
Lecture 7

Maximum Likelihood Estimation.

1 MLE 

Let f(·|θ) with θ ∈ Θ be a parametric family. Let X = (X1, ..., Xn) be a random sample from distribution ∏n 
f1(·|θ0) with θ0 ∈ Θ. Then the joint pdf is f(x|θ) = f1(xi|θ) where x = (x1, ..., xn). The log-likelihood i=1 ∑n 
is ℓ(θ|x) = log f1(xi|θ). The maximum likelihood estimator is, by de˝nition, i=1 

θ̂ML = arg max ℓ(θ|x). 
θ∈Θ 

The FOC is 
n∑ 1 ∂ℓ1(θ̂  

ML|xi)
= 0. 

n ∂θ 
i=1 

Note that the ˝rst information equality is E[∂ℓ1(θ0|Xi)] = 0. Thus MLE is the method of moments estimator 

corresponding to the ˝rst information equality. So we can expect that the MLE is consistent. Indeed, the 

theorem below gives the consistency result for MLE: 

Theorem 1 (MLE consistency). In the setting above, assume that (1) θ0 is identi˝able, i.e. for any θ ≠ θ0, 

there exists x such that f(x|θ) ≠ f(x|θ0), (2) the support of f(·|θ) does not depend on θ, and (3) θ0 is an 

interior point of parameter space Θ. Then θ̂  
ML →p θ0. 

The proof of MLE consistency will be given in 14.382 and 14.385. What the proof does, it shows that 
1 function g(θ) = Eθ0 ℓ1(θ|Xi) (here Xi ∼ f1(xi|θ0)) is maximized at θ = θ0 and random process ℓ(θ|X) n 

converges to the function g(θ) in a uniform manner in probability. Then it argues that the maximizer of the 

ˆ process θML will converge to θ0. 

Once we know that the estimator is consistent, we can think about the asymptotic distribution of the 

estimator. The next theorem gives the asymptotic distribution of MLE: 

Theorem 2 (MLE asymptotic normality). In the setting above, assume that conditions (1)-(3) in the 

MLE consistency theorem hold. In addition, assume that (4) f1(xi|θ) is thrice di˙erentiable with respect 
to θ and we can interchange integration with respect to x and di˙erentiation with respect to θ, and (5) 

|∂3 log f1(xi|θ)/∂θ3| ≤ M(x) and E[M(Xi)] < ∞. Then 

√ 
n(θ̂  

ML − θ0) ⇒ N(0, I−1(θ0))1 
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∂ℓ(θ̂ML,x) Proof. This is a sketch of the proof as it misses and important step. By de˝nition, = 0. By the ∂θ 

Taylor theorem with a remainder, there is some random variable θ̃  with value between θ0 and θ̂  
ML such that 

∂ℓ(θ̂  
ML)|X ∂ℓ(θ0|X) ∂2ℓ(θ̃|X) 

= + (θ̂  
ML − θ0). 

∂θ ∂θ ∂θ2 

So, 
1 ∂ℓ(θ0|X) − √ 
n ∂θ √ 

n(θ̂  
ML − θ0) = . 

1 ∂2ℓ(θ̃|X) 
n ∂θ2 

Since θ̂  
ML →p θ0 and θ̃  is between θ0 and θ̂  

ML, θ̃  →p θ0 as well. From θ̃  →p θ0, one can prove that 

1 ∂2ℓ(θ̃|X) 1 ∂2ℓ(θ0|X) − = op(1). 
n ∂θ2 n ∂θ2 

We will not discuss this result here since it requires knowledge of the concept of asymptotic equicontinuity 

which we do not cover in this class. You will learn it in 14.385. Note, however, that this result does not 

follow from the Continuous mapping theorem since we have a sequence of random functions ℓ(θ|X) instead 

of just one non-random function. Suppose we believe in this result. Then, by the Law of large numbers, 

n [ ] ∑ 1 ∂2ℓ(θ0|X) 1 ∂2 log f1(Xi|θ0) ∂2 log f1(Xi|θ0) 
= →p E = −I1(θ0). 

n ∂θ2 n ∂θ2 ∂θ2 
i=1 [ ] [ ] 

∂ log f1(Xi|θ0) ∂ log f1(Xi|θ0) Next, by the ˝rst information equality, E = 0 while V ar = I1(θ0). Thus, ∂θ ∂θ 

by the Central limit theorem, 

n∑ 1 ∂ℓ(θ0|X) 1 ∂ log f1(Xi|θ0) √ = √ ⇒ N(0, I(θ0)). 
n ∂θ n ∂θ 

i=1 

Finally, by the Slutsky theorem, 
√ 
n(θ̂  

ML − θ0) ⇒ N(0, I−1(θ0)). 

One interpretation of MLE asymptotics is that the MLE is asymptotically e°cient (hit Rao-Cramer 

bound in very large samples). 

Example Let X1, ..., Xn be a random sample from a distribution with pdf f(x|λ) = λ exp(−λx). This 
∂ℓ1(λ|xi) distribution is called exponential. Its log-likelihood for one draw is ℓ1(λ|xi) = log λ − λxi. So = ∂λ 

∂2ℓ1(λ|xi) 1/λ − xi and = −1/λ2 . So Fisher information is I1(λ) = 1/λ2 . Let us ˝nd the MLE for λ. The ∂λ2 ∑ ∑ n n n 1 log-likelihood for the whole is ℓ(θ|x) = n log λ − λ i=1 xi. The FOC is λ̂ 
ML 

− i=1 xi = 0. So λ̂ 
ML = . 

