Understanding
Experimental Data

Eric Grimson

MIT Department Of Electrical Engineering and
Computer Science

Announcements

=Reading: Chapter 18

="No lecture on Wednesday

6.0002 LECTURE 9 2

Statistics Meets Experimental Science

="Conduct an experiment to gather data
o Physical (e.g., in a biology lab)
o Social (e.g., questionnaires)

=Use theory to generate some questions about data
o Physical (e.g., gravitational fields)
o Social (e.g., people give inconsistent answers)

=Design a computation to help answer questions about

data Net Grain on a
missed jump shot

=7 b k
.(.o-{;{dr:f)r:bE)r:f Es[::srigamst]

=Consider, for example, a spring

6.0002 LECTURE 9 3

This Kind of Spring

ﬁ\? ,J/ /;

k ~ Q&,

\\\\\\f/// ////'/

Linear spring: amount of force needed
to stretch or compress spring is linear

in the distance the spring is stretched

or compressed

Each spring has a spring constant, k,
that determines how much force is

k=35000N/m needed

Newton = force to accelerate 1 kg mass 1 meter per second per second

6.0002 LECTURE 9 4

Images of suspension spring and slinky © sources unknown. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use/

Hooke’s Law

“F = -kd

"*How much does a rider have to weigh
to compress spring 1cm?

£=0.0172+x35,000/V/m

F=350N F=massxacc

F=mass«x9.8m/sT2
massx9.8m/sT2 =350V nasst /

mass=350/V/9.81m/sT2

mass=350//9.81€——This k refers to kilograms, not
the spring constant!

Images of suspension spring © source unknown. All rights reserved.
This content is excluded from our Creative Commons license. For

MASS~ 3 5 68k more information, see https://ocw.mit.edu/help/fag-fair-use/.

6.0002 LECTURE 9 5

https://ocw.mit.edu/help/faq-fair-use/

Finding k

"F = -kd
=k = -F/d
=k =9.81*m/d

%

IIJ

)
=
ey
=l
-
-
=
o
o
Ny
&)

Il

I

6.0002 LECTURE 9 6

Some Data

Distance (m) Mass (kg)

0.0865 0.1
0.1015 0.15
0.1106 0.2
0.1279 0.25
0.1892 0.3
0.2695 0.35
0.2888 0.4
0.2425 0.45
0.3465 0.5
0.3225 0.55
0.3764 0.6
0.4263 0.65
0.4562 0.7

6.0002 LECTURE 9 7

Taking a Look at the Data

def plotData(fileName):
xVals, yVals = getData(fileName)
xVals pylab.array(xVals)
yVals pylab.array(yVals)
xVals xVals*9.81
pylab.plot(xVals, yVals, 'bo',

Tabel = "Measured displacements')
TabelPlot()

6.0002 LECTURE 9 8

Taking a Look at the Data

0.50 Megsured Dilsplacemlent of Sprl"ing

0.45 | Seis® |
@ ® o0

Distance (meters)
© © © o ©
M M w w N
o un o un o
I T T T T
@
®
©
| | | | |

o
=
un
|
|

0.05 | | | |
g B 4 6 8 10

|Force| (Newtons)

6.0002 LECTURE 9 9

Fitting Curves to Data

"When we fit a curve to a set of data, we are finding a
fit that relates an independent variable (the mass) to
an estimated value of a dependent variable (the
distance)

=To decide how well a curve fits the data, we need a
way to measure the goodness of the fit — called the

*Once we define the objective function, we want to find
the curve that minimizes it

=|n this case, we want to find a line such that some
function of the sum of the distances from the line to
the measured points is minimized

Measuring Distance

Which should we choose?

