MITOCW | R5. Recursion Trees, Binary Search Trees

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

The following content is provided under a Creative Commons license. Your support
will help MIT OpenCourseWare continue to offer high quality educational resources
for free. To make a donation or view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

If you guys want me to cover anything in particular, is there anything you didn't
understand in lecture? In the last section, | covered the recursion trees because
they will be on the Pset, and people said they were a bit unclear, so we can do that
and cover less of the stuff that | have here. Or if there's anything else, you can tell
me what you want. So there | cover recursion trees because someone said, hey,

can you go over that again? Is there any pain points? No? OK.

So then I'm going to give you the same choice that | gave to people last time, and
that is we can go over recursion trees again, but if | do that, then [won't have time
to go over the code for deleting a node from a binary search tree. So we'll go
through the theory and you guys will have to go through the code on your own. But
instead, we'll go over recursion trees again and remember how you solve a
recurrence using recursion trees. The alternative is we don't do that and we

complete the deletions part.

| feel like covering deletions, since we didn't do that in lecture, that would probably

be more helpful.

Let's take a vote. Who wants to do deletions in painstaking detail? So deletions and

not recursion? Who wants to do recursion trees and not deletion?

It's about equal.

It's equal and nobody cares. I'm really sad.

Let's do both in half detail.

OK, sure. Who remembers merge sort? What does merge sort do really quick?

AUDIENCE:

PROFESSOR:

AUDIENCE:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

It takes some sort of unsorted array, splits it in half, and then continually splits it,
and then once it finally gets to the point where you have arrays of two elements,
then it sorts them, and then sorts those, and then sorts those. It's a fun thing. And

then it merges [INAUDIBLE].

That's so much code. | don't like to write much code because for every line of code
that you write, you might have a bug in it, so | like to write less code. So the way | do

it is when | get to an array size of one element, | know it's already sorted.

So merge sort. You have an array, it's unsorted. Split it into two halves, call merge
sort on each half, assume that magically, they're going to come back sorted, and
then you merge the sorted halves. How much time does merging take? OK. So the

recursion for the running time of merge sort?

Why does it take n time? Just too large?

Isn't it the finger thing where you take each element, and you're like, this one, is that

greater or less than, then you put it in the array. So you get--

Please take my word for it that it's order n.

I'll explain it and then I'll be confused.

OK, so order n. What's the recursion? Don't give me the solution because then |
can't do the trees anymore, so give me the recursion before it's solved. Give me the

recurrence formula. So it starts with T of N, right?

It starts with N over 2 plus N, I think.

Perfect. So you take the array, you split it into two, you call merge sort on the two
halves of the arrays. So you call merge sort twice. That's why you have a 2 here.
The 2 matters. Without it, you get a different answer. And when you call it, the
arrays that you give it are half the size, and then merge takes order and time.
Splitting depends on what you're using to store your arrays. Can be constant time or

it can be order N. So the time won't change because of split.

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

How do we solve this recurrence? The recursion tree method says that we're going
to draw a call graph. So we start out with a call to merge sort with an array of size N.
Then it's going to call merge sort again, but after the array is split. So it's going to
call merge sort twice, size is N over 2. This guy gets an array of N over 2, calls

merge sort. Two arrays, sizes N over 4, N over 4. This does the same.

So this goes on forever and ever and ever until at some point we reach our base
case. So we're going to have a bunch of calls here where the array size is? What's
our base case? 1. Excellent. So this is the call graph for merge sort, and let's put

the base case here so we know what we're talking about. T of 1 is theta 1.

Now inside the nodes, we're going to put the cost for each call without counting the
sub-call, so the children here. That's this guy here, except instead of order N, | will
write CN. Remember how sometimes we use CN instead of the order of notation?
The reason we do that is if | put in the asymptotic notation, then we're going to be
tempted to sum them up. You're allowed to sum terms using asymptotic notation as
long as there's a finite number of them, but here, it turns out there's an infinite
number of them. Also, if you go this way, you can never go wrong. You always get

the right answer, so that's why we switch from order N to CN.

In order to merge sort an array of size N, we're going to merge sort two arrays of
size N over 2 and then spend CN time on doing the merge. What are the costs

here? To sort an array of N over 2, what's the cost outside the cost to merge?

C of N over 2.

Perfect. C times N over 2. C times N over 2. How about here?

C times N over 4.

