
Lecture 1

Distributions and Normal Random Variables

1 Random variables 

1.1 Basic De˝nitions 

Given a random variable X, we de˝ne a cumulative distribution function (cdf ), FX : R → [0, 1], such that 

FX (t) = P {X ≤ t} for all t ∈ R. Here P {X ≤ t} denotes the probability that X ≤ t. To emphasize that 

random variable X has cdf FX , we write X ∼ FX . Note that FX (t) is a nondecreasing function of t. 

There are 3 types of random variables: discrete, continuous, and mixed. 

Discrete random variable, X, is characterized by a list of possible values, X = {x1, ..., xn}, and their 
probabilities, p = {p1, ..., pn}, where pi denotes the probability that X will take value xi, i.e. pi = P {X = xi} 

for all i = 1, ..., n. Note that p1 + ... + pn = 1 and pi ≥ 0 for all i = 1, ..., n by de˝nition of probability. Then ∑ 
the cdf of X is given by FX (t) = pj . j=1,...,n: xj ≤t 

Continuous random variable, Y , is characterized by its probability density function (pdf), fY : R → R, ∫ ∫ b +∞ 
such that P {a < Y ≤ b} = fY (s)ds. Note that fY (s)ds = 1 and fY (s) ≥ 0 for all s ∈ R by 

a −∞ ∫ t
de˝nition of probability. Then the cdf of Y is given by FY (t) = −∞ fY (s)ds. By the Fundamental Theorem 

of Calculus, fY (t) = dFY (t)/dt. 

A random variable is referred to as mixed if it is not discrete and not continuous. 

If cdf F of some random variable X is strictly increasing and continuous then it has inverse, q(x) = 

F −1(x). It is de˝ned for all x ∈ (0, 1). Note that 

P {X ≤ q(x)} = P {X ≤ F −1(x)} = F (F −1(x)) = x 

for all x ∈ (0, 1). Therefore q(x) is called the x-quantile of X. It is such a number that random variable X 

takes a value smaller or equal to this number with probability x. If F is not strictly increasing or continuous, 

then we de˝ne q(x) as a generalized inverse of F , i.e. q(x) = inf{t ∈ R : F (t) ≥ x} for all x ∈ (0, 1). In 

other words, q(x) is a number such that F (q(x) + ε) ≥ x and F (q(x) − ε) < x for any ε > 0. As an exercise, 

check that P {X ≤ q(x)} ≥ x. 
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1.2 Functions of Random Variables 

Suppose we have random variable X and function g : R → R. Then we can de˝ne another random variable 

Y = g(X). The cdf of Y can be calculated as follows 

FY (t) = P {Y ≤ t} = P {g(X) ≤ t} = P {X ∈ g −1(−∞, t]},

−1 where g may be the set-valued inverse of g. The set g−1(−∞, t] consists of all s ∈ R such that g(s) ∈
(−∞, t], i.e. g(s) ≤ t. If g is strictly increasing and continuously di˙erentiable then it has strictly increasing 

and continuously di˙erentiable inverse g−1 de˝ned on set g(R). In this case P {X ∈ g−1(−∞, t]} = P {X ≤
g−1(t)} = FX (g

−1(t)) for all t ∈ g(R). If, in addition, X is a continuous random variable, then 

( ) ( )−1 ( )−1 
dFY (t) dFX (g

−1(t)) dFX (s) dg(s) dg(s) 
fY (t) = = = = fX (g −1(t))

dt dt ds ds ds s=g−1(t) s=g−1(t) s=g−1(t) 

for all t ∈ g(R) . If t ∈/ g(R), then fY (t) = 0. 

One important type of function is a linear transformation. If Y = X − a for some a ∈ R, then 

FY (t) = P {Y ≤ t} = P {X − a ≤ t} = P {X ≤ t + a} = FX (t + a). 

In particular, if X is continuous, then Y is also continuous with fY (t) = fX (t + a). If Y = bX with b > 0, 

then 

FY (t) = P {bX ≤ t} = P {X ≤ t/b} = FX (t/b). 

In particular, if X is continuous, then Y is also continuous with fY (t) = fX (t/b)/b. 

