
Chapter 3:  Electromagnetic Fields in Simple Devices and Circuits 

3.1 Resistors and capacitors 

3.1.1 Introduction 

One important application of electromagnetic field analysis is to simple electronic components 
such as resistors, capacitors, and inductors, all of which exhibit at higher frequencies 
characteristics of the others.  Such structures can be analyzed in terms of their: 1) static behavior, 
for which we can set ∂/∂t = 0 in Maxwell’s equations, 2) quasistatic behavior, for which ∂/∂t is 
non-negligible, but we neglect terms of the order ∂2/∂t2, and 3) dynamic behavior, for which 
terms on the order of ∂2/∂t2 are not negligible either; in the dynamic case the wavelengths of 
interest are no longer large compared to the device dimensions.  Because most such devices have 
either cylindrical or planar geometries, as discussed in Sections 1.3 and 1.4, their fields and 
behavior are generally easily understood.  This understanding can be extrapolated to more 
complex structures. 

One approach to analyzing simple structures is to review the basic constraints imposed by 
symmetry, Maxwell’s equations, and boundary conditions, and then to hypothesize the electric 
and magnetic fields that would result.  These hypotheses can then be tested for consistency with 
any remaining constraints not already invoked.  To illustrate this approach resistors, capacitors, 
and inductors with simple shapes are analyzed in Sections 3.1–2 below. 

All physical elements exhibit varying degrees of resistance, inductance, and capacitance, 
depending on frequency. This is because: 1) essentially all conducting materials exhibit some 
resistance, 2) all currents generate magnetic fields and therefore contribute inductance, and 3) all 
voltage differences generate electric fields and therefore contribute capacitance.  R’s, L’s, and 
C’s are designed to exhibit only one dominant property at low frequencies.  Section 3.3 discusses 
simple examples of ambivalent device behavior as frequency changes. 

Most passive electronic components have two or more terminals where voltages can be 
measured.  The voltage difference between any two terminals of a passive device generally 
depends on the histories of the currents through all the terminals.  Common passive linear two-
terminal devices include resistors, inductors, and capacitors (R’s, L’s. and C’s, respectively), 
while transformers are commonly three- or four-terminal devices.  Devices with even more 
terminals are often simply characterized as N-port networks.  Connected sets of such passive 
linear devices form passive linear circuits which can be analyzed using the methods discussed in 
Section 3.4.  RLC resonators and RL and RC relaxation circuits are most relevant here because 
their physics and behavior resemble those of common electromagnetic systems.  RLC resonators 
are treated in Section 3.5, and RL, RC, and LC circuits are limiting cases when one of the three 
elements becomes negligible. 

3.1.2 Resistors 

Resistors are two-terminal passive linear devices characterized by their resistance R [ohms]: 
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v = iR (3.1.1) 

where v(t) and i(t) are the associated voltage and current.  That is, one volt across a one-ohm 
resistor induces a one-ampere current through it; this defines the ohm. 

The resistor illustrated in Figure 3.1.1 is comprised of two parallel perfectly conducting end-
plates between which is placed a medium of conductivity σ, permittivity ε, permeability μ, and 
thickness d; the two end plates and the medium all have a constant cross-sectional area A [m2] in 
the x-y plane. Let’s assume a static voltage v exists across the resistor R, and that a current i 
flows through it. 

(a) 
σ, ε, μ v = 0 (b) 

+v ρs 

x 
i(t) 

E 
+ + + + + + + + + + + + 

z area A d 

y 
d - - - - - - - - - - - - 

+v 
-ρs v = 0 

i(t) 

Figure 3.1.1 Simple resistor. 

Boundary conditions require the electric field E  at any perfectly conducting plate to be 
perpendicular to it [see (2.6.16); E × = 0 ], and Faraday’s law requires that any line integral of n̂
E  from one iso-potential end plate to the other must equal the voltage v regardless of the path of 
integration (1.3.13).  Because the conductivity σ [Siemens/m] is uniform within walls parallel to 
ẑ , these constraints are satisfied by a static uniform electric field E = ẑEo  everywhere within the 
conducting medium, which would be charge-free since our assumed E  is non-divergent.  Thus: 

d
∫ o (3.1.2)E • ẑ dz  = E d  = v
0 

where Eo = v d  ⎣⎡ Vm  -1⎤⎦ . 

