
Lecture 3

Intro to Statistics. Inferences for normal families.

1 Basic Concepts: Population, Sample, Parameter, Statistics 

In statistics we usually have a data set (or a sample), which can be described as a single draw of data from 

all potential realizations of that data. We may describe it as a realization x of random vector X . The 

distribution FX of data vector X is often referred as population. 

In Econometrics one encounters 3 types of data: cross-section, time series and panel. Cross-section is 

usually described as a set of iid (independent and identically distributed ) random vectors X1, ..., Xn (that ∏n 
is, X = (X1, ..., Xn), x = (x1, ..., xn)). If we assume that Xi ∼ F , then FX (x) = F (xi). Time-series i=1 

data Xt, t = 1, ..., T usually allow dependency between consecutive observations and describe (X1, ..., XT ) 

as one realization of a path that results from a dynamic process. Panel data usually consider X = {Xit, i = 

1, .., n, t = 1, ..., T } that we have a draw from n independent identically distributed dynamic processes. 

The object of interest here is usually some functional of the unknown distribution FX . Any such function 

is known as a parameter. In the case of cross-sectional data, it is usually some function of distribution of 

one observation F ; for time series, the parameter may be related to the dependence between observations as 

well as marginal distributions of observation. Notice that parameter is a population concept. 

The goal of Statistics generally is to render some judgement about a parameter (or population FX ) based 

on a single draw from this population. This is called inference. We will see three types of inference: esti-

mation, con˝dence set construction and testing. In performing each task we will sometimes make mistakes, 

and the quality of the procedure will be related to minimizing the size and/or probability of mistakes. 

We refer to any function of a random sample as a statistic. Thus, Y = g(X ) = g(X1, ..., Xn) is a statistic. 

By construction, it is random variable. When calculated for our speci˝c data set y = g(x) = g(x1, ..., xn) it 

produces a single realization of this random variable. The distribution of a statistic is called the sampling 

distribution. 

Example 1. Assume you want to ˝gure out whether the penny you have is a fair coin by ˛ipping it n = 10 

times and recording 0 for each tail and 1 for each head. In this case your data x = (x1, ..., x10) is a sequence 

of of 0s and 1s of the length 10, where xi is the result of i-th experiment. This is a single realization of 

random vector X = (X1, ..., X10), where Xi ∼ i.i.d. Bernoulli(p). The population here is described as ∏10
P (x1, ..., x10) = xi (1 − p)1−xi , and is known up to parameter p. So, the only goal is to make some i=1 p 

judgement about p. Remember, statistics refers to any function of the data set. We may consider many 
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di˙erent functions: say, 
10∑ 

Y1 = {number of heads} = Xi, 
i=1 

Y2 = {the order number of the ˝rst experiment resulting in heads, with 0 if no heads} = X1 + 2(1 − 

X1)X2 + 3(1 − X1)(1 − X2)X3 + ..., 

Y3 = {the di˙erence between the number of heads in the ˝rst 6 ˛ips and the number of heads in the ∑6 ∑10 
remaining 4} = Xi − Xi. i=1 i=7 

If one has data=(0,1,1,1,0,0,1,1,0,1), then y1 = 6, y2 = 2, y3 = 0. All statistics Y1, Y2, Y3 are random 

variables with a distribution depending on p. 

Example 2. Assume you want to estimate the average income of a man aged between 25 and 65, who 

resides in Massachusetts. You were able to get a random sample of income for n such men. Your data 

is represented by random vector X = (X1, ..., Xn), where Xi ∼ i.i.d.F (·), where F (·) is the unknown ∏n 
distribution of incomes. The population is described by FX (x1, ..., xn) = F (xi). The parameter of i=1 ∫ 
interest is µ = udF (u)- the mean of the unknown income distribution. You have one realization of this 

data set x = (x1, ..., xn), statistic is any function of the data set. Some examples: ∑ n 1 Y1 = Xi (average); n i=1 

Y2 = (n/2)−th highest value among (X1, ..., Xn); (median) 

Y3 = average of 80% of middle values (drop 10% smallest and 10% largest values)- a trimmed mean. 

1.1 Sample mean and sample variance. ∑n 
The two most commonly used statistics are the sample mean (Xn = Xi/n) and the sample variance i=1 ∑ n 2 (s = (Xi −Xn)

2/(n−1)). These statistics have attractive properties as described in the lemma below: i=1 

Lemma 1. If X1, ..., Xn ∼ i.i.dF is a random sample of size n from a population distribution with mean 

µ = EXi and variance σ2 = V ar(Xi), then E[Xn] = µ and E[s2] = σ2 . 