Perfect. CN over 4. My nodes are really ugly. | should have drawn them like this

from the beginning. CN over 4. There you go. How about down here?

C of N over 2 to the i.

You're going on step ahead. We'll do that right next.

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

C of N over log N, right? Because they're log N levels, so--

Let's not worry about the number of levels. You're ruining my steps. | was going to

get to that two steps after this.

Is it just C?

Yep. So array size is 1, right? So the costis C. C, C, C, C. OK, you guys got it if
you're thinking of levels already. The next thing | want to do is | want to figure out

how many levels | have in this tree. Why do | care about that?

The answer for T of N is the sum of all these costs in here because the cost of
merge sorting an array of size N is the merge sort plus the costs for sorting the two
arrays. And the nodes here keep track of all the time spent in recursive sub-calls, so
if we can add up everything up, we have the answer to T of N. It turns out the
easiest way to do that is to sum up the cost at each level because the costs are this
guy copied over here. For a level, they tend to be the same, so it's reasonably easy
to add them up, except in order to be able to add those up, you have to know how

many levels you have.

So how do | know how many levels | have? Someone already told me log N. How do
| get to that log N? So when | get to the bottommost level, the number has to be 1,
the number next to the node, because that's my base case. When | have a one

element array, it's sorted, I'm done. | return.

So | can say that for each level, the number next to the node is something as a
function of L. Here, I'm going to say that this is N over 1, which is N over 2 to the 0
power. And this is N over 2, so it's N over 2 to the first power. This is N over 2 to the

second, and so on and so forth. It might not be obvious if you only have two levels.

| don't want to draw a lot on the board because | don't have a lot of space and I'd
get my nodes all messed into each other. If it takes more than two levels to see the
pattern, go for it. Expand for three levels, four levels, five levels, whatever it takes to

get it right on a Pset or on a test. So you see the pattern, then you write the formula
4

AUDIENCE:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

for the node size at the level.

And assuming this pattern holds, we see that the size of a node at level |, the size is
2 N over 2 to the I minus 1. Fair enough? You can say N over 2 to the |, and forget
that there's a minus 1, and then the asymptotics will save you, so it's no big deal,

but this is the real number.

So that means that at the bottommost level, at level |, this size is going to be 1. N
over 2 to the I minus 1 equals 1. So now this is an equation, so | can solve for I. |
pull this on the right side, N equals 2 to the | minus 1, so | minus 1 equals-- anyone?

The inverse of an exponential?

| wasn't paying attention. Sorry.

Log N.

The inverse of an exponential is a logarithm. Keep that in mind for solving 6.006
problems. | minus 1 is log N so | is log n plus 1, roughly log n. | could use log n plus
1 and go through the math. It's a bit more painful and, because we're using

asymptotics, it doesn't really matter.

So now we know how many levels we have. Let's see what's the cost at the level.
So all the calls at a certain level, what's the sum of the costs? For this level, what's

the cost? CN. And That was the easy question. Just the root, right?

How about this level? Because | have two nodes, the cost in each node is CN over
2. How about this level? Four levels, each level CN over 4. How about the bottom

level?

CN.

Why is it CN?

Because there are N arrays of size 1.

N arrays of size 1. Excellent. A cute argument | heard once is you start out with N,

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

you split it into N over 2 and N over 2. Then you split this guy in N over 4, N over 4,
so this is like conservation of mass. If you start with N and here, you don't end up

with N total, then you lost some element somewhere on the way.

So CN. CN, CN, CN, CN. | think | see a pattern. | think it's reasonable to say that for
every level, it's CN. And if you write the proof, you can prove that by using math
instead of waving hands. So CN times the number of levels, right? The answer for

this guy is C of N is CN times I. What's |?

N log N.

Roughly. OK So order of N log N. C becomes order of, | is order of log N, N stays

the same. Any questions? Are people getting it or did | confuse you even more?

We got it.

OK, sweet. Thank you for the encouragement. So this gets you through problem
one of Pset 2. So in this case, the tree is nicely balanced. The cost at each level is
the same. When [INAUDIBLE] talked about recursion trees in lectures, he showed
two more trees, one where pretty much all the cost was up here-- the cost of the
children was negligible-- and one tree where all the cost was concentrated here, so
the cost of all the inner nodes was negligible and the leaves were doing all the real
work. So don't be scared if your costs aren't the same. Just sum them up and you'll

get to the right answer.