Such an electric field within the conducting medium induces a current density J , where: 

J = σE ⎣⎡ Am  -2 ⎤⎦ (3.1.3) 
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The total current i flowing is the integral of J • ẑ  over the device cross-section A, so that: 

i = J • ẑ dxdy = σE • ẑ dxdy = σE  dxdy = σE A =  vσA d ∫∫ (3.1.4)
A ∫∫A ∫∫ o o A

But i = v/R from (3.1.1), and therefore the static resistance of a simple planar resistor is: 

R v i  = d = σA  o[ hms  ] (3.1.5)

The instantaneous power p [W] dissipated in a resistor is i2R = v2/R, and the time-average 
2 2power dissipated in the sinusoidal steady state is I R 2  = V  2 R   watts.  Alternatively the 

local instantaneous power density P = •E J  W  ⎡⎣ -3 
d m  ⎤⎦  can be integrated over the volume of the 

resistor to yield the total instantaneous power dissipated: 

2 2 2 p = ∫∫∫ E • J dv  = ∫∫∫ E • σE dv  = σ E  Ad   = σAv  d  =  v R [ ]W (3.1.6) 
V V

which is the expected answer, and where we used (2.1.17): J = σE . 

Surface charges reside on the end plates where the electric field is perpendicular to the 
perfect conductor.  The boundary condition n̂ • D = ρs  (2.6.15) suggests that the surface charge 
density ρs on the positive end-plate face adjacent to the conducting medium is: 

ρ = εE  C ⎡⎣ -2  ⎤s o m ⎦ (3.1.7)

The total static charge Q on the positive resistor end plate is therefore ρsA coulombs.  By 
convention, the subscript s distinguishes surface charge density ρs [C m-2] from volume charge 
density ρ [C m-3]. An equal negative surface charge resides on the other end-plate.  The total 
stored charged Q = ρsA = CV, where C is the device capacitance, as discussed further in Section 
3.1.3. 

The static currents and voltages in this resistor will produce fields outside the resistor, but 
these produce no additional current or voltage at the device terminals and are not of immediate 
concern here. Similarly, μ and ε do not affect the static value of R.  At higher frequencies, 
however, this resistance R varies and both inductance and capacitance appear, as shown in the 
following three sections. Although this static solution for charge, current, and electric field 
within the conducting portion of the resistor satisfies Maxwell’s equations, a complete solution 
would also prove uniqueness and consistency with H  and Maxwell’s equations outside the 
device. Uniqueness is addressed by the uniqueness theorem in Section 2.8, and approaches to 
finding fields for arbitrary device geometries are discussed briefly in Sections 4.4–6. 
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Example 3.1A 
Design a practical 100-ohm resistor.  If thermal dissipation were a problem, how might that 
change the design? 

Solution:	 Resistance R = d/σA (3.1.5), and if we arbitrarily choose a classic cylindrical shape 
with resistor length d = 4r, where r is the radius, then A = πr2 = πd2/16 and 
R = 16/πdσ = 100. Discrete resistors are smaller for modern low power compact 
circuits, so we might set d = 1 mm, yielding σ = 16/πdR = 16/(π10-3×100) ≅ 
51 S m-1. Such conductivities roughly correspond, for example, to very salty water or 
carbon powder. The surface area of the resistor must be sufficient to dissipate the 
maximum power expected, however.  Flat resistors thermally bonded to a heat sink 
can be smaller than air-cooled devices, and these are often made of thin metallic film. 
Some resistors are long wires wound in coils. Resistor failure often occurs where the 
local resistance is slightly higher, and the resulting heat typically increases the local 
resistance further, causing even more local heating. 

3.1.3 Capacitors 

Capacitors are two-terminal passive linear devices storing charge Q and characterized by their 
capacitance C [Farads], defined by: 

Q = Cv [Coulombs]	 (3.1.8) 

where v(t) is the voltage across the capacitor.  That is, one static volt across a one-Farad 
capacitor stores one Coulomb on each terminal, as discussed further below; this defines the 
Farad [Coulombs per volt]. 