Proof. By linearity of expectation, 

n n n ∑ ∑ ∑ 
E[Xn] = E[ Xi/n] = E[Xi]/n = µ/n = µ 

i=1 i=1 i=1 ∑n 
. To show the second part of the lemma, denote Yi = Xi − µ and Y n = i=1 Yi/n. Note that E[Yi] = 0. 

Thus, E[Y 2] = V (Yi) = V (Xi) = σ2 and V (Y n) = σ2/n. Then i 

n n ∑ ∑ 
E[s 2] = E[ (Xi − Xn)

2/(n − 1)] = E[ ((Xi − µ) − (Xn − µ))2/(n − 1)] 
i=1 i=1 

n n ∑ ∑ 2 
= E[ (Yi − Y n)

2/(n − 1)] = E[ (Yi 
2 − 2YiY n + Y )]/(n − 1) n 

i=1 i=1 
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n n ∑ ∑ 2 2 2 
= E[ Y 2 − 2nY + nY ]/(n − 1) = E[ Y 2 − nY ]/(n − 1) i n n i n 

i=1 i=1 
n∑ 2 

= ( E[Y 2] − nE[Y ])/(n − 1) = (nσ2 − σ2)/(n − 1) = σ2 
i n 

i=1 

1.2 Empirical distribution function 

ˆ If we have a random sample X1, ..., Xn of size n, then empirical distribution function Fn is the cdf of the 

distribution that places mass 1/n at each data point Xi. Thus, by de˝nition, 

n∑ 
F̂n(x) = I(Xi ≤ x)/n, 

i=1 

where I(·) stands for the indicator function, i.e. the function which equals 1 if the statement in brackets is 

true, and 0 otherwise. In other words, F̂  
n(x) shows the fraction of observations with a value smaller than or 

equal to x. An important property of an empirical distribution function is given in the lemma below. 

Lemma 2. If we have a random sample X1, ..., Xn of size n from a distribution with cdf F , then for any 
ˆ x ∈ R, E[F̂  

n(x)] = F (x) and V (F̂  
n(x)) → 0 as n → ∞. As a consequence, Fn(x) →p F (x) as n → ∞. 

Proof. Note that I(Xi ≤ x) equals 1 with probability P {X ≤ x} and 0 otherwise. Thus, E[I(Xi ≤ x)] = 

P {X ≤ x} = F (x). Hence E[F̂  
n(x)] = F (x) by linearity of expectation. In addition, V (I(Xi ≤ x)) = 

F (x)(1 − F (x)) by the formula for variance of a Bernoulli (F (x)) distribution. Therefore, 

n∑ 
V (F̂  

n(x)) = V (I(Xi ≤ x))/n2 = F (x)(1 − F (x))/n → 0. 
i=1 

To prove the second part of the lemma, we have E[(F̂  
n(x) − F (x))2] = V (F̂  

n(x)) → 0 as n → ∞ since 

E[F̂  
n(x)] = F (x). Convergence in probability then follows from Chebyshev's inequality. 

Actually, a much more strong result holds as well: 

Theorem 3 (Glivenko-Cantelli). If X1, ..., Xn is a random sample from a distribution with cdf F , then 

sup |F̂  
n(x) − F (x)| →p 0. 

x∈R 

2 Ways to ˝nd the distribution of a statistic 

In order to make inferences we often will need to know the distribution of di˙erent statistics. There are 

several ways of getting them. 
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2.1 Exact distribution 

In rare cases one can actually calculate the exact distribution of a statistic. 

∑n 
Example 1(cont.) Consider statistic Y1 = Xi, it take integer values between 0 and 10 with i=1 

10! k(1 − p)10−k P {Y1 = k} = p . 
k!(10 − k)! 

The distribution depends on an unknown p; once we know (or postulate p) we can calculate exact distribution 

of Y1. 