Now I'm going to talk about binary search trees, except | will make a five minute
general talk about data structures before | do that. So we use the term "data
structures." | think we covered it well, and | want to give you a couple of tips for

dealing with them on Pset 1.

A data structure is a bunch of algorithms that help you store and then retrieve
information. You have two types of algorithms. You have queries, and you have

updates.

You start out with an empty data structure, like an empty binary search tree or an

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

PROFESSOR:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

empty list, and then you throw some data at it. That's when you update it. Then you
ask it some questions, and that's when you query it. Then maybe you throw more
data at it, so you do more updates, and you ask more questions, so you do more
queries. What are the queries and the updates for the binary search trees that we

talked about in lecture?

A query would be like, what's your right child, what's your left child?

So that's for a node.

What are you looking for?

I'm looking for something for the entire infrastructure. So for the entire tree, what's a

question that you would ask the tree?

Max.

OK. Min.

Next larger.

Next larger. Are you looking at the nodes?

Is there an are you balanced question?

Well, | would say that the most popular operation in a binary search tree is Search,
which looks for-- we call it Find in the code because most code implementations call
it Find nowadays, but binary search tree. What are you going to do in it? You search

for a value. That's why it has the Search in binary search.

So queries are operations where you ask questions to the data structure and it

doesn't change. How about updates? What did we learn for updates?

Insert.

Excellent. So Insert was covered in lecture, and we're doing Delete today. So data

structures have this property that's called the representation invariant, RI, or Rep

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

Invariant. Actually, before | get there, the rep invariant says that the data in the data
structures is organized in this way, and as long as it's organized in this way, the
data structure functions correctly. Can someone guess for a sorted array what's the

representation invariant?

It can mean sorted.

Yeah. A sorted array should be sorted. Sounds like a very good rep invariant. So
the elements should be stored an array. Every element should be smaller than any
element after it. And as long as the rep invariant holds, so as long as elements are
stored in the right way in the data structure, the queries will return the right results.
If the rep invariant doesn't hold, then God knows what's going to happen. What can
you do in a storage array as long as the rep invariant holds? Sorted array. What's
the reason why | would have a sorted array? What can | do that's fast in a sorted

array?

Min and Max.

| can do that very fast. That's good. What's the running time?

A constant.

Perfect. Min you look at the beginning, Max you look at the end. Yes?

Binary search.

Binary search. That's the other reason for that. So binary search runs in order log N
time, doesn't have to look at most of the array, tells you whether an element is there
are not. Now, what if the array is unsorted? Will the algorithm work? It might say
something isn't there when it actually is there. You can do binary search on a non-
sorted array. So if the rep invariant doesn't hold, your queries might give you a

wrong answer. How about updates? How do you search something in a sorted list?

You find where it should go and you move everything.

Yep. So you have to move everything, make room for it, and put it there so that the

8

AUDIENCE:

PROFESSOR:

array is still sorted at the end. You can't just append things at the end, even though
that would be faster and lazier and less code. When you do an update to a data
structure, you have to make sure that the rep invariant still holds at the end. Sort of
a correctness proof for an update algorithm says that if the rep invariant holds at the

beginning, the rep invariant is guaranteed to hold at the end.

Why do we care about this rep invariant stuff? Suppose you have a problem, say on
the next Pset, that asks you to find the place that's slow in your code and then
speed it up. And suppose you recognize the data structure there, and you say that's
inefficient, and you want to implement another data structure that would be more

efficient.

You're going to implement it. You might have bugs in an update. How do you find
the bugs? Queries give you the wrong answers. You might do queries a long time

after you do updates, and you're not going to know which update failed.

The right way to do this is you implement the method called Check RI-- that's what |
call it-- so check the representation invariant. And that method walks through the
entire data structure and make sure that the rep invariant holds, and if it doesn't, it
raises an exception because you know that whatever you try to do from there is not

going to work, so there's no reason to keep going.

So at the end of every update, you add a call to this Check Rl method until you're
sure that your code is correct. And after you're done debugging your code, you
remove this method and you submit the code. Why do | want to remove the
method? It might be painfully slow and inefficient, much slower than the actual

queries and updates.

For example, let's take a heap. Do people remember heaps from lecture? What's

the query for a heap? Say you have a max heap. What's a query?

Where's the max?

OK, cool. So for a max heap, a query would be max. Running time?

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

AUDIENCE:

PROFESSOR:

Constant.

