,

e Solution to (1): First, g(z) = 1 —e™® = g7'(2) = —log(1 —z) (note:
“log” typically denotes “In” or the natural log, log base e in economics and
many other sciences). Using the “2-step” technique, we get

Fz(2) = P(Z<2z)=Ple®<z2) = f B fx(z)dz

= f dx
zx<—log(l—z)

- (x)[-}‘ log(1—=2)

Fz(z) = —log(l—2)
1
-

Using the transformation technique (after checking that g(x) is monotonic
on the nonzero support of f(z)), we get

faz) = Ixlo™()| 207
= fx(—log(l—2)) % —log(1 — 2)
= 1‘ 1
1—2
f2(z) = 1iz

where f(z) is defined above on [0,1 — 2] and zero otherwise.

Question Four

(Bain/Engelhardt p. 227)
If X ~ Binomial(n,p), then find the pdf of Y =n — X.

e Solution: The random variable Y = n — X is a straightforward discrete trans-
formation. We right the inverse function, ¢g~'(y) = n — Y. We now write the
binomial pdf:

fx(z) = (Dpx(l -p)"

By inspection, we see that we can simply substitute in the linear transformation
(which is monontonic with Jacobian is -1, i.e. absolute value of 1 for all possible



outcomes):

fri@) ( § )p”""(l—p)“‘(”-y)

n—y
n
= p (1 —p)
(1)r0-n
= Binomial(n,1 — p)

So, we see that this simple transformation simply relabeled a success as a failure
and vice versa in our n Bernoulli trials. This is what we would have expected.

Question Five

(Bain/Engelhardt p. 227)
Let X and Y have joint PDF f(z,y) = 4e 2**¥) for 0 < x < oo and 0 < y < oo,
and zero otherwise.

1. Find the CDF of W = X + Y.

e Solution to (1): The CDF of W = X + Y can be obtained by defining
Z = X and finding the joint distribution of W and Z, and then integrating
out Z to obtain the marginal of W. We first define the transformation of
x and y to obtain w and z and find its inverse:

se) = |1 o] [ 7] =
e = [ L[] =@

z

The Jacobian is really easy to get once we've written g(x,y) as a linear
transformation in matrix notation:

{84

So, since g(x,y) is linear (and, hence, monotonic), we can just use the
transformation technique:

f@y) = et
fw2) = fg™ (w2

= f(z,w—2)[-1]
- 46—2(z+(u.l—z))
48—211:



where |-| denotes the absolute value of the determinant operator. Now,
to get the CDF we need to get the marginal of W and then integrate,
taking into account the bounds on X and Y inducing bounds on W of
Z <W < o0:

fww) = [ fw.2)d:

= / de 2 dz
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Now that we have the marginal, we use integration by parts to obtain the
CDF:
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Alternatively, we could have just used the convolution formula adapted to
this problem:

HERY o a—

which would have yielded the same solution:

Foolio] = fom.fx(ﬂr)fv(w—x)dx

- f 26—2r . 26—2(w—a:)d$
0

which is the same integral we performed above.
2. Find the joint pdf of U = & and V = X.

e Solution to (2): We use similar methods to those in part (1). Define g(zx,y)
and g~ (u,v):

owy) = (,2)=(w)
7 wr) = @)= (@)
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with its corresponding Jacobian:

=% 4
—i

which has a determinant of |J| = %. Since z > 0 and y > 0, we can use
the transformation methods without worrying about multiple roots:

flzy) = 4e~zty)
flu,v) = flg7 (u,v))|J]|

flup) = A— e 0
So, we have obtained the joint pdf.

3. Find the marginal pdf of U.

e Solution to (3): The marginal pdf of U can be obtained by integrating out

v:
/ flu,v)dv = / A~ gy
0 0
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Finally, just to check to make sure that we have a valid PDF, we can
integrate to verify that it does, in fact, integrate to one:

% 1
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