The resistive structure illustrated in Figure 3.1.1 becomes a pure capacitor at low 
frequencies if the media conductivity σ → 0. Although some capacitors are air-filled with ε ≅ εo, 
usually dielectric filler with permittivity ε > εo is used. Typical values for the dielectric constant 
ε/εo used in capacitors are ~1-100.  In all cases boundary conditions again require that the 
electric field E  be perpendicular to the perfectly conducting end plates, i.e., to be in the ±z 
direction, and Faraday’s law requires that any line integral of E  from one iso-potential end plate 
to the other must equal the voltage v across the capacitor.  These constraints are again satisfied 
by a static uniform electric field E = ẑEo  within the medium separating the plates, which is 
uniform and charge-free. 

We shall neglect temporarily the effects of all fields produced outside the capacitor if its 
plate separation d is small compared to its diameter, a common configuration.  Thus Eo = v/d 
[V m-1] (3.1.2). The surface charge density on the positive end-plate face adjacent to the 
conducting medium is σs = εEo  [C m-2], and the total static charge Q on the positive end plate of 
area A is therefore: 

Q A s	 A Eo A v d  = σ = ε  = ε  = Cv [C] (3.1.9) 
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(a) (b)

i(t)
 i(t)+ + 

Q1  Q2 v(t) Qeq
v(t) C1 C2 Ceq = 

C1 + C2 

- -
Figure 3.1.2 Capacitors in parallel. 
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- -
Figure 3.1.3 Capacitors in series. 

Therefore, for a parallel-plate capacitor: 

C = εA d  F[ arads  ]  (parallel-plate capacitor) (3.1.10) 

Using (3.1.2) and the fact that the charge Q(t) on the positive plate is the time integral of the 
current i(t) into it, we obtain the relation between voltage and current for a capacitor: 

v t( ) = Q ( )t  ∫ ( )  (3.1.11)
−∞

C = ( )  
t 

1 C  i t dt  

i t( ) = C dv  ( t  )  dt  (3.1.12)

When two capacitors are connected in parallel as shown in Figure 3.1.2, they are equivalent 
to a single capacitor of value Ceq storing charge Qeq, where these values are easily found in terms 
of the charges (Q1, Q2) and capacitances (C1, C2) associated with the two separate devices. 

Because the total charge Qeq is the sum of the charges on the two separate capacitors, and 
capacitors in parallel have the same voltage v, it follows that: 

Qeq = Q1 + Q2 = (C1 + C2)v = Ceqv (3.1.13) 

Ceq = C1 + C2 (capacitors in parallel) (3.1.14) 
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When two capacitors are connected in series, as illustrated in Figure 3.1.3, then their two 
charges Q1 and Q2 remain equal if they were equal before current i(t) began to flow, and the total 
voltage is the sum of the voltages across each capacitor: 

Ceq
-1 = v/Q = (v1 + v2)/Q = C1

-1 + C2
-1 (capacitors in series) (3.1.15) 

The instantaneous electric energy density We [J m-3] between the capacitor plates is given by 
2Poynting’s theorem: We = ε E 2 (2.7.7). The total electric energy we stored in the capacitor is 

the integral of We over the volume Ad of the dielectric: 

2 2 2 [ ]2 )we = ∫∫∫ (ε E  2  dv  = εAd  E  2  = εAv  2d  = Cv  2  J  (3.1.16)
V 

The corresponding expression for the time-average energy stored in a capacitor in the sinusoidal 
steady state is: 

2 [ ]we = C V 4 J (3.1.17) 

The extra factor of two relative to (3.1.9) enters because the time average of a sinsuoid squared is 
half its peak value. 

To prove (3.1.16) for any capacitor C, not just parallel-plate devices, we can compute 
= ∫  where i dq  dt  and q Cv Therefore e (we 0

tiv dt  = = . w = ∫0
tC dv dt ) v dt = ∫0

vCv dv = Cv2 2 
in general. 