∑ n 1 Example 2(cont) Let us try to ˝gure out the distribution of Y1 = Xi. If Xi ∼ F (·) with pdf f n i=1 ∫ 
then X1 + X2 ∼ f2(u) where f2(u) = f(x)f(u − x)dx. So, Y1 has pdf ∫ ∫ 

fY (y) = ... f(10y − y1 − ... − yn−1)f(y1)...f(yn−1)dy1...dyn−1, 

which is a complicated expression and is not very helpful in most situations. It depends in a signi˝cant way 

on the unknown distribution F (·). If we make some strong assumptions about the distribution of our data 

we may end up with an exact distribution of some statistics. For example, assume Xi ∼ i.i.d.N(µ, σ2), then 

Y1 ∼ N(µ, σ2/n). However, this is a strange assumption to make about income distribution (why?). 

2.2 Monte-Carlo Method. 

Let us consider Example 2, but now with an alternative assumption of the log-normal distribution. Assume 

that Xi has the following pdf: 

(log(x−γ)−µ)2 
− 

2σ2 f(x; µ, σ2, γ) = (2πσ2)−1/2(x − γ)−1 e I{x > γ}. 

∑ n 1 Apparently, getting a (closed-form) exact distribution of Y1 = Xi is not that easy. But we can do n i=1 

this numerically by the use of Monte-Carlo method. A typical algorithm for given (µ, σ2, γ): 

• For b = 1, ..., B, simulate X ∗ = (X∗ , ..., X∗ ), where the Xib 
∗ are independently drawn from f(x; µ, σ2, γ); b 1b nb ∑ n 1 • Calculate Y ∗ = g(X ∗), in our case X∗ 

b b n i=1 ib; 

• If you are interested in: ∑B 1 � cdf of Y , then FY (s) ≈ I{Y ∗ ≤ s}; B b=1 b ∑B 1 � probability Y gets into the set A: P {Y ∈ A} ≈ I{Y ∗ ∈ A}; B b=1 b 

� α-quantile of Y : qY (α) ≈ Y( 
∗
⌊αB⌋), here (·)- stands for the order statistics; ∑B 

� mean of Y : EY ≈ 1 Y ∗ 
B b=1 b ; ( )2 ∑B ∑B 1 � variance of Y : V (Y ) ≈ Y ∗ − 1 Y ∗ . B−1 b=1 b B s=1 s 
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Here all the Y ∗ are i.i.d. from the correct distribution. We control the accuracy here: larger B leads to b 

better accuracy; we are bounded only by power of our computers. 

The important assumption here is we assume that we know (or postulate) the distribution of the data. 

2.3 Asymptotic approximation 

Exact ˝nite-sample distributions of many statistics have complicated forms and cannot be calculated directly 

if we do not know (and do not want to assume) the distribution of the data. But at the same time that often 

may be well-approximated if the sample size is large. This is known as asymptotic approximation and relies 

on CLT, delta-methods, Slutsky theorem and alike. 

Example 2(cont) If we are unwilling to assume the distribution of Xi at all, but are willing to assume 

that it has ˝nite variance, then 

n ∑ √ 1 
n( Xi − EXi) ⇒ N(0, V (Xi)). 

n 
i=1 ∑n 

Thus the distribution of Y1 = Xi is approximately gaussian with mean EXi and variance V (Xi)/n. i=1 

We do not control the quality of this approximation and cannot improve it, but as the sample size grows the 

approximation should become more accurate. 

Asymptotic approximation is probably the most often used way of ˝guring out the distribution of a 

statistic in econometrics. 

2.4 Bootstrap 

The distribution of statistic Y = g(X ) is a function of g(·) and the population distribution FX . The typical 

issue, as we have seen above, is that we do not know FX . One idea may be to approximate FX by some 

close distribution. If statistic Y depends on the distribution of the data in a continuous enough fashion, we ∏n 
may get a good enough approximation. For example, in the i.i.d case FX (x) = F (xi), all we need is to i=1 

approximate F - the cdf of one observation. 

As one example, Glivenko-Cantelli' theorem above suggests that empirical distribution F̂  
n(x) may be a 

good approximation to F (x). So, the idea is to run the same algorithm as one does with Monte-Carlo simu-

lations, but simulate X∗ from distribution F̂  
n(x) rather than from an unknown F . This speci˝c procedure ib 

is called the non-parametric bootstrap: 

• For b = 1, ..., B, simulate X ∗ = (X∗ , ..., X∗ ), where the X∗ are drawn independently and uniformly b 1b nb ib 

with replacement from the set of initial observations {xi, i = 1, ..., n} (each xi has the same probability 

to be drawn); ∑ n 1 • Calculate Y ∗ = g(X ∗), in our case X∗ 
b b n i=1 ib; 