Vertical distance because want to predict dependent
Y value for given independent X value, and vertical
distance measures error in that prediction

6.0002 LECTURE 9 11

Least Squares Objective Function

len(observed)-1
E (observed[i] - predicted[i])’
=0

= ook familiar?
o This is variance times number of observations

> So minimizing this will also minimize the variance

6.0002 LECTURE 9 12

Solving for Least Squares

len(observed)-1
(observed|i] - predicted[i])’

i=0

*"To minimize this objective function, want to find a
curve for the predicted observations that leads to
minimum value

=Use linear regression to find a polynomial
representation for the predicted model

6.0002 LECTURE 9

13

Polynomials with One Variable (x)

=0 or sum of finite number of non-zero terms

=Each term of the form cxP
o ¢, the coefficient, a real number

° p, the degree of the term, a non-negative integer

*"The degree of the polynomial is the largest degree of
any term

"Examples
o Line:ax+ b
o Parabola: ax? + bx + ¢

6.0002 LECTURE 9

14

Solving for Least Squares

len(observed)-1
(observed|i] - predicted [i])

i=0

=Simple example:
o Use a degree-one polynomial, y = ax+b, as model of our
data (we want best fitting line)

"Find values of a and b such that when we use the
polynomial to compute y values for all of the x values
in our experiment, the squared difference of these
predicted values and the corresponding observed
values is minimized

=A linear regression problem

=*Many algorithms for doing this, including one similar
to Newton’s method (which you saw in 6.0001)

polyFit

"Good news is that pylab provides built in functions to
find these polynomial fits

spylab.polyfit(observedX, observedY, n)

"Finds coefficients of a polynomial of degree n, that
provides a best least squares fit for the observed data

on=1-bestline y=ax+b
o n =2 —best parabola y=ax’+bx+c

6.0002 LECTURE 9 16

Using polyfit

def fitData(fileName):
~ xVals, yVals = getData(fileName)

plotData -

A

xVals
yVals
xVals
pylab.

pylab.array(xVals)
pylab.array(yVals)
xVals*9.81

plot(xVals, yVals, 'bo',

lTabel = "Measured points')

labelPlot ()

Note that
conversion to
array is
redundant here

a,b = pylab.polyfit(xVals, yVals, 1)
estYVals = a*pylab.array(xVals) + b 1

e

print('a =", a, 'b =", b)

pylab.plot(xVals, estYVals, 'r',
Tabel = '"Linear fit, k
+ str(round(1/a, 5)))

pylab.

legend(loc = 'best')

6.0002 LECTURE 9

17

Visualizing the Fit

0.6

o
u

o
IS

Distance (meters)
o o
M (W)

O
()

o
o

Measured Displacement of Spring

@® Measured points
| inear fit, k = 21.53686

2 4 6 8
|[Force| (Newtons)

6.0002 LECTURE 9

10

18

Version Using polyval

def fitDatal(fileName):
xVals, yVals = getData(fileName)

xVals = pylab.array(xVals)
yVals = pylab.array(yVals)
xVals = xVals*9.81 #get force

pylab.plot(xVals, yVals, 'bo',
lTabel = '"Measured points')

|labelPlot ()

model = pylab.polyfit(xVvVals, yVals, 1)
estYVals = pylab.polyval(model, xVals)

pylab.plot(xVals, estYVals, 'r',

label = "Linear fit, k = '

+ str(round(1/model [0], 5)))
pylab.legend(loc = "best")

6.0002 LECTURE 9

19

Another Experiment

350

Mystery Data
[

300p

250

200+

150

100 |-

50

—100

6.0002 LECTURE 9

20

Fit a Line

350

Mystery Data

300 p
250}
200 @

150 -

50 ® .. N
of ® .
® Q
—50 _
®
o 5 L I
10910 —5 0

6.0002 LECTURE 9

10

21

Let’s Try a Higher-degree Model

model2 = pylab.polyfit(xVals, yVals,
pylab.plot(xVals, pylab.polyval(modelZ2, xVals),
"'r--", label = "Quadratic Model")

Note that this is still an example of linear regression,
even though we are not fitting a line to the data (in this
case we are finding the best parabola)

6.0002 LECTURE 9

22

Quadratic Appears to be a Better Fit

350
300p

250 [+
L Y

200 @,

150

Mystery Data

® Data Points
| inear Model B

= == Quadratic Model (]

'—
)
. 4

* ® .
% ® ©
50+ . .
® 0 ’w ® .d'“
D "'. - ‘.
- »a-" -
& ®
—50 |- |
@
—-100 | | |
—-10 -5 0 5 10

6.0002 LECTURE 9

23

How Good Are These Fits?