Xn 

Its asymptotic distribution is given by 
√ 
n(λ̂ 

ML − λ) ⇒ N(0, λ2). 
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2 Inference using MLE 

We will have a longer discussion about how to estimate the asymptotic variance of the MLE (I1(θ0))
−1 

later 

when we will discuss asymptotic tests. Right now I want to mention several suggestions. 

First of all, if I1(θ) is a continuous function in θ (which is needed for asymptotic results), then given that ( )−1 ( )−1 
θ̂  
ML is consistent for θ0, the quantity I1(θ̂  

ML) is consistent for I1 
−1(θ0) . 

Second, by de˝nition of Fisher information, it equals to the expectation of either negative second deriva-

tive of the likelihood or of the squared score. Instead of taking expectation one may approximate it by taking 

averages. For example 
n 

1 ∑ ∂2ℓ1(θ̂|Xi) 
Î = − 

n ∂θ2 
i=1 

will be a consistent estimator of the Fisher information. 

The third idea to be used in this context is parametric bootstrap. Assume θ̂  
ML is the MLE we obtained 

from our sample of size n. For b = 1, ..., B do the following: 

• Simulate sample X∗ = (X∗ , ..., X∗ ) as i.i.d. draws from f1(xi|θ̂  
ML) (that is, assuming that ˆ is b 1b nb θML 

the true parameter value). 

• Find MLE using sample Xb 
∗ , denote it θb 

∗ . 

Calculate the sample variance of (θ1 
∗, ..., θ∗ ), it gives the bootstrap approximation to (nI1(θ0))

−1 . You may B 

also do bootstrap- bias correction using similar procedure. 

3 When MLE asymptotic theory fails us... 

Example A word of caution. For asymptotic normality of MLE, we should have common support. Let 

us see what might happen otherwise. Let X1, ..., Xn be a random sample from U [0, θ]. Then θ̂  
ML = X(n). 

So 
√ 
n(θ̂  

ML − θ) is always nonpositive. So it does not converge to mean zero normal distribution. In fact, 

E[X(n)] = (n/(n + 1))θ and V (X(n)) = θ2n/((n + 1)2(n + 2)) ≈ θ2/n2 . On the other hand, if the theorem 

worked, we would have V (X(n)) ≈ 1/(nI(θ)). The MLE happens to be �super-consistent� here, means it 
√ 

converges to the true value at a faster speed than the regular parametric speed of 1/ n. 

Example Now, let us consider what might happen if the true parameter value θ0 were on the boundary 

of Θ. Let X1, ..., Xn be a random sample from distribution N(µ, 1) with µ ≥ 0. As an exercise, check that 
√ 

µ̂ML = Xn if Xn ≥ 0 and 0 otherwise. Suppose that µ0 = 0. Then n(µ̂ML − µ0) is always nonnegative. 

So it does not converge to mean zero normal distribution. 

Example Finally, note that it is implicitly assumed both in the consistency and asymptotic normality 

theorems that parameter space Θ is ˝xed, i.e. independent of n. In particular, the number of parameters 

should not depend on n. Indeed, let ( ) (( ) ( )) 
X1i µi σ2 0 

Xi = ∼ N , 
X2i µi 0 σ2 
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for i = 1, ..., n, and X1, ..., Xn be mutually independent. One can show that if the sample size (n) increases 

to in˝nity, the MLE for σ2 is inconsistent in this case, though a consistent estimator for σ2 exists. 

What is interesting, though we won't show it here is that a bootstrap does not help in this cases, that 

is, the bootstrap approximation to the distribution of θ̂  
ML is not close to the true ˝nite-sample distribution 

of θ̂  
ML. 

4 Pseudo-MLE 

Let us have a sample X = (X1, ..., Xn) i.i.d from some distribution. We do not know what distribution it 

is, let's assume it has pdf g(xi). But we wrongly assumed a speci˝c parametric family, that is, we assumed 

Xi ∼ f1(xi|θ). What would happen if we do MLE. Apparently, MLE will be estimating a �pseudo-true� 

parameter value θ0 with minimizes in some sense the distance between g(·) and family f(·|θ). In particular: ∫ 
θ0 = arg max log[f1(xi|θ)]g(xi)dxi = arg max E log f1(Xi|θ). 

θ θ 

Parameter θ0 may be of interest or may be not. Under some regularity condition θ̂  
ML →p θ0, and in most 

parts the logic of the proof of theorem about normality will hold. However, the the information equality 

would fail. De˝ne [( )2
] 

∂ log f1(Xi|θ0) 
Σ1 = E , 

∂θ0 [ ] 
∂2 log f1(Xi|θ0) 

Σ2 = −E , 
∂θ0

2 

where expectations in both cases are taken assuming that Xi ∼ g(·). If g is not in the parametric family, 

then in general Σ1 ̸= Σ2. But using the logic of the proof, we can prove that 

√ 
n(θ̂  

ML − θ0) ⇒ N(0, Σ−1Σ1Σ
−1) 2 2 

This asymptotic variance Σ−1Σ1Σ
−1 is often called White's due to White's (1980) paper and thus White's 2 2 

standard errors. 
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