• If you are interested in: 

1 � the cdf of Y , then FY (s) ≈ 
∑B I{Y ∗ ≤ s}; B b=1 b 
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∑B 1 � probability Y gets into the set A: P {Y ∈ A} ≈ I{Y ∗ ∈ A}. B b=1 b 

� α-quantile of Y : qY (α) ≈ Y( 
∗
⌊αB⌋), here (·) - stands for the order statistics. ∑B 1 Y ∗ � mean of Y : EY ≈ B b=1 b . ( )2 ∑B ∑B 1 Y ∗ − 1 � variance of Y : V (Y ) ≈ b=1 B Ys 

∗ . B−1 b s=1 

Larger B will help eliminate some part of approximation error (simulation error), but some part (due to 

approximating F ) cannot be controlled. 

We will see many other ways to approximate F (x), which would lead to a number of di˙erent bootstrap 

procedures. 

There are often two ways to justify using the bootstrap. Typically we wish to claim that the distance 

between true distribution of statistic FY and the bootstrapped one FY ∗ is converging to zero in some sense 

as the sample size increases to in˝nity. One way is to show that FY is continuous in F in some sense (we 

have to be accurate as there are di˙erent metrics that can be introduced on the space of these distributions) 

and show that whatever approximation F̂  we use, it converges to F in the proper metrics. The other way is 

to show that the distribution of Y converges somewhere (allow for asymptotic approximation) and that Y ∗ 

converges to the same distribution. We will discuss this many times in what follows. 

3 Plug-in estimators 

Suppose we have a random sample X1, ..., Xn of size n from a population distribution with cdf F . Suppose T 

is some function on the space of possible cdfs. Suppose we do not know F but we are interested in T (F ). Then 

we can use some statistic g(X1, ..., Xn) to estimate T (F ). In this case g(X1, ..., Xn) is called an estimator 

of T (F ). Its realization g(x1, ..., xn) is called an estimate of T (F ). Here the x1, ..., xn stand for realizations 

of X1, ..., Xn. What is a good estimator of T (F )? By common sense, a good estimator g(X1, ..., Xn) should 

be such that g(X1, ..., Xn) ≈ T (F ), at least with large probability. One possible estimator is T (F̂  
n), where 

F̂  
n is the empirical cdf. T (F̂  

n) is called a plug-in estimator. From the Glivenko-Cantelli's theorem we know 

that F̂  
n will be close to F with large probability in large samples. Thus, if T is continuous, then T (F̂  

n) will 

be close to T (F ). 

As an example, suppose we are interested in the mean of the population distribution, i.e. µ = T (F ) = ∫ +∞ 
E[X] = −∞ xdF (x).Then 

∫ +∞ ∑ 
µ̂ = T (F̂  

n) = xdF̂  
n(x) = Xi/n = Xn. 

−∞ 

Thus, the plug-in estimator of the population mean is just the sample average. Next, suppose we are ∫ +∞ 
interested in the variance of the population distribution, i.e. σ2 = T (F ) = E[(X − E[X])2] = (x − −∞ 
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∫ +∞ 
xdF (x))2dF (x). Then −∞ 

σ̂2 = T (F̂  
n) ∫ ∫ +∞ +∞ 

= (x − xdF̂  
n(x))

2dF̂  
n(x) 

−∞ −∞ ∫ +∞ 

= (x − Xn)
2dF̂  

n(x) 
−∞ 
n∑ 

= (Xi − Xn)
2/n. 

i=1 

Thus, the plug-in estimator of the population variance does not coincide with the sample variance. The 

reason we use n − 1 instead of n in the denominator of the sample variance is to make it unbiased for the 

population variance, i.e. E[s2] = σ2 . Note that E[σ̂2] = (n − 1)σ2/n ≠ σ2 . 

Finally, consider the plug-in estimator of quantiles. We already de˝ned the quantile of the distribution 

in lecture 1 as qp = inf{x : F (x) ≥ p} so that qp is the p-th quantile of distribution F . Thus, the plug-in 
ˆ estimator of the p-th quantile is q̂p = inf{x : Fn(x) ≥ p}. 

4 Parametric Families: Normal 

The plug-in estimator considered above is a generic nonparametric estimator of some function T (F ) of 

distribution F in the sense that it does not use any information about the class of possible distributions. 

