
Lecture 4 

Su°cient Statistics. Introduction to Estimation 

1 Su°cient statistics 

Let f(x|θ) with θ ∈ Θ be some parametric family. Let X = (X1, ..., Xn) be a random sample from distribution 

f(x|θ). Suppose we would like to learn parameter value θ from our sample. The concept of su°cient 

statistic allows us to separate information contained in X into two parts. One part contains all the valuable 

information as long as we are concerned with parameter θ, while the other part contains pure noise in the 

sense that this part has no valuable information. Thus, we can ignore the latter part. 

De˝nition 1. Statistic T (X) is su°cient for θ if the conditional distribution of X given T (X) does not 

depend on θ. 

Let T (X) be a su°cient statistic. Consider the pair (X, T (X)). Obviously, (X, T (X)) contains the same 

information about θ as X alone, since T (X) is a function of X. But if we know T (X), then X itself has 

no value for us since its conditional distribution given T (X) is independent of θ. Thus, by observing X (in 

addition to T (X)), we cannot say whether one particular value of parameter θ is more likely than another. 

Therefore, once we know T (X), we can discard X completely. 

Example Let X = (X1, ..., Xn) be a random sample from N(µ, σ2). Suppose that σ2 is known. Thus, the 

only parameter is µ (θ = µ). We have already seen that T (X) = Xn ∼ N(µ, σ2/n). Let us calculate the 

conditional distribution of X given T (X) = t. First, note that 

n n ∑ ∑
(xi − µ)2 − n(xn − µ)2 = (xi − xn + xn − µ)2 − n(xn − µ)2 

i=1 i=1 
n n ∑ ∑

= (xi − xn)
2 + 2 (xi − xn)(xn − µ) 

i=1 i=1 
n∑

= (xi − xn)
2 . 

i=1 
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Therefore 

fX (x) 
fX|T (X)(x|T (X) = T (x)) = 

fT (T (x))∑n 
exp{− (xi − µ)2/(2σ2)}/((2π)n/2σn) i=1 = 
exp{−n(xn − µ)2/(2σ2)}/((2π)1/2σ/n1/2) 

n∑ 
= exp{− (xi − xn)

2/(2σ2)}/((2π)(n−1)/2σn−1/n1/2), 
i=1 

which is independent of µ. We conclude that T (X) = Xn is a su°cient statistic for our parametric family. 

Note, however, that Xn is not su°cient if σ2 is not known. 

2 Factorization Theorem 

The Factorization Theorem gives a general approach for how to ˝nd a su°cient statistic: 

Theorem 2 (Factorization Theorem). Let f(x|θ) be the pdf of X. Then T (X) is a su°cient statistic if and 

only if there exist functions g(t|θ) and h(x) such that f(x|θ) = g(T (x)|θ)h(x). 

Proof. Let l(t|θ) be the pdf of T (X). 

Suppose T (X) is a su°cient statistic. Then fX|T (X)(x|T (X) = T (x)) = fX (x|θ)/l(T (x)|θ) does not 
depend on θ. Denote it by h(x). Then f(x|θ) = l(T (x)|θ)h(x). Denoting l by g yields the result in one 

direction. 

In the other direction we will give a �sloppy� proof. Denote A(x) = {y : T (y) = T (x)}. Then ∫ ∫ ∫ 
l(T (x)|θ) = f(y|θ)dy = g(T (y)|θ)h(y)dy = g(T (x)|θ) h(y)dy. 

A(x) A(x) A(x) 

So 

f(x|θ) 
fX|T (X)(x|T (X) = T (x)) = 

l(T (x)|θ) 
g(T (x)|θ)h(x) 