1.3 Expected Value 

Informally, the expected value of some random variable can be interpreted as its average. Formally, if X is 

a random variable and g : R → R is some function, then, by de˝nition, 

∑ 
E[g(X)] = g(xi)pi 

i 

for discrete random variables and ∫ +∞
E[g(X)] = g(x)fX (x)dx 

−∞ 

for continuous random variables. 

Expected values for some functions g deserve special names: 

• mean: g(x) = x, E[X]

2 • second moment: g(x) = x , E[X2]

• variance: g(x) = (x − E[X])2 , E[(X − E[X])2]
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k • k-th moment: g(x) = x , E[Xk] 

• k-th central moment: E[(X − EX)k] 

The variance of random variable X is commonly denoted by V (X). 

1.3.1 Properties of expectation 

1) For any constant a (non-random), E[a] = a. 

2) The most useful property of an expectation is its linearity: if X and Y are two random variables and 

a and b are two constants, then E[aX + bY ] = aE[X] + bE[Y ]. 

3)If X is a random variable, then V (X) = E[X2] − (E[X])2 . Indeed, 

V (X) = E[(X − E[X])2] 

= E[X2 − 2XE[X] + (E[X])2] 

= E[X2] − E[2XE[X]] + E[(E[X])2] 

= E[X2] − 2E[X]E[X] + (E[X])2 

= E[X2] − (E[X])2 . 

4) If X is a random variable and a is a constant, then V (aX) = a2V (X) and V (X + a) = V (X). 

1.4 Examples of Random Variables 

Discrete random variables: 

• Bernoulli(p): random variable X has Bernoully(p) distribution if it takes values from X = {0, 1}, 
P {X = 0} = 1 −p and P {X = 1} = p. Its expectation E[X] = 1 · p+0 · (1 − p) = p. Its second moment 

2 E[X2] = 12 · p + 02 · (1 − p) = p. Thus, its variance V (X) = E[X2] − (E[X])2 = p − p = p(1 − p). 

Notation: X ∼ Bernoulli(p). 

• Poisson(λ): random variable X has a Poisson(λ) distribution if it takes values from X = {0, 1, 2, ...} 

and P {X = j} = e−λλj /j!. As an exercise, check that E[X] = λ and V (X) = λ. Notation: X ∼ 

Poisson(λ}. 

Continuous random variables: 

• Uniform(a, b): random variable X has a Uniform(a, b) distribution if its density fX (x) = 1/(b − a) for 

x ∈ (a, b) and fX (x) = 0 otherwise. Notation: X ∼ U(a, b). 

• Normal (µ, σ2): random variable X has a Normal(µ, σ2) distribution if its density fX (x) = exp(−(x − 
√ 

µ)2/(2σ2))/( 2πσ) for all x ∈ R. Its expectation E[X] = µ and its variance V (X) = σ2 . Notation: 

X ∼ N(µ, σ2). As an exercise, check that if X ∼ N(µ, σ2), then Y = (X − µ)/σ ∼ N(0, 1). Y is 

said to have a standard normal distribution. It is known that the cdf of N(µ, σ2) is not analytical, 

i.e. it can not be written as a composition of simple functions. However, there exist tables that give 
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its approximate values. The cdf of a standard normal distribution is commonly denoted by Φ, i.e. if 

Y ∼ N(0, 1), then FY (t) = P {Y ≤ t} = Φ(t). 

2 Bivariate (multivariate) distributions 

2.1 Joint, marginal, conditional 

If X and Y are two random variables, then FX,Y (x, y) = P {X ≤ x, Y ≤ y} denotes their joint cdf. X and Y ∫ ∫ x y 
are said to have joint pdf fX,Y if fX,Y (x, y) ≥ 0 for all x, y ∈ R and FX,Y (x, y) = fX,Y (s, t)dtds. −∞ −∞ 

Under some mild regularity conditions (for example, if fX,Y (x, y) is continuous), 

∂2FX,Y (x, y) 
fX,Y (x, y) = 

∂x∂y 

From the joint pdf fX,Y one can calculate the pdf of, say, X. Indeed, 

∫ ∫ x +∞ 

FX (x) = P {X ≤ x} = f(s, t)dtds 
−∞ −∞ ∫ +∞ 

Therefore fX (s) = −∞ f(s, t)dt. The pdf of X is called marginal to emphasize that it comes from a joint 

pdf of X and Y . 