However, in practice, it is sometimes assumed that the class of possible distributions form some parametric 

family. In other words, it is assumed that F = F (θ) with θ ∈ Θ where Θ is some ˝nite-dimensional set. 

Then θ is called a parameter and Θ is a parameter space. In this case the cdf F and the corresponding pdf 

f are often denoted by F (x|θ) and f(x|θ). If X1, ..., Xn is a random sample from a distribution with pdf ∏n 
f(x|θ), then joint pdf f(x1, ..., xn|θ) = f(xi|θ). For ˝xed x1, ..., xn, f(x1, ..., xn|θ) as a function of θ is i=1 

called the likelihood function. 

One of the most important parametric families is a normal family when θ = (µ, σ2) and the population 

distribution is N(µ, σ2). Before considering normal family, let us give some de˝nitions related to normal 

distributions. ∑n 
If X1, ..., Xn is a random sample from N(0, 1), then random variable χ2 = X2 is called a χ2 random n i=1 i 

variable with n degrees of freedom. Its distribution is known as a χ2 distribution with n degrees of freedom. 
p/2−1 It is known that its pdf is given by f(x) = x e−x/2/(Γ(p/2)2p/2) if x > 0 and 0 otherwise. Here the 

Γ(x) denotes the gamma function. Its values can be found in special tables. √ 
Next, if X0 is N(0, 1) and independent of X1, ..., Xn, then tn = X0/ χ2 /n is called a t random variable n 

with n degrees of freedom. Its distribution is called a t-distribution or a Student distribution. 

Finally, if χ2 and χ2 are independent χ2 random variables with n and m degrees of freedom correspond-n m 

ingly, then Fn,m = (χ2 /n)/(χ2 /m) is called a Fisher random variable with (n, m) degrees of freedom. This n m 

distribution is called a Fisher distribution with (n, m) degrees of freedom. 

The following theorem gives some basic facts about the sample mean and the sample variance for random 
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2 

sample from normal distribution: 

Theorem 4. If X1, ..., Xn are iid random variables with N(µ, σ2) distribution, then (1) Xn and s are n 

independent, (2) Xn ∼ N(µ, σ2/n), and (3) (n − 1)s2/σ2 ∼ χ2 
n−1. 

Proof. Let Z = Xn, Y1 = X1 − Xn, Y2 = X2 − Xn, ..., Yn = Xn − Xn. Then Z, Y1, ..., Yn are jointly normal. 

Obviously, E[Z] = µ and E[Yi] = µ − µ = 0 for all i = 1, ..., n. In addition, V (Z) = σ2/n. Thus statement 

(2) holds. 

For any j = 1, ..., n, 

cov(Z, Yj ) = cov(Xn, Xj − Xn) 

= cov(Xn, Xj ) − V (Xn) 

= σ2/n − σ2/n 

= 0 

Since uncorrelated jointly normal random variables are independent, we conclude that Z is independent of ∑ ∑ n n 2 Y1, Y2, ..., Yn. Moreover, s = (Xi − Xn)
2/(n − 1) = Yi 

2/(n − 1) and statement (1) holds since i=1 i=1 

any functions of independent random variables are independent as well. 

The proof of statement (3) is left for Problem set 1. 

√ 
By de˝nition, t = (Xn − µ)/(s/ n) is called the t-statistic. Using the theorem above, 

Xn − µ Xn − µ 1 N(0, 1) 
t = √ = √ √ ∼ √ = tn−1 

s/ n σ/ n s2/σ2 
χ2 /(n − 1) n−1 

since N(0, 1) and χ2 
n−1 in the display above are independent. Thus, we proved that if X1, ..., Xn is a random 

sample from N(µ, σ2), then t-statistic has t-distribution with n − 1 degrees of freedom. 

Finally, let X1, ..., Xn be a random sample from N(µx, σ
2) and Y1, ..., Ym be a random sample from x 

2 N(µy, σ
2). Assume that X1, ..., Xn are independent of Y1, ..., Ym. Then F = (s /s2 )/(σ2/σ2) is called a y x y x y 

F -statistic. Using the theorem above, 

2 χ2 s /s2 
n−1/(n − 1) 

F = x y ∼ = Fn−1,m−1 
σ2/σ2 χ2 /(m − 1) x y m−1 

Thus, the F -statistic has the F -distribution with (n − 1,m − 1) degrees of freedom. 
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