Operate Class:

31

26

quf&ﬁb« Stenctires

Instruction Set Architecture Worksheet

Summary of § Instruction Formats

25 21

20 16

15 1110

| 10xxxx

Rc

| _Ra_|

Rb |

unused

OP(Ra,Rb,Rc):

Reg[Rc] <= Reg[Ra] op Reg[Rb]

Opcodes: ADD (plus), SUB (minus), MUL (multiply), DIV (divided by)
AND (bitwise and), OR (bitwise or), XOR (bitwise exclusive or), XNOR (bitwise exclusive nor),
CMPEQ (equal), CMPLT (less than), CMPLE (less than or equal) [result =1 if true, O if false]

SHL (left shift), SHR (right shift w/o sign extension), SRA (right shift w/ sign extension)

31

26

25 21

20 16

15

0

| 11xxxx

Rc

| Ra |

literal (two’s complement) |

OPC(Ra,literal,Rc):

Reg[Rc] <= Reg[Ra] op SEXT(literal)

Opcodes: ADDC (plus), SUBC (minus), MULC (multiply), DIVC (divided by)
ANDC (bitwise and), ORC (bitwise or), XORC (bitwise exclusive or), XNORC (bitwise exclusive nor)
CMPEQC (equal), CMPLTC (less than), CMPLEC (less than or equal) [result = 1 if true, O if false]
SHLC (left shift), SHRC (right shift w/o sign extension), SRAC (right shift w/ sign extension)

Register | Symbol Usage
R31 R31 |Always zero
R30 IXP [Exception pointer
R29 SP Stack pointer
R28 ILP Linkage pointer
R27 IBP Base of frame pointer

Other:
31 26 25 21 20 16 15 0
| Olxxxx | Rc | Ra | literal (two’s complement) |
LD(Ra,literal,Rc): Reg[Rc] < Mem[Reg[Ra] + SEXT(literal)]
ST(Rc,literal,Ra): Mem[Reg[Ra] + SEXT(literal)] < Reg[Rc]
JMP(Ra,Rc): Reg[Rc] <= PC + 4; PC < Reg[Ra]
BEQ/BF(Ra,label,LRc): Reg[Rc] <= PC + 4; if Reg[Ra] = 0 then PC <= PC + 4 + 4*SEXT(literal)
BNE/BT(Ra,label,LRc): Reg[Rc] <= PC +4; if Reg[Ra] = 0 then PC < PC + 4 + 4*SEXT(literal)
LDR(label,Rc): Reg[Rc] <= Mem[PC + 4 + 4*SEXT(literal)]

Opcode Table: (*optional opcodes)

2:0
5:3 000 001 010 011 100 101 110 111
000
001
010
011 LD ST JMP BEQ BNE LDR
100 ADD SUB MUL* DIV* CMPEQ CMPLT CMPLE
101 AND OR XOR XNOR SHL SHR SRA
110 ADDC SUBC MULC* | DIVC* CMPEQC | CMPLTC | CMPLEC
111 ANDC ORC XORC XNORC | SHLC SHRC SRAC
6.004 Worksheet -1lof5- Instruction Set Architecture

Problem 1.

An unnamed associate of yours has broken into the computer (a Beta of course!) that 6.004 uses
for course administration. He has managed to grab the contents of the memory locations he
believes holds the Beta code responsible for checking access passwords and would like you to
help discover how the password code works. The memory contents are shown in the table below:

Addr

0x100

ox1e4

0x1e8

ox1l1ecC

ox11e

ox114

0x118

ox11cC

0x120

ox124

0x128

ox12C

Contents

0xCO5F0008

0xCO3F0000

OxEQ60000F

OxFo210004

OxA4230800

OxF4000004

0xC4420001

0x73E20002

Ox73FFFFF9

OxA4230800

0x605F0124

0x90211000

Opcode Rc

110000

110000

111000

111100

101001

111101

110001

011100

011100

101001

011000

100100

00010

00001

00011

00001

00001

00000

00010

11111

11111

00001

00010

00001

Ra Rb

11111

Assembly

11111

00000

00001

00011

00000

00010

00010

11111

00011

11111

00001

Further investigation reveals that the password is just a 32-bit integer which is in RO when the
code above is executed and that the system will grant access if R1 = 1 after the code has been

executed. What "passnumber" will gain entry to the system?
p g ry y

6.004 Worksheet

-20of5-

Instruction Set Architecture

Problem 2.

(A) What assembly instruction could a compiler use to implement y = x * 8 on the Beta assuming
that MUL and MULC are not available? Assume x is in RO and y is in R1.

