
Pipelining the Beta Worksheet

Options for dealing with data and control hazards: stall, bypass, speculate

PCSEL

STALL

ILL
XAdr OP JT

4 3 2 1 0 5-stage Pipelined Beta
PCSEL 00

+4

A Instruction
Memory

D

0 1 2

NOP
BNE(R31,0,XP)

IRSrcIF

Instruction
Fetch

STALL STALL

PCRF IRRF

IF

Ra:<20:16> Rb:<15:11> Rc:<25:21>
0 1 RA2SEL

PCRF+4+4*SXT(C) +
RA1 RA2 Register

FileRD1 RD2 Register
BYPASSES FileBYPASSES

NOP
PCRF+4+4*SXT(C) JT SXT(C)

BNE(R31,0,XP)
Z

IRSrcRF ASEL BSEL2 1 0 1 0 1 0

RF

PCALU IRALU DALU A B

A B

ALUFN ALU
YNOP

ALU

A, B BYPASS

BNE(R31,0,XP)

IRSrcALU 2 1 0 A, B BYPASS

DMEMYMEMPCMEM IRMEM

A, B BYPASS WE MWR Adr WD
NOP OE MOE

BNE(R31,0,XP) Memory
IRSrcMEM 2 1 0

A, B BYPASS
Data

PCWB IRWB YWB Memory

RD

ALU

MEM

WB 0 1 2 WDSEL Rc:<25:21> Write
A, B BYPASS Back

WA Register WD

File
WE WERF

6.004 Worksheet - 1 of 8 - Pipelining the Beta

Problem 1.

The program shown on the right is executed
on a 5-stage pipelined Beta with full
bypassing and annulment of instructions
following taken branches.

The program has been running for a while
and execution is halted at the end of cycle
108.

The pipeline diagram shown below shows
the history of execution at the time the
program was halted.

. = 0
outer_loop:

CMOVE(16,R0) // initialize loop index J
CMOVE(0,R1)

loop: // add up elements in array
SUBC(R0,1,R0) // decrement index
MULC(R0,4,R2) // convert to byte offset
LD(R2,0x310,R3)// load value from A[J]
ADD(R3,R1,R1) // add to sum
BNE(R0,loop) // loop until all words are summed

BR(outer_loop) // perform test again!

cycle 100 101 102 103 104 105 106 107 108

IF MULC LD ADD BNE BNE BNE BR SUBC MULC

RF SUBC MULC LD ADD ADD ADD BNE NOP SUBC

ALU NOP SUBC MULC LD NOP NOP ADD BNE NOP

MEM BNE NOP SUBC MULC LD NOP NOP ADD BNE

WB ADDC BNE NOP SUBC MULC LD NOP NOP ADD

Please indicate on which cycle(s), 100 through 108, each of the following actions occurred. If
the action did not occur in any cycle, write “NONE”. You may wish to refer to the signal names
in the 5-stage Pipelined Beta Diagram included in the reference material.

Register value used from Register File: _______________

Register value bypassed from ALU stage to RF stage: _______________

Register value bypassed from MEM stage to RF stage: _______________

Register value bypassed from WB stage to RF stage: _______________

IRSrcIF was 1: _______________

IRSrcIF was 2: _______________

STALL was 1: _______________

PCSEL was 1: _______________

WDSEL was 2: _______________

6.004 Worksheet - 2 of 8 - Pipelining the Beta

Problem 2.

The following program fragments are being executed on the 5-stage pipelined Beta described in
lecture with full bypassing, stall logic to deal with LD data hazards, and speculation for JMPs and
taken branches (i.e., IF-stage instruction is replaced with a NOP if necessary). The execution
pipeline diagram is shown for cycle 1000 of execution. Please fill in the diagram for cycle 1001;
use “?” if you cannot tell what opcode to write into a stage. Then for both cycles use arrows to
indicate any bypassing from the ALU/MEM/WB stages back to the RF stage (see example for
cycle 1000 in part A).

(A) (2 points) Assume BNE is taken.

(B) (2 points)

(C) (2 points)

…
ADDC(R1,5,R1)

L: SUBC(R1,1,R1)
SHRC(R0,1,R0)
BNE(R1,L)
ST(R1,data)
…

…
ST(R31,0,BP)
LD(BP,-12,R17)
ADDC(SP,4,SP)
SHLC(R17,2,R1)
ST(R1,-4,SP)
BEQ(R31,fact,LP)
…

…
XOR(R1,R2,R1)
MULC(R2,3,R2)
SUB(R2,R1,R3)
AND(R3,R1,R2)
ADD(R3,R2,R3)
ST(R3,x)
…

(D) (2 points) Assume during cycle 1000 the DIV
instruction in the RF stage triggers an
ILLEGAL OPCODE (ILLOP) exception.