If X and Y have a joint pdf, then we can de˝ne a conditional pdf of Y given X = x (for x such that 

fX (x) > 0): fY |X (y|x) = fX,Y (x, y)/fX (x). Conditional probability is a full characterization of how Y is 

distributed for any given given X = x. The probability that Y ∈ A for some set A given that X = x can ∫ 
be calculated as P {Y ∈ A|X = x} = fY |X (y|x)dy. In a similar manner we can calculate the conditional 

A ∫ +∞ 
expectation of Y given X = x: E[Y |X = x] = yfY |X (y|x)dy. As an exercise, think how we can de˝ne −∞ 

the conditional distribution of Y given X = x if X and Y are discrete random variables. 

Two extremely useful properties of a conditional expectation are: for any random variables X and Y , 

• E[f(X)Y |X = x] = f(x)E[Y |X = x]; 

• the law of iterated expectations: E[E[Y |X = x]] = E[Y ]. 

2.2 Independence 

Random variables X and Y are said to be independent if fY |X (y|x) = fY (y) for all x ∈ R, i.e. if the marginal 

pdf of Y equals conditional pdf Y given X = x for all x ∈ R. Note that fY |X (y|x) = fY (y) if and only if 

fX,Y (x, y) = fX (x)fY (y). If X and Y are independent, then g(X) and f(Y ) are also independent for any 

functions g : R → R and f : R → R. In addition, if X and Y are independent, then E[XY ] = E[X]E[Y ]. 
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Indeed, ∫ ∫ +∞ +∞ 

E[XY ] = xyfX,Y (x, y)dxdy 
−∞ −∞ ∫ ∫ +∞ +∞ 

= xyfX (x)fY (y)dxdy 
−∞ −∞ ∫ ∫ +∞ +∞ 

= xfX (x)dx yfY (y)dy 
−∞ −∞ 

= E[X]E[Y ] 

2.3 Covariance 

For any two random variables X and Y we can de˝ne covariance as 

cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]. 

As an exercise, check that cov(X, Y ) = E[XY ] − E[X]E[Y ]. 

Covariances have several useful properties: 

1. cov(X, Y ) = 0 whenever X and Y are independent 

2. cov(aX, bY ) = abcov(X, Y ) for any random variables X and Y and any constants a and b 

3. cov(X + a, Y ) = cov(X, Y ) for any random variables X and Y and any constant a 

4. cov(X, Y ) = cov(Y, X) for any random variables X and Y √ 
5. |cov(X, Y )| ≤ V (X)V (Y ) for any random variables X and Y 

6. V (X + Y ) = V (X) + V (Y ) + 2cov(X, Y ) for any random variables X and Y ∑ ∑ n n 
7. V ( Xi) = V (Xi) whenever X1, ..., Xn are independent i=1 i=1 

To prove property 5, consider random variable X − aY with a = cov(X, Y )/V (Y ). On the one hand, its 

variance V (X − aY ) ≥ 0. On the other hand, 

V (X − aY ) = V (X) − 2acov(X, Y ) + a 2V (Y ) 

= V (X) − 2(cov(X, Y ))2/V (Y ) + (cov(X, Y )2/V (Y ) 

Thus, the last expression is nonnegative as well. Multiplying it by V (Y ) yields the result. √ 
The correlation of two random variables X and Y is de˝ned by corr(X, Y ) = cov(X, Y )/ V (X)V (Y ). 

By property 5 as before, |corr(X, Y )| ≤ 1. If |corr(X, Y )| = 1, then X and Y are linearly dependent, i.e. 

there exist constants a and b such that X = a + bY . 
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3 Normal Random Variables 

Let us begin with the de˝nition of a multivariate normal distribution. Let Σ be a positive de˝nite n × n 

matrix. Remember that the n × n matrix Σ is positive de˝nite if aT Σa > 0 for any non-zero n × 1 vector a. 

Here superindex T denotes transposition. Let µ be n × 1 vector. Then X ∼ N(µ, Σ) if X is continuous and 

its pdf is given by 
exp(−(x − µ)T Σ−1(x − µ)/2) 

fX (x) = √ 
(2π)n/2 det(Σ) 

for any n × 1 vector x. 

