
Lecture 6 

E°cient estimators. Rao-Cramer bound. 

1 Common methods for constructing an estimator 

1.1 Method of Analogy (plug-in) 

A method of analogy is another name for the plug-in estimator we have seen before. If we are interested in 

estimating θ = θ(F ) where F denotes the population distribution, we can estimate θ by θ̂ = θ(F̂ ) where F̂  ∫ 
is some estimator of F . We have seen a number of plug-in estimators. For example, µ = EXi = xdF (x) is ∫ 

¯ a functional of the cdf. An analog estimator is µ̂ = xdF̂ (x) = X. Another example: if we wish to estimate ∑ n ˆ 1 θ = P {Xi ∈ A} we may use θ = I{Xi ∈ A}n i=1 

1.2 Method of Moments 

Let X1, ..., Xn be a random sample from some distribution. Suppose that the k-dimensional parameter 

of interest θ satis˝es the system of equations E[Xi] = m1(θ), E[X2] = m2(θ),..., E[Xk] = mk(θ) where i i 

m1, ..., mk are some known functions. Then the method-of-moments estimator θ̂  
MM of θ is the solution of the ∑ ∑ ∑ n n n 

above system of equations when we substitute Xi/n, X2/n,..., Xk/n for E[Xi], E[X2],..., i=1 i=1 i i=1 i i 
n 

E[Xi
k] correspondingly. In other words θ̂  

MM solves the following system of equations: 
∑ 

Xi/n = m1(θ̂), i=1 
n n ∑ 

X2/n = m2(θ̂),..., 
∑ 

Xk/n = mk(θ̂). We implicitly assume here that the solution exists and is i=1 i i=1 i 

unique. 

2 Example Let X1, ..., Xn be a random sample from N(µ, σ2). Then E[Xi] = µ and E[Xi 
2] = µ +σ2 . Thus, ∑ ∑ ∑ ∑ n n n n 2 σ2 X2 σ2 X2 µ̂MM = Xi/n and µ̂ = /n. So ˆ = /n − ( Xi/n)

2 . i=1 MM + ˆMM i=1 i MM i=1 i i=1 

Example Let X1, ..., Xn be a random sample from an exponential distribution: 

f(x; λ) = λe−λxI{x > 0}.

1 One can calculate that EXi = λ . So one suggestion for an estimator is a solution to 

1 
X̄ = 

λ̂
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or 
1 

λ̂ = . 
X̄ 

We may use higher moments as well. For example 

2 
EX2 = . i λ2 

As such, another method-of-moments estimator for λ is: √ 
2 

λ̂ = ∑ n 
n i=1 i 
1 X2 

So, the method of moments estimator is not unique and depends on the moments chosen. One can easily 

prove that if function m(θ) has a unique inverse which is continuous, then the method-of-moments estimator 

is consistent (do this for your own practice! Hint: use the continuous mapping theorem). And if the inverse 

is continuously di˙erentiable, we can use the delta method and prove asymptotic gaussianity (try to do this 

as well). 

The idea of the method-of-moments is a very old one. There is a generalization of it which allows for 

more moments than the dimensionality of the parameter and also allows for the data and parameter to be 

mixed up within the moment condition. It is called a GMM (Generalized Method of Moments) and will be 

studied extensively later on, as the main workhorse of Econometrics. 

1.3 Maximum Likelihood Estimator 

In this section we consider parametric estimation. We have a parametric estimation problem when we know 

the distribution of the data up to a ˝nite-dimensional parameter θ (the only unknown part). We denote the ∏n 
joint pdf of X = (X1, ..., Xn) as f(x|θ) = f(x1, ..., xn|θ) ( for i.i.d. sample we will havef(x|θ) = f1(xi|θ), i=1 

where f1(xi|θ) is the pdf of one observation). That is, if we knew θ we have known the exact distribution of 

the data. 

Let x = (x1, ..., xn) denote the realization of X = (X1, ..., Xn). By de˝nition, the maximum likelihood 

estimator θ̂  
ML of θ is the value that maximizes f(x|θ), i.e. 