…
LD(x,R1)
LD(y,R2)
SHLC(R1,3,R1)
DIV(R2,R1,R3)
ADDC(R3,17,R3)
ST(R3,z)
…

Cycle 1000 1001
IF ST

RF BNE

ALU SHRC

MEM SUBC

WB NOP

Cycle 1000 1001

IF ST

RF SHLC

ALU ADDC

MEM LD

WB ST

Cycle 1000 1001
IF ADD

RF AND

ALU SUB

MEM MULC

WB XOR

Cycle 1000 1001
IF ADDC

RF DIV

ALU SHLC

MEM NOP

WB LD

6.004 Worksheet - 3 of 8 - Pipelining the Beta

Problem 3.

In answering this question, you may wish to refer to the diagram of the
5-stage pipelined beta provided with the reference material.

The loop on the right has been executing for a while on our standard 5-
stage pipelined Beta with branch annulment and full bypassing. The
pipeline diagram below shows the opcode of the instruction in each
pipeline stage during 10 consecutive cycles of execution.

…
L1: SUBC(R0,4,R0)

CMPLTC(R0,10,R1)
BF(R1,L2)
LD(R0,A,R2)
BR(L3)

L2: LD(R0,B,R2)
L3: ST(R2,C,R31)

BNE(R0,L1)
ADDC(R2,1,R2)
…

Cycle
300 301 302 303 304 305 306 307 308 309

IF SUBC CMPLTC BF LD LD ST BNE BNE BNE ADDC

RF SUBC CMPLTC BF NOP LD ST ST ST BNE

ALU SUBC CMPLTC BF NOP LD NOP NOP ST

MEM SUBC CMPLTC BF NOP LD NOP NOP

WB SUBC CMPLTC BF NOP LD NOP

(A) (4 Points) Indicate which bypass/forwarding paths are active in each cycle by drawing a
vertical arrow in the pipeline diagram from pipeline stage X in a column to the RF stage in
the same column if an operand would be bypassed from stage X back to the RF stage that
cycle. Note that there may be more than one vertical arrow in a column.

Draw bypass arrows in pipeline diagram above

(B) (2 Points) Assume that the previous iteration of the loop executed the same instructions as
the iteration show here. Please complete the pipeline diagram for cycle 300 by filling in the
OPCODEs for the instructions in the RF, ALU, MEM, and WB stages.

Fill in OPCODEs for Cycle 300

For the following questions think carefully about when a signal would be asserted in order to
produce the effect you see in the pipeline diagram.

(C) (2 Points) During which cycle(s), if any, would the IRSrcIF signal be 1?

Cycle number(s) or NONE: _______________

(D) (2 Points) During which cycle(s), if any, would the IRSrcRF signal be 1?

Cycle number(s) or NONE: _______________

(E) (2 Points) During which cycle(s), if any, would the STALL signal be 1, i.e., cycle(s) when
the IF and RF stages would be stalled?

Cycle number(s) or NONE: _______________

6.004 Worksheet - 4 of 8 - Pipelining the Beta

Problem 4.

You’ve discovered a secret room in the basement of the Stata center full of discarded 5-stage
pipelined Betas. Unfortunately, many have certain defects. You discover that they fall into four
categories:

C1: Completely functional 5-stage Betas with working bypass paths, annulment, and other
components.

C2: Betas with a bad register file: all data read from the register file is zero.
C3: Betas without bypass paths: all source operands come from the register file.
C4: Betas without annulment of instructions following branches.

To help sort the Beta chips into the above classes, you write the following small test program:

. = 0x0
// Start at 0x0, with ZERO in all registers…

ADDC(R31, 4, R0)
BEQ(R31, X, R2)
MULC(R2, 2, R2)

X: SUBC(R2, 4, R2)
ADD(R0, R2, R3)
JMP(R3)

Your plan is to single-step through the program using each Beta chip, carefully noting the address
the final JMP loads into the PC. Your goal is to determine which of the above four classes a chip
falls into by this JMP address.

For each class of Beta processor described above, specify the value that will be loaded into the
PC by the final JMP instruction.

Pipeline diagram showing first 7 cycles of test program C1: JMP goes to address: __________
executing on C1:

cycle 0 1 2 3 4 5 6 C2: JMP goes to address: __________
IF ADDC BEQ MULC SUBC ADD JMP
RF ADDC BEQ NOP SUBC ADD JMP
ALU ADDC BEQ NOP SUBC ADD C3: JMP goes to address: __________
MEM ADDC BEQ NOP SUBC
WB ADDC BEQ NOP

C4: JMP goes to address: __________

6.004 Worksheet - 5 of 8 - Pipelining the Beta

Problem 5.