= ∫ 
g(T (x)|θ) h(y)dy 

A(x) 

h(x) 
= ∫ , 

h(y)dy 
A(x) 

which is independent of θ. We conclude that T (X) is a su°cient statistic. 
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Example Let us show how to use the factorization theorem in practice. Let X1, ..., Xn be a random sample 

from N(µ, σ2) where both µ and σ2 are unknown, i.e. θ = (µ, σ2). Then 

n∑ 
f(x|θ) = exp{− (xi − µ)2/(2σ2)}/((2π)n/2σn) 

i=1 
n n ∑ ∑ 

2 = exp{−[ xi − 2µ xi + nµ 2]/(2σ2)}/((2π)n/2σn). 
i=1 i=1 ∑ ∑ n n 

Thus, T (X) = ( Xi 
2 , Xi) is a su°cient statistic (here h(x) = 1 and g is the whole thing). Note i=1 i=1 

that in this example we actually have a pair of su°cient statistics. In addition, as we have seen before, 

n∑ 
f(x|θ) = exp{−[ (xi − xn)

2 + n(xn − µ)2]/(2σ2)}/((2π)n/2σn) 
i=1 

2 = exp{−[(n − 1)s + n(xn − µ)2]/(2σ2)}/((2π)n/2σn). n 

2 Thus, T (X) = (Xn, s ) is another su°cient statistic. Yet another su°cient statistic is T (X) = (X1, ..., Xn). n 

Note that Xn is not su°cient in this example. 

Example A less trivial example: let X1, ..., Xn be a random sample from U [θ, 1 + θ]. Then f(x|θ) = 1 if 

θ ≤ mini Xi ≤ maxi Xi ≤ 1 + θ and 0 otherwise. In other words, f(x|θ) = I{θ ≤ X(1)}I{1 + θ ≥ X(n)}. So 
T (X) = (X(1), X(n)) is su°cient. 

3 Minimal Su°cient Statistics 

Could we reduce su°cient statistic T (X) in the previous example even more? Suppose we have two statistics, 
⋆ say, T (X) and T ⋆(X). We say that T is not bigger than T if there exists some function r such that 

T ⋆(X) = r(T (X)). In other words, we can calculate T ⋆(X) whenever we know T (X). In this case when 

T ∗ changes its value, statistic T must change its value as well. In this sense T ∗ does not give less of an 

information reduction than T . 

De˝nition 3. A su°cient statistic T ⋆(X) is called minimal if for any su°cient statistic T (X) there exists 

some function r such that T ⋆(X) = r(T (X)). 

Thus, in some sense, the minimal su°cient statistic gives us the greatest data reduction without a loss of 

information about parameters. The following theorem gives a characterization of minimal su°cient statistics: 

Theorem 4. Let f(x|θ) be the pdf of X and T (X) be such that, for any x, y, statement {f(x|θ)/f(y|θ) does 
not depend on θ} is equivalent to statement {T (x) = T (y)}. Then T (X) is minimal su°cient. 

We will leave this statement unproven here. 

Example Let us now go back to the example with X1, ..., Xn ∼ U [θ, 1 + θ]. Ratio f(x|θ)/f(y|θ) is 
independent of θ if and only if x(1) = y(1) and x(n) = y(n) which is the case if and only if T (x) = T (y). 

Therefore T (X) = (X(1), X(n)) is minimal su°cient. 
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Example Let X1, ..., Xn be a random sample from the Cauchy distribution with parameter θ, i.e. the ∏n 
distribution with the pdf f(x|θ) = 1/(π(x − θ)2). Then f(x1, ..., xn|θ) = 1/(πn (xi − θ)2). By the i=1 

theorem above, T (X) = (X(1), ..., X(n)) is minimal su°cient. 

4 Estimators. Properties of estimators. 

An estimator is a function of the data (statistic). If we have a parametric family with parameter θ, then an 

estimator of θ is usually denoted by θ̂  . 

Example For example, if X1, ..., Xn is a random sample from some distribution with mean µ and variance 
2 σ2 , then sample average µ̂ = Xn is an estimator of the population mean, and sample variance σ̂2 = s = ∑n 

(Xi − Xn)
2/(n − 1) is an estimator of the population variance. i=1 

4.1 Unbiasness 

Let X be our data. Let θ̂ = T (X) be an estimator where T is some function. 

We say that θ̂  is unbiased for θ if Eθ[T (X)] = θ for all possible values of θ where Eθ denotes the 

expectation when θ is the true parameter value. The bias of θ̂  is de˝ned by Bias(θ̂) = Eθ[θ̂] − θ. 