θ̂ML = arg max f(x1, ..., xn|θ). 
θ∈Θ 

The function f(x|θ), when considered as a function of θ for ˝xed values x = (x1, ..., xn), is called the likelihood 

function. It is usually denoted by L(θ|x). Thus, the maximum likelihood estimator maximizes the likelihood 

function, which explains the name of this estimator. Since log(x) is increasing in x, it is easy to see that 

θ̂ML also maximizes ℓ(θ|x1, ..., xn) = log L(θ|x1, ..., xn). Function ℓ(θ|x1, ..., xn) is called the log-likelihood. 

If ℓ(θ|x1, ..., xn) is di˙erentiable in θ, then θ̂  
ML satis˝es ˝rst order condition (FOC): 

dℓ (θ̂  
ML|x1, ..., xn) = 0. dθ ∑n 

If the data comes from an i.i.d. sample then it is equivalent to ∂ log f1(xi|θ̂  
ML)/∂θ = 0. The reason i=1 

we took the log of the likelihood function now can be seen: it is easier to take the derivative of the sum than 

the derivative of the product. Function S(θ|x) = ∂ log f(x|θ)/∂θ is called the score. Thus, θ̂  
ML solves the 
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equation S(θ|x) = 0. 

Example Let X1, ...Xn be a random sample from N(µ, σ2). Then 

√ 
log f1(θ|xi) = − log 2π − (1/2) log σ2 − (xi − µ)2/(2σ2), 

where θ = (µ, σ2). So 

n √ ∑ 
ℓ(θ|x1, ..., xn) = −n log 2π − (n/2) log σ2 − (xi − µ)2/(2σ2) 

i=1 

FOCs are 
n∑ 

∂ℓ/∂µ = (xi − µ)/σ2 = 0, 
i=1 

n∑ 
∂ℓ/∂σ2 = −n/(2σ2) + (xi − µ)2/(2σ4) = 0. 

i=1 ∑n 
So µ̂ML = Xn and σ̂

2 = (Xi − Xn)
2/n. ML i=1 

Example As another example, let X1, ..., Xn be a random sample from U [0, θ]. Then f1(xi|θ) = 1/θ 

if x ∈ [0, θ] and 0 otherwise. So f(x1, ...xn|θ) = 1/θn if 0 ≤ x(1) ≤ x(n) ≤ θ and 0 otherwise. Thus, 

L(θ|x) = (1/θn)I{θ ≥ x(n)}I{x(1) ≥ 0}. We conclude that θ̂  
ML = X(n). 

2 Fisher information 

Let f(x|θ) with θ ∈ Θ be some parametric family. For given θ ∈ Θ, let Suppθ = {x : f(x|θ) > 0}. 
Suppθ is usually called the support of distribution f(x|θ). Assume that Suppθ does not depend on θ. As 

before, ℓ(θ|x) = log f(x|θ) is called the log-likelihood function. Assume that ℓ(θ|x) is twice continuously 
∂2ℓ(θ|x) di˙erentiable in θ for all x ∈ Supp and ∂θ2 is bounded above by some function g(x) such that Eg(X) < ∞ 

for random variable X with distribution f(x|θ). Then: 

De˝nition 1. I(θ) = Eθ[(∂ℓ(θ|X)/∂θ)2] is called Fisher information. 

Fisher information plays an important role in maximum likelihood estimation. The theorem below gives 

two information equalities: 

Theorem 2. In the setting above, 

(1) Eθ[∂ℓ(θ|X)/∂θ] = 0 

(2) I(θ) = −Eθ[∂
2ℓ(θ|X)/∂θ2]. 

Proof. Since ℓ(θ|x) is twice di˙erentiable in θ, f(x|θ) is twice di˙erentiable in θ as well. Let us di˙erentiate 

the following identity with respect to θ: ∫ 
f(x|θ)dx ≡ 1. 
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The restrictions on dominance by g(x) allow us to interchange di˙erentiation and integration signs below: ∫ 
∂f(x|θ) 

dx = 0 for all θ ∈ Θ. 
∂θ 

The second di˙erentiation with respect to θ yields ∫ 
∂2f(x|θ) 

dx = 0 for all θ ∈ Θ. (1) 
∂θ2 

Now notice that 
∂ℓ(θ|x) ∂ log f(x|θ) 1 ∂f(x|θ) 

= = 
∂θ ∂θ f(x|θ) ∂θ 

and ( )2 
∂2ℓ(θ|x) 1 ∂f(x|θ) 1 ∂2f(x|θ) 