Equivalent assembly instruction:

(B) Assume that the registers are initialized to: R0=8, R1=10, R2=12, R3=0x1234, R4=24 before
execution of each of the following assembly instructions. For each instruction, provide the
value of the specified register or memory location. If your answers are in hexadecimal,
make sure to prepend them with the prefix 0x.

1. SHL(R3, R4, RS5) Value of RS:
2. ADD(R2,R1, R6) Value of R6:
3. ADD(RO, 2, R7) Value of R7:
4. ST(R1, 4, R3) Value stored: at address:
(C) A student tries to optimize his Beta assembly program by replacing a line
containing
ADDC(RO, 3%4+5, R1)
by
ADDC(RO, 17, R1)
Is the resulting binary program smaller? Does it run faster?
(circle one) Binary program is SMALLER? yes ... no
(circle one) FASTER? yes ... no
(D) A BR instruction at location 0x1000 branches to 0x2000. If the binary representation for
that BR were moved to location 0x1400 and executed there, where will the relocated
instruction branch to?
Branch target for relocated BR (in hex): 0x
(E) A line in an assembly-language program containing “ADDC(R1,2,R3)” is changed to
“ADDC(R1,R2,R3)”. Will the modified program behave differently when executed?

Circle best answer: YES ... NO ... CAN’T TELL

6.004 Worksheet -30of5- Instruction Set Architecture

Problem 3.

Each of the following programs is loaded into a Beta’s main memory starting at location 0 and
execution is started with the Beta’s PC set to 0. Assume that all registers have been initialized to
0 before execution begins. Please determine the specified values after execution reaches the
HALT() instruction and the Beta stops. Write “CAN’T TELL” if the value cannot be determined.
Please write all values in hex.

. =0
(A) LD(R31,X+4,R1)
SHLC(R1,2,R1) Value left in R1: 0x
LD(R1,X,R2)
HALT () Value left in R2: 0x
X: LONG(4)
LONG(3)
LONG(2)
LONG (1)
LONG(0)

(B) o

LD(R31,X,R0)
CMOVE (0,R1)

L: CMPLTC(RO,0,R2)
BNE (R2,DONE) Value left in R1: 0x
ADDC(R1,1,R1)

SHLC(RO,1,R0) Value left in R2: 0x
BR(L)
DONE: HALT(Q) Value assembler assigns to symbol X: 0x
X: LONG(0x08306352)

Value left in R0O: 0x

©) _ 0

LD(R31,Z,R1)]
SHRC(R1,26,R1) Value left in R1: 0x

Z: CMPLTC(R1,0x3C,R2)
HALTQ) Value left in R2: 0x

(D) %

LD(R31,X,R0)
CMOVE (0,R1)
L: ADDC(R1,1,R1)

Value left in R0O: 0x

SHRC(RO,1,R0) Value left in R1: 0x

BNE(RO,L,R2)

HALTQ Value left in R2: 0x

. = 0x100 Value assembler assigns to symbol X: 0x
X: LONG(5)

6.004 Worksheet -4 of 5 - Instruction Set Architecture

(E)

(F)

(G)

(H)

L1:
L2:

. =0

LD(r31, X, re)
CMPLE(r@, r31, ri)
BNE(rl, L1, ril)
ADDC(r31, 17, r2)
BEQ(r31, L2, r31)
SRAC(re, 4, r2)
HALT()

. = Ox1CE8
LONG(0x87654321)

. =0

LD(R31, i, RO)
SHLC(RO, 2, RO)
LD(RO, a-4, R1)
HALTQ)
LONG(OxBADBABE)
LONG(OxDEADBEEF)
LONG(OxCOFFEE)
LONG(Ox8BADFOOD)
LONG(3)

=0

LD(R31,Z,R1)
SHRC(R1,16,R2)

: SUBC(R2,0x3C,R3)

HALTQ)

=0

LD(R31,X,R0)

CMOVE(0,R1)

: ADDC(R1,1,R1)

SHRC(RO, 1,R0)
BNE(RO, L,R2)
HALTQ)

LONG(OxDECAF)

6.004 Worksheet

Value assembler assigns to L1: 0x

Contents of RO (in hex): 0x

Contents of R1 (in hex): 0x

Value assembler assigns to symbol Z: 0x

-50f5-

Value left in R0? 0x

Value left in R1? 0x

Value left in R2? 0x

Value left in R1: 0x

Value left in R3: 0x

Value left in R0O: 0x

Value left in R1: 0x

Value left in R2: 0x

Instruction Set Architecture

MIT OpenCourseWare
https://ocw.mit.edu/

6.004 Computation Structures
Spring 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