Thus, the concept of unbiasness means that we are on average correct. For example, if X is a random 

sample X1, ..., Xn from some distribution with mean µ and variance σ2 , then, as we have already seen, 

E[µ̂] = µ and E[s2] = σ2 . Thus, sample average and sample variance are unbiased estimators of population 

mean and population variance correspondingly. 

4.2 E°ciency: MSE 

Another of the concepts that evaluates performance of estimators is the MSE (Mean Squared Error). By 

de˝nition, MSE(θ̂) = Eθ[(θ̂  − θ)2]. The theorem below gives a useful decomposition for MSE: 

Theorem 5. MSE(θ̂) = Bias2(θ̂) + V (θ̂). 

Proof. 

E[(θ̂  − θ)2] = E[(θ̂  − E[θ̂] + E[θ̂] − θ)2] 

= E[(θ̂  − E[θ̂])2 + (E[θ̂] − θ)2 + 2(θ̂  − E[θ̂])(E[θ̂] − θ)] 

= V (θ̂) + Bias2(θ̂) + 2E[θ̂  − E[θ̂]](E[θ̂] − θ) 

= V (θ̂) + Bias2(θ̂). 

Estimators with smaller MSE are considered to be better, or more e°cient. 
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4.3 Connection between e°ciency and su°cient statistics 

Let X = (X1, ..., Xn) be a random sample from distribution fθ. Let θ̂ = δ(X) be an estimator of θ. Let 

T (X) be a su°cient statistic for θ. As we have seen already, an MSE provides one way to compare the 

quality of di˙erent estimators. In particular, estimators with smaller MSE are said to be more e°cient. On 

the other hand, once we know T (X), we can discard X. How do these concepts relate to each other? The 

theorem below shows that for any estimator θ̂ = δ(X), there is another estimator which depends on data X 
ˆ only through T (X) and is at least as e°cient as θ: 

Theorem 6 (Rao-Blackwell). In the setting above, de˝ne ϕ(T ) = E[δ(X)|T ]. Then θ̂  
2 = ϕ(T (X)) is an 

estimator for θ and MSE(θ̂  
2) ≤ MSE(θ̂). In addition, if θ̂  is unbiased, then θ̂  

2 is unbiased as well. 

Proof. To show that θ̂  
2 is an estimator, we have to check that it does not depend on θ. Indeed, since T is 

su°cient for θ, the conditional distribution of X given T is independent of θ. So the conditional distribution 

of δ(X) given T is independent of θ as well. In particular, the conditional expectation E[δ(X)|T ] does not 

depend on θ. Thus, ϕ(T (X)) depends only on the data X and θ̂  
2 is an estimator. 

MSE(θ̂) = E[(θ̂  − θ̂  
2 + θ̂  

2 − θ)2] 

= E[(θ̂  − θ̂  
2)

2] + 2E[(θ̂  − θ̂  
2)(θ̂  

2 − θ)] + E[(θ̂  
2 − θ)2] 

= E[(θ̂  − θ̂  
2)

2] + 2E[(θ̂  − θ̂  
2)(θ̂  

2 − θ)] + MSE(θ̂  
2) 

= E[(θ̂  − θ̂  
2)

2] + MSE(θ̂  
2), 

where in the last line we used 

E[(θ̂  − θ̂  
2)(θ̂  

2 − θ)] = E[(δ(X) − ϕ(T (X)))(ϕ(T (X)) − θ)] 

= E[E[(δ(X) − ϕ(T (X)))(ϕ(T (X)) − θ)|T ]] 

= E[(ϕ(T (X)) − θ)E[(δ(X) − ϕ(T (X)))|T ]] 

= E[(ϕ(T (X)) − θ) · (E[δ(X)|T ] − ϕ(T (X)))] 

= 0, 

since E[δ(X)|T ] = ϕ(T (X)). 

To show the last result, we have 

E[ϕ(T (X))] = E[E[δ(X)|T ]] = E[δ(X)] = θ 

by the law of iterated expectations. 