Perfect. Constant. What do you do? Look at the top?

Yeah, exactly.

OK. Sweet. So what are the two popular updates in a max heap?

There would be Insert as well.

OK. Insert. And did we teach you general delete? Usually Extract Max is simpler.
That's all you need. What's the running time for Insert? Do people remember

heaps?

| think it was per N, but I'm not completely sure.

Anyone else? It's not. Life would be bad if it would be N.

N squared?

No. It's better than N, so you guys are doing a binary search over the few running

times that | gave you earlier.

[INAUDIBLE] add to the N, and then you compare your neighbor, and then you
[INAUDIBLE].

If it's an array, there isn't--

So conceptually, a heap looks like this. And yeah, it becomes an array eventually,
but let's look at it this way. It is a full binary tree. Binary tree means that each node
has at most two children, and full means that every level except for the last level is
completely populated. So every internal node has exactly two children, and in here,
every node except for some nodes and then some nodes after it will not have.
Everything to the left is fully populated, and then at some point, you stop having

children.

It turns out that this is easy to store in an array, but | will not go over that. Instead, |

10

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

want to go over inserting. What's the rep invariant for a heap?

The max in the top, right? Well, for max heap, and then the two children are less

than the next node.

All right. So the guy here has to be bigger than these guys, then the guy here has to
be bigger than these guys, and so on and so forth. And if you use induction, you
can prove that if this is bigger than this, it has to be bigger than these guys, and
bigger than these guys, and bigger than everything, and it's a max. That's the

reason why we have that rep invariant.

So the way we insert a node is we add it at the bottom, the only place where we
could add it. And then if this guy is bigger than this guy, the rep invariant is violated,
so we swap them in order to fix that. Now the guy is here. If this is bigger than this,
we do another swap. If this is bigger than this, we do another swap. So you're going
to go from the bottom of the heap potentially all the way up to the root. So the

running time of insert is order of the height of the heap.

Now, the heap is a full binary tree. | said "full." | keep saying "full." The reason | care
about full is that the full binary tree is guaranteed to have a height of log N. It's

always log N, where N is the number of nodes. So inserting in a heap takes log N.

| have a question. Didn't they say that because it's in an array, then to find it-- oh

no, | guess because you can still do the swaps.

You can still do the swaps when you have it serialized in an array. You know that
given an item's index, the parent is that index divided by 2. So you add an element
at the end of the array, and then you know what the parent is, and then you keep

swapping and swapping and swapping towards the [INAUDIBLE].

You don't ever have to put it in and shift everything over. You're only swapping.

Yep. You only swap. That's important. Thanks for asking. That's important. So log
N. Extract max, take my word for it, also log N. What's the running time for checking

the invariant in a heap? So to make sure that this guy is a heap, if | had numbers

11

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

here, what would you have to do?

You'd have to look at every node.

Yep. So running time?

Theta of N.

Yep. So if I'm going to submit code for a heap where the operations are our order of
log N, or order 1, but then each of these calls Check Rl, that's going to be painfully
slow because I'm making the updates be order N instead of log N. So you're putting
Check Rl calls in every update. You debug your code. When you make sure it's
correct, you remove those, and then you submit the Pset. Make sense? Sweet. And

we looked a little bit at heaps, which is good.

Binary search trees. So a binary tree is a tree where every node has at most two
children. When we code this up, we represent a node as a Python object, and for a
node, we keep track of the left child, of the right child, parent, and then this is a
hollow tree. It's not very useful. This becomes useful when you start putting keys in
the nodes so that you can find them and do other things with them. So each node

has a key.

Let me draw a binary search tree. Can people see this? So this is a binary tree. Can

someone say something a bit more specific about it?

It's unbalanced.

OK. It's imbalanced. So that means that finding things all the way at the bottom is
going to be expensive. What else? So | said it's a binary tree. Give me something

more specific.

So binary tree just means that every node has two children. There's a bit more
structure in this guy. So if | look at the root, if | look at 23, all the nodes to the left
are smaller. All the nodes to the right are bigger. Now, if | look at 8, all the nodes to

the left are smaller, all the nodes to the right are greater.

12

AUDIENCE:

PROFESSOR:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

This additional rep invariant defines a binary search tree. This is what we talked
about in class. BST. Why would | want to have this rep invariant? It sounds like a
pain to maintain nodes with all these ordering constraints. What's the advantage of

doing that?