A normal distribution has several useful properties: 

1. if X ∼ N(µ, Σ), then Σij = cov(Xi, Xj ) for any i, j = 1, ..., n where X = (X1, ..., Xn)
T 

2. if X ∼ N(µ, Σ), then µi = E[Xi] for any i = 1, ..., n 

3. if X ∼ N(µ, Σ), then any subset of components of X is normal as well. In particular, Xi ∼ N(µi, Σii) 

4. if X and Y are uncorrelated normal random variables, then X and Y are independent. As an exercise, 

check this statement 

5. if X ∼ N(µX , σ
2 ), Y ∼ N(µY , σ

2 ), and X and Y are independent, then X +Y ∼ N(µX +µY , σX 
2 +σ2 ) X Y Y 

6. Any linear combination of normals is normal. That is, if X ∼ N(µ, Σ) is an n × 1 dimensional normal 

vector, and A is a ˝xed k × n full-rank matrix with k ≤ n, then Y = AX is a normal k × 1 vector: 

Y ∼ N(Aµ, AΣAT ). 

3.1 Conditional distribution 

Another useful property of a normal distribution is that its conditional distribution is normal as well. If [ ] ([ ] [ ]) 
X1 µ1 Σ11 Σ12 

X = ∼ N , 
X2 µ2 Σ21 Σ22 

then X1|X2 = x2 ∼ N(µ̃, Σ) with µ̃ = µ1+Σ12Σ
−1(x2 −µ2) and ˜ If X1 and X2 are both ˜ 
22 Σ = Σ11−Σ12Σ

−1Σ21. 22 

random variables (as opposed to random vectors), then E[X1|X2 = x2] = µ1 + cov(X1, X2)(x2 − µ2)/V (X2). 

Let us prove the last statement. Let [ ] 
σ11 σ12 

Σ = 
σ12 σ22 

be the covariance matrix of 2 × 1 normal random vector X = (X1, X2)
T with mean µ = (µ1, µ2)

T . Note that 

Σ12 = Σ21 12 = σ12 since cov(X1, X2) = cov(X1, X2). From linear algebra, we know that det(Σ) = σ11σ22 −σ2 

and [ ] 
1 σ22 −σ12 

Σ−1 = . 
det(Σ) −σ12 σ11 
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Thus the pdf of X is 

exp{−[(x1 − µ1)
2σ22 + (x2 − µ2)

2σ11 − 2(x1 − µ1)(x2 − µ2)σ12]/(2 det(Σ)} 
fX (x1, x2) = √ , 

2π det(Σ) 

and the pdf of X2 is 
exp{−(x2 − µ2)

2/(2σ22)} 
fX2 (x2) = √ . 

2πσ22 

Note that 
σ2 σ11 1 12) σ11σ22 − (σ11σ22 − σ2 
12 − = = . 

det(Σ) σ22 det(Σ)σ22 det(Σ)σ22 

Therefore the conditional pdf of X1, given X2 = x2, is 

fX (x1, x2) 
fX1|X2 

(x1|X2 = x2) = 
fX2 (x2) 

exp{−[(x1 − µ1)
2σ22 + (x2 − µ2)

2σ2 
12/σ22 − 2(x1 − µ1)(x2 − µ2)σ12]/(2 det(Σ))} 

= √ √ 
2π det(Σ)/σ22 

exp{−[(x1 − µ1)
2 + (x2 − µ2)

2σ2 
22 − 2(x1 − µ1)(x2 − µ2)σ12/σ22]/(2 det(Σ)/σ22)} 12/σ
2 √ 
2π det(Σ)/σ22 

exp{−[x1 − µ1 − (x2 − µ2)σ12/σ22]
2/(2 det(Σ)/σ22)} 

= √ 

= √ √ 
2π det(Σ)/σ22 

exp{−(x1 − µ̃)2/(2σ̃)} 
= √ √ , 

2π σ̃ 

where µ̃ = µ1 + (x2 − µ2)σ12/σ22 and σ̃ = det(Σ)/σ22. Note, that the last expression equals the pdf of a 

normal random variable with mean µ̃ and variance σ̃ yields the result. 
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