= − + . 
∂θ2 f2(x|θ) ∂θ f(x|θ) ∂θ2 

The former equality yields [ ] [ ] ∫ ∫ 
∂ℓ(θ|X) 1 ∂f(X|θ) 1 ∂f(x|θ) ∂f(x|θ) 

Eθ = Eθ = f(x|θ)dx = dx = 0, 
∂θ f(X|θ) ∂θ f(x|θ) ∂θ ∂θ 

which is our ˝rst result. The latter equality yields [ ] ∫ ( )2 
∂2ℓ(X, θ) 1 ∂f(x|θ) 

Eθ = − dx, 
∂θ2 f(x|θ) ∂θ 

here the second term disappears due to equation (1). So, 

[( )2
] ∫ ( )2 

∂ℓ(θ|X) 1 ∂f(x|θ) 
I(θ) = Eθ = f(x|θ)dx ∂θ f(x|θ) ∂θ ( )2 

[ ] ∫ 
1 ∂f (x|θ) ∂2ℓ(θ|X) 

= dx = −Eθ . f (x|θ) ∂θ ∂θ2 

Example Let us calculate Fisher information for one random draw from the N(µ, σ2) distribution where 

σ2 is known. Thus, our parameter θ = µ. The density of a normal distribution is f(x|µ) = exp(−(x − 
√ 

µ)2/(2σ2))/ 2πσ2 . The log-likelihood is ℓ(µ|x) = − log(2πσ2)/2 − (x − µ)2/(2σ2). So ∂ℓ(µ|x)/∂µ = 

(x − µ)/σ2 and ∂2ℓ(µ|x)/∂µ2 = −1/σ2 . So −Eθ[∂
2ℓ(µ|X)/∂µ2] = 1/σ2 . At the same time, 

I(θ) = Eµ[(∂ℓ(µ|X)/∂µ)2] = Eµ[(X − µ)2/σ4] = 1/σ2 . 

So, as was expected in view of the theorem above, I(θ) = −Eµ[∂
2ℓ(µ|X)/∂µ2] in this example. 

Example Let us calculate Fisher information for one random draw from a Bernoulli(θ) distribution. Note 

that a Bernoulli distribution is discrete. So we use a probability mass function (pms) instead of a pdf. The 
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pms of Bernoulli(θ) is f(x|θ) = θx(1 − θ)1−x for x ∈ {0, 1}. The log-likelihood is ℓ(θ|x) = x log θ + (1 − 

x) log(1 − θ). So ∂ℓ(θ|x)/∂θ = x/θ − (1 − x)/(1 − θ) and ∂2ℓ(θ|x)/∂θ2 = −x/θ2 − (1 − x)/(1 − θ)2 . So 

Eθ[(∂ℓ(θ|X)/∂θ)2] = Eθ[(X/θ − (1 − X)/(1 − θ))2] 

= Eθ[X
2/θ2] − 2Eθ[X(1 − X)/(θ(1 − θ))] + Eθ[(1 − X)2/(1 − θ)2] 

= Eθ[X/θ2] + Eθ[(1 − X)/(1 − θ)2] 

= 1/(θ(1 − θ)), 

2 since x = x , x(1 − x) = 0, and (1 − x) = (1 − x)2 if x ∈ {0, 1}. At the same time, 

−Eθ[∂
2ℓ(θ|X)/∂θ2] = Eθ[X/θ2 + (1 − X)/(1 − θ)2] 

= θ/θ2 + (1 − θ)/(1 − θ)2 

= 1/θ + 1/(1 − θ) 

= 1/(θ(1 − θ)). 

So I(θ) = −Eθ[∂
2ℓ(θ|X)/∂θ2], as it should be. 

2.1 Information for a random sample 

Let us now consider Fisher information for a random sample. Let X = (X1, ..., Xn) be an i.i.d. random ∏n 
sample from distribution f1(xi|θ). Then the joint pdf is f(x) = f1(xi|θ) where x = (x1, ..., xn). The i=1 ∑n 
joint log-likelihood is l(x, θ) = l1(xi, θ). So Fisher information for the sample X is i=1 [ ] n [ ] ∑ ∂2ℓn(θ|X) ∂2ℓ1(θ|Xi) 

I(θ) = −Eθ = −Eθ = nI1(θ). 
∂θ2 ∂θ2 

i=1 

Here I1(θ) denotes Fisher information for one random draw from the distribution f1(xi|θ). 