We can also analyze other capacitor geometries, such as the cylindrical capacitor illustrated 
in Figure 3.1.4.  The inner radius is “a”, the outer radius is “b”, and the length is D; its interior 
has permittivity ε. 

D 

b + 
va 
-

Figure 3.1.4 Cylindrical capacitor. 

The electric field again must be divergence- and curl-free in the charge-free regions between 
the two cylinders, and must be perpendicular to the inner and outer cylinders at their perfectly 
conducting walls. The solution can be cylindrically symmetric and independent of φ. A purely 
radial electric field has these properties: 
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E ( )r = r̂Eo r	 (3.1.18)

The electric potential Φ(r) is the integral of the electric field, so the potential difference v 
between the inner and outer conductors is: 

∫
b E b v = Φa − Φ  b =

o  dr = E ln r b = E ln ( ) [ ]V	o (3.1.19)
a r o a a 

This capacitor voltage produces a surface charge density ρs on the inner and outer 
conductors, where ρs = εE = εEo/r. If Φa > Φb, then the inner cylinder is positively charged, the 
outer cylinder is negatively charged, and Eo is positive.  The total charge Q on the inner cylinder 
is then: 

Q = ρ  2πaD  = εE 2πD   = εv 2  πD   ⎡⎣ln  (b a  s )⎤ =⎦ CCv [ ]o (3.1.20)

Therefore this cylindrical capacitor has capacitance C: 

C = ε2 πD   ⎡⎣ln  (b a )F⎤ [ ]⎦  (cylindrical capacitor) (3.1.21) 

In the limit where b/a → 1 and b - a = d, then we have approximately a parallel-plate capacitor 
with C → εA/d where the plate area A = 2πaD; see (3.1.10). 

Example 3.1B 
Design a practical 100-volt 10-8 farad (0.01 mfd) capacitor using dielectric having ε = 20εo and a 
breakdown field strength E  of 107 [V m-1

B ]. 

Solution:	 For parallel-plate capacitors C = εA/d (3.1.10), and the device breakdown voltage is 
EBd = 100 [V]. Therefore the plate separation d = 100/EB = 10-5 [m].  With a safety 
factor of two, d doubles to 2×10-5, so A = dC/ε = 2×10-5 × 10-8/(20 × 6.85×10-12) ≅ 
1.5×103 [m2]. If the capacitor is a cube of side D, then the capacitor volume is D3 = 
Ad and D = (Ad)0.333 = (1.5×10-3 × 2×10-5)0.333 ≅ 3.1 mm.  To simplify manufacture, 
such capacitors are usually wound in cylinders or cut from flat stacked sheets. 

3.2 Inductors and transformers 

3.2.1 Solenoidal inductors 

All currents in devices produce magnetic fields that store magnetic energy and therefore 
contribute inductance to a degree that depends on frequency.  When two circuit branches share 
magnetic fields, each will typically induce a voltage in the other, thus coupling the branches so 
they form a transformer, as discussed in Section 3.2.4. 
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To find the magnetic field from the currents we can use the integral form of Ampere’s law, 
which links the variables H  and J : 

∫ H ds = ∫ (J Dv • ∫ + ∂ ∂t ) • da (3.2.1)
C A 

The contour C1 around both currents in Figure 3.2.1 encircles zero net current, and (3.2.1) says 
the contour integral of H  around zero net current must be zero in the static case.  Contour C2 

encircles only the current i(t), so the contour integral of H  around any C2 in the right-hand sense 
equals i(t) for the static case.  The values of these two contour integrals are consistent with zero 
magnetic field outside the pair of plates and a constant field H = H o ŷ between them, although a 
uniform magnetic field could be superimposed everywhere without altering those integrals. 
Since such a uniform field would not have the same symmetry as this device, such a field would 
have to be generated elsewhere. These integrals are also exactly consistent with fringing fields at 
the edges of the plate, as illustrated in Figure 3.2.1(b) in the x-y plane for z > 0.  Fringing fields 
can usually be neglected if the plate separation d is much less than the plate width W. 