Example Let X1, ..., Xn be a random sample from Binomial(p, k), i.e. P {Xj = m} = (k!/(m!(k − 

m)!))pm(1 − p)k−m for any integer m ≥ 0. Suppose our parameter of interest is the probability of one ∑n 
success, i.e. θ = P {Xj = 1} = kp(1 − p)k−1 . One possible estimator is θ̂ = I(Xi = 1)/n. This i=1 
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estimator is unbiased, i.e. E[θ̂] = θ. Let us ˝nd a su°cient statistic. The joint density of the data is 

n∏ 
f(x1, ..., xn) = (k!/(xi!(k − xi)!))p xi (1 − p)k−xi 

i=1 ∑ ∑ 
xi = function(x1, ..., xn)p xi (1 − p)nk− . 

∑n 
Thus, T = i=1 Xi is su°cient. In fact, it is minimal su°cient. 

Using the Rao-Blackwell theorem, we can improve θ̂  by considering its conditional expectation given T . 

Let ϕ = E[θ̂|T ] denote this estimator. Then, for any nonnegative integer t, 

n n ∑ ∑ 
ϕ(t) = E[ I(Xi = 1)/n| Xi = t] 

i=1 i=1 
n n ∑ ∑ 

= P {Xi = 1| Xj = t}/n 
i=1 j=1 

n∑ 
= P {X1 = 1| Xj = t} 

j=1 ∑n 
P {X1 = 1, Xj = t} j=1 

= ∑n 
P { Xj = t} j=1∑n 

P {X1 = 1, Xj = t − 1} j=2 
= ∑n 

P { Xj = t} j=1∑n 
P {X1 = 1}P { Xj = t − 1} j=2 

= 
P { 

∑n 
Xj = t} j=1 

kp(1 − p)k−1 · (k(n − 1))!/((t − 1)!(k(n − 1) − (t − 1))!)pt−1(1 − p)k(n−1)−(t−1) 

= 
(kn)!/(t!(kn − t)!)pt(1 − p)kn−t 

k(k(n − 1))!/((t − 1)!(k(n − 1) − (t − 1))!) 
= 

(kn)!/(t!(kn − t)!) 

k(k(n − 1))!(kn − t)!t 
= 

(kn)!(kn − k + 1 − t)! ∑ ∑ n n 
where we used the fact that X1 is independent of (X2, ..., Xn), Xi ∼ Binomial(kn, p), and Xi ∼ i=1 i=2 

Binomial(k(n − 1), p). So our new estimator is ∑ ∑ n n 
k(k(n − 1))!(kn − Xi)!( Xi) ˆ i=1 i=1 θ2 = ϕ(X1, ..., Xn) = ∑ . n 

(kn)!(kn − k + 1 − Xi)! i=1 

ˆ By the theorem above, it is unbiased and at least as e°cient as θ. The procedure we just applied is sometimes 

informally referred to as Rao-Blackwellization. ∑n 
Note on implementation. One may say �this is too complicated�. We have derived ϕ(t) = E(θ̂| Xi = i=1 

n 
t) analytically in order to calculate a new estimate θ̂  

2 = ϕ(T ) = ϕ( 
∑ 

i=1 Xi), but in real life you may just 

do this with Monte-Carlo simulations. Note, that we do not need to calculate the whole ϕ(t) function we 

need only ϕ(T ), that is evaluated in one point (the realized value of T ). Note also, that the result does not 

depend on p, so we are free to choose any p (choosing p close to T/(kn) will give faster calculations). 
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Choose some p ∈ (0, 1). For b = 1, ..., B repeat the following: ∑n • Draw X∗ , ..., X∗ X∗ ̸ nb as independent variables from Binomial (p, k), if = T , discard this sample. 1b i=1 ib ∑n 
Repeat drawing samples until you get X∗ = T . i=1 ib ∑ n 1 • Calculate Yb = I(X∗ = 1). n i=1 ib ∑B 1 The new estimator is θ̂  

2 ≈ Yb. The accuracy is better for larger number of simulation B. B b=1 
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