3 Rao-Cramer bound 

An important question in the theory of statistical estimation is whether there is a nontrivial bound such 

that no estimator can be more e°cient than this bound. The theorem below is a result of this sort: 

Theorem 3 (Rao-Cramer bound). Let X = (X1, ..., Xn) be a random sample from distribution f(x|θ) with 

information I(θ). Let W (X) be an estimator of θ such that 

d 
∫ ∂f (x|θ) (1) Eθ[W (X)] = W (x) dx, where x = (x1, ...xn) dθ ∂θ 

(2) V ar(W ) < ∞. 

Then ( )2 
d 1 

V ar(W ) ≥ Eθ[W (X)] . 
dθ I(θ) 
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1 1 In particular, if W is unbiased for θ, then V ar(W ) ≥ = . I(θ) nI1(θ) [ ] 
∂ℓ(θ|X) Proof. The ˝rst information equality gives ES(θ|X) = Eθ = 0. So, ∂θ 

cov(W (X), S(θ|X)) = 

[ ] 
∂ℓ(θ|X) 

E W (X) 
∂θ ∫ 

= ∫ 

∂ℓ(θ|x) 
W (x) f(x|θ)dx 

∂θ 

= 

= 
∫ 

∂f(x|θ) 1 
W (x) · f(x|θ)dx 

∂θ f(x|θ) 
∂f(x|θ) 

W (x) dx 
∂θ 

d 
= Eθ[W (X)]. 

dθ 

By the Cauchy-Schwarz inequality, 

(cov(W (X), S(θ|X))2 ≤ V ar(W (X))V ar(S(θ|X)) = V ar(W (X))I(θ). 

Thus, ( )2 
d 

V ar(W (X)) ≥ Eθ[W (X)] /I(θ). 
dθ 

If W is unbiased for θ, then Eθ[W (X)] = θ, dEθ[W (X)]/dθ = 1, and V ar(W (X)) ≥ 1/I(θ). 

Example Let us calculate the Rao-Cramer bound for random sample X1, ..., Xn from a Bernoulli(θ) dis-

tribution. We have already seen that I1(θ) = 1/(θ(1 − θ)) in this case. So Fisher information for the sample 

is I(θ) = n/(θ(1 − θ)). Thus, any unbiased estimator of θ, under some regularity conditions, has a variance 
n 

no smaller than θ(1 − θ)/n. On the other hand, let θ̂ = = 
∑ 

Xi/n be an estimator of θ. Then Xn i=1 

Eθ[θ̂] = θ, i.e. θ̂  is unbiased, and V (θ̂) = θ(1 − θ)/n which coincides with the Rao-Cramer bound. Thus, Xn 

is the uniformly minimum variance unbiased (UMVU) estimator of θ. The word �uniformly� in this situation 

means that Xn has the smallest variance among unbiased estimators for all θ ∈ Θ. 

Example Let us now consider a counterexample to the Rao-Cramer theorem. Let X1, ..., Xn be a random 

sample from U [0, θ]. Then f(xi|θ) = 1/θ if xi ∈ [0, θ] and 0 otherwise. So l(xi, θ) = − log θ if xi ∈ [0, θ]. 

Then ∂l/∂θ = −1/θ and ∂2l/∂θ2 = 1/θ2 . So I(θ) = 1/θ2 while −Eθ[∂
2l(Xi, θ)/∂θ

2] = −1/θ2 ̸= I(θ). Thus, 

the second information equality does not hold in this example. The reason is that support of the distribution 

depends on θ in this example. Moreover, consider an estimator θ̂ = ((n + 1)/n)X(n) of θ. Then Eθ[X(n)] = θ 

and 

V (θ̂) = ((n + 1)2/n2)V (X(n)) = θ2/(n(n + 2)) 

as we saw when we considered order statistics. So θ̂  is unbiased, but its variance is smaller than 1/In(θ) = 

θ2/n2 . Thus, the Rao-Cramer theorem does not work in this example either. Again, the reason is that the 

Rao-Cramer theorem assumes that support is independent of parameter. 
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