It follows that: 

v∫ H • ds = i ( )t  = H  o W  (3.2.2)
C2

H = ŷ Ho = ŷ i  ( )t  W ⎡⎣A m  -1⎤⎦ ( H  between the plates) (3.2.3) 

and H ≅ 0  elsewhere. 

contour C2W 

z 
D 

z = 0 

d 

i(t) 

i(t) 

da 

contour C1 

yx 

x = 
(a) (b) 

J 

Inductors are two-terminal passive devices specifically designed to store magnetic energy, 
particularly at frequencies below some design-dependent upper limit.  One simple geometry is 
shown in Figure 3.2.1 in which current i(t) flows in a loop through two perfectly conducting 
parallel plates of width W and length D, spaced d apart, and short-circuited at one end. 

contour C2 

H 0

Ho 

y
H 0= 

Figure 3.2.1 Parallel-plate inductor. 
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The voltage v(t) across the terminals of the inductor illustrated in Figures 3.2.1 and 3.2.2 can 
be found using the integral form of Faraday’s law and (3.2.3): 

∂ μDd di ( t )v∫  2	
E • ds = − t,z (3.2.4)

C ∂t ∫∫ μH • da = − = E ( )t,z dx = −v ( )  
A W  dt  ∫ x 1 

where z = D at the inductor terminals.  Note that when we integrate E  around contour C there is 
zero contribution along the path inside the perfect conductor; the non-zero portion is restricted to 
the illustrated path 1-2.  Therefore: 

μDd	v t( ) di ( )t di ( t ) = = L (3.2.5)W  dt  dt  

where (3.2.5) defines the inductance L [Henries] of any inductor.  Therefore L1 for a single-turn 
current loop having length W >> d and area A = Dd is: 

μDd μA L = 1 = [ ]H  (single-turn 	 wide inductor) (3.2.6)W W


To simplify these equations we define magnetic flux ψm as8: 


ψ = ∫∫ μH • da [Webers  = Vs] 	m (3.2.7) 
A 

Then Equations (3.2.4) and (3.2.7) become: 

v(t) = dψm (t)/dt (3.2.8) 

ψm (t) = L i(t) (single-turn inductor) (3.2.9) 

8 The symbol ψm for magnetic flux [Webers] should not be confused with Ψ for magnetic potential [Amperes]. 

( )H t

z 
D 

z = 0 

d 

i(t) 

i(t) 
x 

+v(t) 

- xE (t,z) 
da 

2 

1 

contour C 

Figure 3.2.2 Voltages induced on a parallel-plate inductor. 
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3.2.1 and 3.2.2, but with N times the intensity (A m-1) for the same terminal current i(t), and 
therefore the magnetic field Ho and flux ψm are also N times stronger than before.  At the same 
time the voltage induced in each turn is proportional to the flux ψm through it, which is now N 
times greater than for a single-turn coil (ψm = NiμA/W), and the total voltage across the inductor 
is the sum of the voltages across the N turns.  Therefore, provided that W >> d, the total voltage 
across an N-turn inductor is N2 times its one-turn value, and the inductance LN of an N-turn coil 
is also N2 greater than L1 for a one-turn coil: 

di ( t )( ) 2 di ( t )v t = LN = N  L  dt 1 (3.2.10) dt 

2 μA  L [ ]N =  H N  (N-turn solenoidal inductor) (3.2.11) W

where A is the coil area and W is its length; W >> 

The N-turn coil of Figure 3.2.3 duplicates the current flow geometry illustrated in Figures 

A  > d. 

Equation (3.2.11) also applies to cylindrical coils having W >> d, which is the most 
common form of inductor. To achieve large values of N the turns of wire can be wound on top 
of each other with little adverse effect; (3.2.11) still applies. 

These expressions can also be simplified by defining magnetic flux linkage Λ as the 
magnetic flux ψm (3.2.7) linked by N turns of the current i, where: 

Λ = Nψm = N(NiμA/W) = (N2μA/W)i = Li (flux linkage) (3.2.12) 

This equation Λ = Li is dual to the expression Q = Cv for capacitors.  We can use (3.2.5) and 
(3.2.12) to express the voltage v across N turns of a coil as: 

v = L di/dt = dΛ/dt (any coil linking magnetic flux Λ) (3.2.13) 

Since we assumed fringing fields could be neglected because W >> d, large single-turn 
inductors require very large structures.  The standard approach to increasing inductance L in a 
limited volume is instead to use multi-turn coils as illustrated in Figure 3.2.3. 