Search is fast.

Yep. Search is fast. How do | do search?

If you're looking for 42 or for 16, you'd be like, oh, it's less than 23. I'll get on this
path.

So start at the root, compare my key to the root. If it's smaller, go left. If it's bigger,
go right. Then keep doing that until | arrive somewhere or until | arrive at a dead
end if I'm looking for 14. This is a lot like binary search. Binary search in an array,
you look at the middle. If your key is smaller, go left. If your key is bigger, then go

right.

Let's look at the code for a little bit. Look at the BST Node Class, and you'll see that
it has the fields that we have up here. And look at the Find method, and this is pretty
much the binary search code. Lines 8 and 9 have the return condition when you're
happy and you found the key, and then line 10 compares the key that you're looking
for with the key in the node that you're at, and then lines 11, 14, 16, and 19 are
pretty much copy pasted, except one of them deals with the left case, the other one

deals with the right case. What is the running time for Find?

Wouldn't it be log N, right?

| wish. If this is all you have to do to get log N, then | would have to write a lot less
code. So not quite log N. We will have to go through next lecture to get to log N.

Until then, what's the running time?

Order h.

Yep. So you told me at the beginning it's unbalanced.

13

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

Yeah.

So then it's not going to be fast. OK, so order h. The reason why we care about h,
and the reason we don't say order N, is because next lecture after we learn how to
balance a tree, there's some magic that you can do to these binary search trees to
guarantee that the height is order of log N. And then we'll go through all the running

times that we have and replace h with log N.

Now, it happens that in this case, if you would have told me order N, | couldn't argue
with you because worst case, searches are order N. Can someone give me a binary

search tree that exposes this degenerate case? Yes?

If it's completely unbalanced and every node is greater than the parent nodes.

So give me some inserts that create it.

Insert 5.

Insert 10.

10.

Insert 15.

15.

Insert 20.

Yep. And | could keep going. | could say, 1, 2, 3, 4, 5. | could say 5, 10, 15. As long
as these keep growing, this is basically going to be a list, so searching is order N.

This is a degenerate case.

Turns out it doesn't happen too often in practice. If you have random data, the
height will be roughly log N. But in order to avoid those degenerate cases, we'll be

doing balanced trees later on. So we covered Find. We know it's order h. How do

14

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

you insert, really quickly?

Do you mean in searching when it's balanced or unbalanced?

This guy. So the trees look exactly the same. If it's balanced, it's going to look more
like that than like this. Actually, this is balanced. This is perfectly unbalanced. This is
somewhere in the middle. If it's balanced, it's just going to look more like this, but it's

still a binary search tree. How would you insert a node? Yes?

Can't you start at the root and find your way down, and then the first open child that

you see that's applicable to your element, state it then?

Yep. So if | wanted to insert 14, which way do | go?

So you'd look at 23, and you'd say, it's less than 23, go left. You'd look at 8. You'd
say, it's greater than 8. You'd go right. Look at 16. You'd say it's less, so you go left.

15, it's less. Then you have an open spot so you stick it there.

Excellent. Thank you. Yes?

| have a question. What if we want to insert 5? Then--

So if you want to insert who?

5. Or actually no, we can't. I'm thinking, is there any case in which need to move a

node?

How would you insert 5? Let's see. What would you do for 5?

For 5, then we'd insert it to the right of 4, right?

Smaller, smaller, greater, 5. Right?

So there would be no case in which we'd need to swap nodes or something?

No. You're thinking ahead. We'll talk about that a little later when we get to deleting.
As long as you follow a path in the tree, the path that finding would get you to, as

soon as you hit a dead end, that's where your node belongs. Because you know
15

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

next time you're going to search for it, the search is going to follow that path and

find the node. Yes?

If you have values are the same, like two nodes at the same number, does it matter

which side you put it on?

You don't.

Oh, | see. It's more like you would only have four 1's in the tree.

Yes. So if you're trying to store keys and values, then what you'd have to do if you
want to allow multiple values for the same key is you have a linked list going off of
this, which node becomes an array of values aside from the key. Smart question.
Thank you. That trips you up every time you do actual code, so that's the right
question to ask yourself when you're implementing this. Will | have duplicates? How

do | handle them? We don't. We take the easy way out.

So if you look at Insert, on the next page, you will see that the code is pretty much
the Find code copy pasted, except when Self Left is None or Self Right is None,
instead of returning, it creates a new node. Does that make sense to people? All

right.