060 | Mysterly Data |

® @ Data Points
§ = | inear Model
6000 - ~ = = = Quadratic Model
—
‘$ O ,'
4000 |- * &
.
. “ ." .
LY S— *
2000} S ® .
‘s’ ® .
@ ¢
e -~ o’
& -®
O+ “» é""
[]
—2000)
—4000 ' : : : :
—-60 —-40 =20 0 20 40

=Relative to each other

="|n an absolute sense

6.0002 LECTURE 9

Relative to Each Other

"Fit is a function from the independent variable to the
dependent variable

*Given an independent value, provides an estimate of
the dependent value

*Which fit provides better estimates?

=Since we found fit by minimizing mean square error,
could just evaluate goodness of fit by looking at that
error

6.0002 LECTURE 9

25

Comparing Mean Squared Error

def aveMeanSquareError(data, predicted):
error = 0.0
for 1 in range(len(data)):
error += (data[i1] - predicted[i1])**2
return error/len(data)

estYVals = pylab.polyval (modell, xVals)

print('Ave. mean square error for linear model ="',
aveMeanSquareError(yVals, estYVals))

estYVals = pylab.polyval (model2, xVals)

print('Ave. mean square error for quadratic model =",
aveMeanSquareError(yVals, estYVals))

Ave. mean square error for linear model =9372.73078965
Ave. mean square error for quadratic model = 1524.02044718

6.0002 LECTURE 9 26

In an Absolute Sense

*"Mean square error useful for comparing two different
models for the same data

=Useful for getting a sense of absolute goodness of fit?
o |s 1524 good?

"Hard to know, since there is no upper bound and not
scale independent

"|Instead we use coefficient of determination, R?,

_ Yi(¥i — Di)%<«— Errorin estimates

R*=1 -
Y, are measured values Zi()’i — 1) — Variability in
P. are predicted values measured data
u is mean of measured values

6.0002 LECTURE 9 27

If You Prefer Code

(Vi —pi)?

S W CTETNE

def rSquared(observed, predicted):
error = ((predicted - observed)**2).sum()
meanError = error/len(observed)
return 1 - (meanError/numpy.var(observed))

| am playing a clever trick here:

 Numerator is sum of squared errors

* Dividing by number of samples gives average sum-squared-error
 Denominator is variance times number of samples

* So mean SSE/variance is same as R? ratio

Rz

"By comparing the estimation errors (the numerator)
with the variability of the original values (the
denominator), R? is intended to capture the proportion
of variability in a data set that is accounted for by the
statistical model provided by the fit

"Always between 0 and 1 when fit generated by a linear
regression and tested on training data

o If R? = 1, the model explains all of the variability in the
data.

o If R? =0, there is no relationship between the values
predicted by the model and the actual data.

o If R2 = 0.5, the model explains half the variability in the
data.

Testing Goodness of Fits

def genFits(xVals, yVals, degrees):
models = []
for d in degrees:
model = pylab.polyfit(xVvVals, yVals, d)
models.append(model)
return models

def testFits(models, degrees, xVals, yVals, title):
pylab.plot(xVals, yVals, ‘o', label = 'Data’)
for 1 in range(len(models)):
estYVals = pylab.polyval(models[1], xVals)
error = rSquared(yVals, estYVals)
pylab.plot(xVals, estYVals,
lTabel = '"Fit of degree "\
+ str(degrees[i])\
+ ', R2 = " + str(round(error, 5)))
pylab.legend(loc = 'best')
pylab.title(title)

6.0002 LECTURE 9

30

How Well Fits Explain Variance

350, | Mysterly Data

@® Data
300 = Fit of degree 1, R2 = 0.00049 -
=== Fit of degree 2, R2 = 0.83748

250

200

150

100

50

—100 | | |
—-10 3 0 3 10

6.0002 LECTURE 9

Can We Get a Tighter Fit?

350,

Mystery Data

300

250 1\

200+

150

100 |-

50}

—100

Data

Fit of degree 2, R2 = 0.83748
Fit of degree 4, R2 = 0.84895
Fit of degree 8, R2 = 0.86556
Fit of degree 16, R2 = 0.96553

=10

6.0002 LECTURE 9

10

32

MIT OpenCourseWare
https://ocw.mit.edu

6.0002 Introduction to Computational Thinking and Data Science
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