μ 

W 

D 

di(t)
+v(t) 

i(t) -

(a) (b) 

μ 
μo 

Figure 3.2.3 N-turn inductor: (a) solenoid, (b) toroid. 
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The net inductance L of two inductors L1 and L2 in series or parallel is related to L1 and L2 
in the same way two connected resistors are related: 

L = L1 + L2 (series combination) (3.2.14) 

L-1 = L -1
1  + L -1

2  (parallel combination) (3.2.15) 

For example, two inductors in series convey the same current i but the total voltage across the 
pair is the sum of the voltages across each – so the inductances add. 

Example 3.2A 
Design a 100-Henry air-wound inductor. 

Solution: 	 Equation (3.2.11) says L = N2μA/W, so N and the form factor A/W must be chosen. 
Since A = πr2 is the area of a cylindrical inductor of radius r, then W = 4r implies L = 
N2μπr/4. Although tiny inductors (small r) can be achieved with a large number of 
turns N, N is limited by the ratio of the cross-sectional areas of the coil rW and of the 
wire πr 2

w , and is N ≅ r2/r 2
w . N is further limited if we want the resistive impedance R 

<< jωL. If ωmin is the lowest frequency of interest, then we want R ≅ ωminL/100 = 
d/(σπr 2

w ) [see (3.1.5)], where the wire length d ≅ 2πrN. These constraints eventually 
yield the desired values for r and N that yield the smallest inductor.  Example 3.2B 
carries these issues further. 

3.2.2 Toroidal inductors 

The prior discussion assumed μ filled all space.  If μ is restricted to the interior of a solenoid, L 
is diminished significantly, but coils wound on a high-μ toroid, a donut-shaped structure as 
illustrated in Figure 3.2.3(b), yield the full benefit of high values for μ. Typical values of μ are 
~5000 to 180,000 for iron, and up to ~106 for special materials. 

Coils wound on high-permeability toroids exhibit significantly less flux leakage than 
solenoids.  Consider the boundary between air and a high-permeability material (μ/μo >>1), as 
illustrated in Figure 3.2.4. 

H ,B2 

2 //  H 1//  1//  B<<  H= 
1B μ >> μo

H2⊥ 
2

B1⊥ = B2⊥ μo 

B1// >> H1// 

Figure 3.2.4 Magnetic fields at high-permeability boundaries. 
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In contrast, B1 is nearly parallel to the boundary and is therefore largely trapped there, even if 
that boundary curves, as shown for a toroid in Figure 3.2.5.  The reason magnetic flux is largely 
trapped within high-μ materials is also closely related to the reason current is trapped within 
high-σ wires, as described in Section 4.3. 

The inductance of a toroidal inductor is simply related to the linked magnetic flux Λ by 
(3.2.12) and (3.2.7): 

μN∫∫ H • da ΛL = = A  (toroidal inductor) (3.2.16)i i 

where A is any cross-sectional area of the toroid.

 Computing H  is easier if the toroid is circular and has a constant cross-section A which is 
small compared to the major radius R so that R >> A . From Ampere’s law we learn that the 
integral of H  around the 2πR circumference of this toroid is: 

v∫ H • ds ≅ 2  πR H  ≅ Ni  (3.2.17)
C 

where the only linked current is i(t) flowing through the N turns of wire threading the toroid. 
Equation (3.2.17) yields H ≅ Ni/2πR and (3.2.16) relates H to L. Therefore the inductance L of 
such a toroid found from (3.2.16) and (3.2.17) is: 

μNA 2Ni μN A L ≅ = [Henries  ]  (toroidal inductor) (3.2.18)i 2πR  2πR  

The degree to which B  is parallel or perpendicular to the illustrated boundary has been 
diminished substantially for the purpose of clarity.  The boundary conditions are that both B⊥ 

and H//  are continuous across any interface (2.6.5, 2.6.11).  Since B = μH  in the permeable core 
and B = μo H  in air, and since H//  is continuous across the boundary, therefore B//  changes 
across the boundary by the large factor μ/μο. In contrast, B⊥  is the same on both sides. 
Therefore, as suggested in Figure 3.2.4, B2  in air is nearly perpendicular to the boundary 
because H// , and therefore⎯B2//, is so very small; note that the figure has been scaled so that the 
arrows representing⎯H2 and⎯B2 have the same length when μ = μ0. 