So Delete is going to be the hardest operation for today. Before we do that, let's do
a warm up operation. Let's say | want to implement Find Next Larger, also called
Successor in some implementations. So | have a node. Say | have node 8, and |
want to find the next key in the tree that's strictly larger than 8 but smaller than
anything else. So if | would take these nodes and write them down in order, | want
to find the element that would go right after it. How do | do that? Don't cheat. Don't

look at the code, or make my life easier and do searches.

Go down one to the right, and you try to get down left as far as you can.

OK. Very good. So | have a node, and it has some subtree here, so | can go to the
right here, | can go all the way left. We have an operation that does this, and it's

called Min for a tree. In order to find the minimum in a binary search tree, you keep

16

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

going left. For example, in this case, you get 4, which is good.

So the way you would code this up is if you have Min, you go to the right if you can,
and then you call Min on the subtree. And you can see that lines 3 and 4 do exactly
that. Good guess. But you can line 1 says case one, so you have the right answer

for one case.

Now we have to handle more difficult cases. What if instead, | go down a bunch of
nodes, and | want to find the successor for this guy, for example, and there's
nothing here. What do | do? So if | want to find the successor for 8, what do | do?

Sorry. It has an answer. What if | want to find the successor for 4?

Go up one.

OK. Go up one. Why does that work?

You know it's going to be greater.

So I'm going up right. So | know that everything here is guaranteed to be smaller,
everything here is guaranteed to be greater than this guy. This guy is up right, so
this is guaranteed to be greater than this, and everything here is guaranteed to be
greater than this, and so on and so forth for the entire tree. So if | go up right, I'm
happy. | definitely found my answer. Now, what if | have something that looks like

this, and | want to find the successor for this guy?

There is none.

In this case, there is none if there's nothing else here. What if | have this, but then |

have this? So | came down this way.

Are you saying you're calling on that last node?

Yep.

Find the larger? | guess you'd just trace back up.

And where do | stop?
17

AUDIENCE:

PROFESSOR:

AUDIENCE:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

It affects the tree, so you go up one from there. You don't stop there.

Why can't | stop here?

Because you know that that-- not necessarily.

You know that everything in that long branch right there is less than that node

[INAUDIBLE].

This is to the left of this guy, so this guy has to be greater than everything here, and
then you can repeat the argument that we had before. So here, we could stop right
away because we could branch left. In this case, you have to go up until you're able
to go left and up. If you get to the root, then what happened? Then we're in this

case, and you have no successor.

So take a look at the code. The next larger, lines 1 through 9. Case two, 6 through
8, does exactly that. If | can't go to my right and find the tree there, then | go up
through my parent chain, and as long as | have to go up to the left, so as long as
I'm the right child of my parent, | have to keep going. The moment | find the parent

where I'm the left child, | stop. That's my successor.

What if | would have to find the predecessor instead? So the element that's smaller

than me but bigger than everything else in the tree. What would | do?

It's just the opposite.

Just the opposite. So how do | do the opposite?

You can take the max of the left side tree, or traverse up, and if that's less than--

OK, so if | have a left subtree, fine. Call max on it and get the rightmost node there.

If not, I go up, and when do | stop? When I go left or right?

You'd have to go right. Is that right?

Yep. So last time, in this case, when | was going up, if | was going left, | had to keep

18

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

going, and the moment | went right, | was happy and | stopped. What if | want to
find the predecessor? It's the opposite, right? So | will go this way, and the moment
| can go this way, I'm done. How do you do this in code? Slightly tricky. Just slightly,

| promise.

[INAUDIBLE].

It's hard. What | would do is copy paste the code, replace "left" with "right"
everywhere, and replace "min" with "max." You get it done. So we talked about how
the tree is symmetric, right? So every time, instead of saying "left,” you say "right,"

and instead of saying "min," you say "max." That's how you do this.

How do we do deletions? So suppose I'm in this tree and | want to delete 15. What

do | do?

Kill it.

Kill it. Very good. What if | want to delete 167 What do | do?

You need to put 15 where 16 is.

OK. So | would put 15 here. So | had 16. Suppose | have a big tree here. Actually,
let's go for an easier case. Let's say | have this tree here. So you're here, you have

a big tree here, you don't have anything here, and you want to delete this guy.

You know that everything less than the top node is going to be less than it, so you

can just move that up.

