
6.006 Introduction to Algorithms Recitation 7 September 30, 2011

Sort Stability
A sorting algorithm is stable if elements with the same key appear in the output array in the same
order as they do in the input array. That is, it breaks ties between two elements by the rule that
whichever element appears first in the input array appears first in the output array. Normally, the
property of stability is important when satellite data are carried around with the element being
sorted. For example, in order for radix sort to work correctly, the digit sorts must be stable.

Counting Sort
Counting sort is an algorithm that takes an array A of n elements with keys in the range {1, 2, ...,
k} and sorts the array in O(n+ k) time. It is a stable sort.

In the lecture, we have seen one implementation of counting sort. Here we will show another
one mentioned in the text book (CLRS).

Intuition: Count key occurrences using an auxiliary array C with k elements, all initialized
to 0. We make one pass through the input array A, and for each element i in A that we see, we
increment C[i] by 1. After we iterate through the n elements of A and update C, the value at
index j of C corresponds to how many times j appeared in A. This step takes O(n) time to iterate
through A.

Once we have C, we can construct the sorted version of A by iterating through C and inserting
each element j a total of C[j] times into a new list (or A itself). Iterating through C takes O(k)
time.

The end result is a sorted A and in total it took O(n+ k) time to do so.
However this does not permute the elements in A into a sorted list and is not stable yet. If A

had two 3s for example, there’s no distinction which 3 mapped to which 3 in the sorted result. We
just counted two 3s and arbitrarily stuck two 3s in the sorted list. This is perfectly fine in many
cases, but you’ll see later on in radix sort why in some cases it is preferable to be able to provide a
permutation that transforms A into a sorted version of itself.

Make it stable: We continue from the point where C is an array where C[j] refers to how
many times j appears in A. We transform C to an array where C[j] refers to how many elements
are ≤ j. We do this by iterating through C and adding the value at the previous index to the value
at the current index, since the number of elements ≤ j is equal to the number of elements ≤ j − 1
(i.e. the value at the previous index) plus the number of elements = j (i.e. the value at the current
index). The final result is an array C where the value of C[j] is the number of elements ≤ j in A.

1



6.006 Introduction to Algorithms Recitation 7 September 30, 2011

Now we iterate through A backwards starting from the last element of A. For each element i
we see, we check C[i] to find out how many elements are there ≤ i. From this information, we
know exactly where we can put i in the sorted array. Once we insert i into the sorted array, we
decrement C[i] so that if we see a duplicate element, we know that we have to insert it right before
the previous i. Once we finish iterating through A, we will get a sorted list as before. This time, we
provided a mapping from each element A to the sorted list. Note that since we iterated through A
backwards and decrement C[i] every time we see i. we preserve the order of duplicates in A. That
is, if there are two 3s in A, we map the first 3 to an index before the second 3. This now makes
counting sort stable. We will need the stability of counting sort when we use radix sort.

Iterating through C to change C[j] from being the number of times j is found in A to being
the number of times an element ≤ j is found in A takes O(k) time. Iterating through A to map
the elements of A to the sorted list takes O(n) time. Since filling up C to begin with also took
O(n) time, the total runtime of this stable version of counting sort is O(n+ k+ n) = O(2n+ k) =
O(n+ k).

Radix Sort
Example

2341
1432
2413
1243
2143

2



6.006 Introduction to Algorithms Recitation 7 September 30, 2011

1234
1342
2314
1423
2431
1324
2134

Is Heap Sort Stable?
No. An example of heap sorting {2, 1, 2} can illustrate the point.

Is Merge Sort Stable?
Merge sort can be stable as long as the merge operaion is implemented properly.

Is the merge sort in docdist6 stable?
1 def merge_sort(A):
2 n = len(A)
3 if n==1:
4 return A
5 mid = n//2
6 L = merge_sort(A[:mid])
7 R = merge_sort(A[mid:])
8 return merge(L,R)
9

10 def merge(L,R):
11 i = 0
12 j = 0
13 answer = []
14 while i<len(L) and j<len(R):
15 if L[i]<R[j]:
16 answer.append(L[i])
17 i += 1
18 else:
19 answer.append(R[j])
20 j += 1
21 if i<len(L):
22 answer.extend(L[i:])
23 if j<len(R):
24 answer.extend(R[j:])
25 return answer

No, due to the comparison at line 15. If two elements are equal, the element on the right will be
put first in the merged array which changes the original ordering. If we change it to L[i]≤R[j],
it will be stable.

3



MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