Cross-sectional area A 

μ >> μo, e.g. iron 
+ 
N turns 

v(t) 
-

B 
i(t) 

Figure 3.2.5 Toroidal inductor. 
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 Figure 3.2.6 Toroidal inductor with a small gap. 

The inductance of a high-permeability toroid is strongly reduced if even a small gap of 
width d exists in the magnetic path, as shown in Figure 3.2.6.  The inductance L of a toroid with 
a gap of width d can be found using (3.2.16), but first we must find the magnitude of Hμ within 
the toroid. Again we can use the integral form of Ampere’s law for a closed contour along the 
axis of the toroid, encircling the hole. 

v∫ H • ds ≅ ( 2πR  − d) H   μ + Hgd  ≅ Ni  (3.2.19) 
C 

where Hg is the magnitude of H within the gap.  Since B⊥  is continuous across the gap faces, 
μoHg = μHμ and these two equations can be solved for the two unknowns, Hg and Hμ. The 
second term Hgd can be neglected if the gap width d << 2πRμo/μ. In this limiting case we have 
the same inductance as before, (3.2.18).  However, if A0.5 > d >> 2πRμo/μ, then Hg ≅ Ni/d and: 

Λ ≅ ψ  [ ]L = i N m i ≅ μN  H A i  ≅ N2μoA do g  H  (toroid with a gap) (3.2.20)

Relative to (3.2.18) the inductance has been reduced by a factor of μo/μ and increased by a much 
smaller factor of 2πR/d, a significant net reduction even though the gap is small. 

Equation (3.2.20) suggests how small air gaps in magnetic motors limit motor inductance 
and sometimes motor torque, as discussed further in Section 6.3.  Gaps can be useful too. For 
example, if μ is non-linear [μ = f (H)], then L ≠ f (H) if the gap and μo dominate L.  Also, 
inductance dominated by gaps can store more energy when H exceeds saturation (i.e., 

2B 2μ 2
o � BSAT  2μ ). 

The inductance is proportional to μ, N2, and cross-sectional area A, but declines as the toroid 
major radius R increases.  The most compact large-L toroids are therefore fat (large A) with 
almost no hole in the middle (small R); the hole size is determined by N (made as large as 
possible) and the wire diameter (made small).  The maximum acceptable series resistance of the 
inductor limits N and the wire diameter; for a given wire mass [kg] this resistance is proportional 
to N2. 

2R
i(t) 

gap 
d[m] 

area A = πr2 

μ 

μo 
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3.2.3 Energy storage in inductors 

The energy stored in an inductor resides in its magnetic field, which has an instantaneous energy 
density of: 

2W t( ) = μ H m 2  J  ⎡⎣ m  -3 ⎤⎦ (3.2.21)

Since the magnetic field is uniform within the volume Ad of the rectangular inductor of Figure 
3.2.1, the total instantaneous magnetic energy stored there is: 

2 2 w [ ]m ≅ μAW  H  2  ≅ μAW  (i W  )2 2 ≅ Li  2  J  (3.2.22) 

That (3.2.22) is valid and exact for any inductance L can be shown using Poynting’s theorem, 
which relates power P = vi at the device terminals to changes in energy storage: 

t t i( ) ( )  2 w [ ]  m = ∫ v t i t dt = (3.2.23)
−∞ ∫ L ( di dt i dt 

−∞
) = ∫ Li di = Li 2 J 

0

Earlier we neglected fringing fields, but they store magnetic energy too.  We can compute 
them accurately using the Biot-Savart law (10.2.21), which is derived later and expresses H 
directly in terms of the currents flowing in the inductor: 

( )  ∫∫∫ [ ( ) ( )] 3 ⎤
V '  