Everything less than this guy is also going to be less than this guy. So you're saying

move the whole tree up.

Yep.

So the way we do that is we'd take this node's left link and make it point here, and
take this guy's parent link and make it point here, and this guy sort of goes away. So

we have two cases for deleting. We have if you're a leaf, we'll take you out. Sorry. |

19

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

got confused. If you have one child and that child is in the same direction as your
parent, then you can do this. What if you have one child, but it's a zigzag like this?

What do you do?

It's still greater than, so you do the same thing.

Exactly. Same thing. Just change this guy, change this guy, and I'm happy. So it

doesn't matter if you have a zigzag or a straight line. It might help you think about it
to convince yourself that the code is correct, but in the end, you do the same thing.
Now, what if | want to delete node 8? So what if | have a nasty case where | want to

delete this guy and it has children both on the left and on the right?

You have to take 8, compare it to its parent and compare it to its right child, and see

which one is greater in order to figure out which node gets replaced in its spot.

OK. So there is replacing that's going to happen. The answer is really tricky. |
always forget this when coding. Try to understand it, and if it doesn't work, refer to
the textbook. When you forget it, because you will, refer to the textbook or to the

internet.

So what you do is | can't just magically replace this node with one of the subtrees,
but we talked right before this about Next Greater, so finding a node's successor. If
this node has both a left subtree and a right subtree, then | know that if | call Find
Successor on it, I'm going to go somewhere inside here, and I'm going to find a

node somewhere in here all the way to the left that is this guy's successor.

So what I'm going to do is I'm going to delete this node instead, and then I'm going
to take its key and put it up here. So if | want to delete 8, what | do is | find its
successor, then | delete it, then | take the 15 that was here-- you can see it, right?

It's still there. Put it here.

So the reason this works is that everything here is greater than this guy. Everything
here is smaller than this guy. This is the next node that's greater than this guy, but
everything else is bigger than it, right, because we wanted it to be a successor. So if

| take this value and | put it up here, everything in here is still going to be greater
20

AUDIENCE:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

than it. This is a successor of this guy, so everything here is still going to be smaller

than the successor.

Great. In order to do a delete, | find the successor, and then | call Delete on it. How
do | know that this will end? How do | know that I'm not going to go into a loop that

runs forever?

Because it's not--

It's acyclic, right?

OK. First answer, good. Eventually, worst case, I'm going to get to the maximum,

and then not going on have to delete the successor anymore.

Now, another thing to note here is that if this guy is the successor of this guy, it can't
have anything on the left, because if it would, then whatever is down here has to be
bigger than this, and whatever's to the left of this node has to be smaller than this.

But we said that this is the successor of this, so there's nothing here.

So this will be one of the easy cases that we talked about. The successor either has
no kids, or it has only one child, only one subtree. So then | can delete it using one
of the easy cases. So in fact, worst case that happens in a delete is my node has
two subtrees. Then | find the successor that's only going to have one subtree, |

change my links there, and I'm done. What is the running time for Delete?

Is it order h, because you should do it all the way down to the bottom of the tree,

right?

You have the right answer. Let's see why it's order h. It has to be order h, right?
Otherwise, the tree would be too slow. If it's order N, then it's bad. So why would
Delete be order h? This was a heap, right, so | can't use this. I'm going to write

"delete" here again.

So the first thing you do is you have to search for the key, right? That's order h.

Now, if it's a happy case, if it's case one or two, you change some links and you're

21

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

done. What's the time for that?

Constant.

Constant. So happy case, order h for sure. Now sad case. If you have two children,

what do you have to do after you realize that you have two subtrees?

Find the successor.

OK. What's the running time for finding a successor?

Order h.

Order h. Once | find the successor, what do | do? Call Delete on that, and what

happens? It's a happy case or a sad case?

It's a happy case.

Happy case, a few links get swapped, constant time. So worst case, order h plus

order h. Order h. So insertions are order h, deletions are order h.

The first one. Because the second one is from finding the successor. What is the

first one for?

Finding the node for a key in the tree. So if | say Delete 8, then you have to find 8. If

| give you the node, then you don't have that. Good question. It's a good question.

Thank you. So that's insertion. That's deletion.

Let's look at the code for Delete. Looks kind of long. So lines through 21, happy
case or sad case? Try to do it by looking at the "if" instead of looking at the

comments. So lines through 21 for Delete.