Recall the code for gcd that we saw in lecture, and the assembly code for the while loop:

C code Corresponding Beta assembly for while loop

int gcd(int x, int y) {
while (x != y) {

if (x > y) {
x = x – y;

} else {
y = y – x;

}
}
return x;

}

// x in R0, y in R1
CMPEQ(R0, R1, R2) // R2 • (x == y)
BT(R2, end)

loop: CMPLT(R1, R0, R2) // R2 • (x > y)
BF(R2, else)
SUB(R0, R1, R0) // x • x - y
BR(cond)

else: SUB(R1, R0, R1) // y • y - x
cond: CMPEQ(R1, R0, R2) // R2 • (x == y)

BF(R2, loop)
end: …

Assume a 5-stage pipelined Beta as presented in lecture, with full bypass paths, and which
predicts branches by assuming they are not taken to resolve control (i.e., the instruction
following the branch is fetched in the IF stage on the cycle after the branch is in the IF stage).

First, find the number of cycles per iteration in steady state (do not worry about the first or last
iterations). Note that the BF(R2, else) branch is not taken if x > y and taken if x < y, so you
should consider these two cases separately.

(A) Fill in the following table:
Iterations where x > y Iterations where x < y

Instructions per iteration _________ _________

+ Cycles lost to data hazards _________ _________

+ Cycles lost to annulments _________ _________

= Total cycles per iteration _________ _________

0 1 2 3 4 5 6 7 8 9 10 11 12 13
IF

RF
ALU

MEM
WB

0 1 2 3 4 5 6 7 8 9 10 11 12 13
IF

RF
ALU

MEM
WB

6.004 Worksheet - 6 of 8 - Pipelining the Beta

To make this code faster, we modify the Beta ISA and pipeline to implement a technique called
predication to reduce the number of branches.

First, all the compare instructions (CMPEQ, CMPLT, CMPLE, and their C variants) write their
result into a special 1-bit register, called the predicate register, in addition to their normal
destination register.

Second, we change the format of ALU instructions with two register source operands to use their
lower two bits, which were previously unused:

• If PredBits == 10, the instruction only executes if the predicate register is false (0)
• If PredBits == 11, the instruction only executes if the predicate register is true (1)
• If PredBits == 0X, the instruction always executes and writes its result, as before

We say that instructions that depend on the predicate register are predicated. We denote
predicated instructions in assembly as follows:

• If PredBits == 10, OP(Ra, Rb, Rc) [predFalse]
• If PredBits == 11, OP(Ra, Rb, Rc) [predTrue]
• If PredBits == 0X, OP(Ra, Rb, Rc), as before

For example, consider the following instruction sequence:

CMPLT(R1, R2, R3)
MUL(R3, R4, R5)
ADD(R4, R5, R6) [predTrue]
SUB(R5, R6, R7)

If the CMPLT instruction evaluates to true (i.e., writes 1 to R3), this sequence is equivalent to:

CMPLT(R1, R2, R3)
MUL(R3, R4, R5)
ADD(R4, R5, R6)
SUB(R5, R6, R7)

If the CMPLT instruction evaluates to false (i.e., writes 0 to R3), this sequence is equivalent to:

CMPLT(R1, R2, R3)
MUL(R3, R4, R5)
SUB(R5, R6, R7)

6.004 Worksheet - 7 of 8 - Pipelining the Beta

(B) Modify the code to use predication, minimizing the number of instructions per loop iteration.

Original code Code with predication
// x in R0, y in R1
CMPEQ(R0, R1, R2)
BT(R2, end)

loop: CMPLT(R1, R0, R2)
BF(R2, else)
SUB(R0, R1, R0)
BR(cond)

else: SUB(R1, R0, R1)
cond: CMPEQ(R1, R0, R2)

BF(R2, loop)
end: …

We implement predication in the pipelined Beta with minor changes to the ALU stage:

// x in R0, y in R1
CMPEQ(R0, R1, R2)
BT(R2, end)

loop: CMPLT(R1, R0, R2)

end: …

Comparison instructions write the 1-bit predicate register (the PredWr control signal ensures that
only comparison instructions update the register). The PredSel mux annuls ALU instructions if
they are predicated and should not execute according to the value of the predicate register.

(C) Write the Boolean expression for the PredSel control signal. You can use AND, OR, NOT,
Predicate, and comparisons with PredBits (e.g., PredBits == 0b10).

PredSel = (IRALU[31:30] == 0b10) AND _____________________________________

(D) How fast is this modified code? Fill in the following table:

Iterations where x > y Iterations where x < y

Instructions per iteration _________ _________

+ Cycles lost to data hazards _________ _________

+ Cycles lost to annulments _________ _________

= Total cycles per iteration _________ _________

6.004 Worksheet - 8 of 8 - Pipelining the Beta

MIT OpenCourseWare
https://ocw.mit.edu/

6.004 Computation Structures
Spring 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