On this tree? Which tree, because there are two deletes?

Oh really? Sorry. Why do we have two deletes?

There's BST Delete and then there's BST Node Delete.

22

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

So BST Delete. Finds the node, and then calls Delete on the node. And then if the
node is a tree's root, then it updates the tree's root. So let's look at the nodes
delete. Oh, | see. | think | was looking at the wrong one. Thank you. My Delete was
much longer than yours. So lines 3 through 12, happy case or sad case? Look at

the "if" on line 3 and tell me, what case is it going for?

[INAUDIBLE].

If it doesn't have a left child or it doesn't have a right child, is that the happy case or

the sad case?

Happy.

Happy case. So lines 4 through 12 handle the happy case. Lines 14 through 16
handle the sad case. Do lines 14 through 16 make sense? Find the successor, then

swap the keys, then delete that successor.

Now, lines 4 through 11 are pretty much what we talked about here, except | can't
draw arrows on the board and instead | have to change left and right links. Line 4
has to see if we're a left child or a right child, and then lines 5 through 7 and 9

through 11 are pretty much copy paste, swap left with right. And they changed the

links like we changed them here. Do we have any questions on Deletes?

So if the successor had a right child, then all you do, you just do the workaround

thing where you just--

Yep. So the case that it doesn't have two children. As long as it doesn't have both
children, you're in the happy case and you can do some link swapping. Are you

guys burned out already? Fair enough.

| left a part out. What I left out is how to augment a binary tree. So binary trees by
default can answer the question, what's the minimum node in a tree in order h. You

go all the way to the left, you find the minimum. That's the minimum.

It turns out that if you make a node a little bit fatter, so if instead of storing, say, 23

in this node, | store 23, and | store the fact that the minimum in my left subtree is 4,
23

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

then it turns out that | can answer the question in constant time, what's the
minimum? Oh gee, if you store the minimum here, of course you can retrieve it in

constant time, right?

The hard part is, how do you handle insertions and updates in the same time? So
the idea is that if | have a node and | have a function here, say the minimum of

everything, if | have two children, here they're 15 and 42, and say the minimum in
this tree is 4 and the minimum in this tree is. So if | already computed the function

for these guys, how do | compute the function for this?

[INAUDIBLE] and compare it?

Yep. Take the minimum of these two guys, right? There are some special cases if
you don't have a child. If you don't have a left child, then you're the minimum. But

you write down those special cases, and you can compute this in how much time?

Order h, right?

What if | already computed the answer for the children? How much time does it take

to compute the answer for a single node?

Constant.

Constant. OK.

For a tree, though.

For a tree, it's order h. Yeah. You're getting ahead. You're rushing me. You're not

letting me finish.

Are you saying that we store the minimum value?

So for every--

Each node has a field that says what the minimum value is in that tree.

Yep, exactly. So for each node, what's the minimum in the subtree. So if | add a

24

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

node here, suppose | add three and | had my minimums, what changed? This
subtree changed, this subtree changed, this subtree changed, and then this subtree

changed.

So | have to update the minimums here, here, here, here. Nothing else changed.
Outside the path where | did the Insert, nothing changed, so | don't have to update
anything. So what | do is after the Insert, | go back up and | re-compute the values.

So here, I'll have 3. | go back up 3, 3, 3.

You could when you're passing down, though. When you're going down that
column, you can just compare it on the way down. You don't have to go back up,

right?

Yep. So the advantage of doing it the way I'm saying it is that you can have other
functions instead of minimum. As long as you can compute the function inside the
parent in constant time using the function from the children, it makes sense to
compute the function on the children first. There's an obvious function that | can't
tell you because that's on the Pset, but when you see the next Pset, you'll see what

| mean.

So if you have a function where you know the result for the children and you can
compute the result for the parent in constant time, then after you do the Insert, you
go up on the path and you re-compute the function. When you delete, what do you

do?

Same thing.

Same thing. If this goes away, then this subtree changed, and then if there would be
something else here, then this subtree changed, but nothing else changed. So
whenever you do an Insert or a Delete, all you have to do is go back up the path to
the parent and re-compute the function that you're trying to compute. And that's

tree augmentation. Does this make sense somewhat?

That's it. So what you'll find in lecture notes is a harder way of doing it that works for

minimum, but what | told you works for everything. So don't tell people | told you
25

how to do this for everything. Sure nobody's going to know.

26