⎡H r = dv  ' J  r '  × r − r ' ⎣4π r − r ' ⎦ (3.2.24) 

The magnetic field produced by current J (r ')  diminishes with distance squared, and therefore 
the magnitude of the uniform field H  within the inductor is dominated by currents within a 
distance of ~d of the inductor ends, where d is the nominal diameter or thickness of the inductor 
[see Figure 3.2.3(a) and assume d ≅ D << W].  Therefore H  at the center of the end-face of a 
semi-infinite cylindrical inductor has precisely half the strength it has near the middle of the 
same inductor because the Biot-Savart contributions to H  at the end-face arise only from one 
side of the end-face, not from both sides. 

The energy density within a solenoidal inductor therefore diminishes within a distance of ~d 
from each end, but this is partially compensated in (3.2.23) by the neglected magnetic energy 
outside the inductor, which also decays within a distance ~d.  For these reasons fringing fields 
are usually neglected in inductance computations when d << W.  Because magnetic flux is non-
divergent, the reduced field intensity near the ends of solenoids implies that some magnetic field 
lines escape the coil there; they are fully trapped within the rest of the coil. 

The energy stored in a thin toroidal inductor can be found using (3.2.21): 

2 wm ( ) π≅ μ H 2  A2  R  (3.2.25)
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The energy stored in a toroidal inductor with a non-negligible gap of width d can be easily found 
knowing that the energy storage in the gap dominates that in the high-permeability toroid, so 
that: 

w ≅ μ H 2 2 Ad  ≅ μ  (Ni  d  )2 Ad  2  ≅ Li  2 ( ) 	m  o g  o 2 (3.2.26)

Example 3.2B 
Design a practical 100-Henry inductor wound on a toroid having μ = 104μo; it is to be used for 
ω ≅ 400 [r s-1] (~60 Hz). How many Joules can it store if the current is one Ampere? If the 
residual flux density Br of the toroid is 0.2 Tesla, how does this affect design? 

Solution: 	 We have at least three unknowns, i,e., size, number of turns N, and wire radius rw, and 
therefore need at least three equations.  Equation (3.2.18) says L ≅ μN2A/2πRm where 
A = πr2. A fat toroid might have major radius Rm ≅ 3r, corresponding to a central 
hole of radius 2r surrounded by an iron torus 2r thick, yielding an outer diameter of 
4r. Our first equation follows: L = 100 ≅ μN2r/6. Next, the number N of turns is 
limited by the ratio of the cross-sectional area of the hole in the torus (π4r2) and the 
cross-sectional area of the wire πr 2

w ; our second equation is N ≅ 4r2/r 2
w . Although 

tiny inductors (small r) can be achieved with large N, N is limited if we want the 
resistive impedance R << ωL. If ωmin is the lowest frequency of interest, then we 
obtain our third equation, R ≅ ω 2

minL/100 = 400 = d/(σπrw ) [see (3.1.5)], where the 
wire length d ≅ 4πrN.  Eliminating r 2

w  from the second and third equation yields N2 ≅ 
400σr, and eliminating N2 from the first equation yields r = (600/400σμ)0.5 ≅ 1.5mm, 
where for typical wires σ ≅  5×107; the maximum diameter of this toroid is 8r ≅ 1.2 
cm. Since N2 ≅ 400σr, therefore N ≅ 5600, and rw ≅ 2r/ N ≅ 40 microns. 

We might suppose the stored energy wm = Li2/2 = 100×12/2 = 50 joules. However, if 
1 ampere flows through 5600 turns, and if H = 5600/2π3r = 5600/0.031 = 1.8×105 

[A m-1], then B = μH ≅ 2300 Tesla, well above the limit of Br = 0.2 Tesla where 
saturation was said to occur.  Since the incremental μo applies at high currents, this 
device is quite non-linear and the computed stored energy of 50J should be reduced 
by a factor of ~μo/μ to yield ~5 mJ.  If linearity and low loss (R<<ωL) are desired, 
either this toroid must be made much larger so that the upper limit on μH inside the 
toroid is not exceeded, or the maximum current must be reduced to the ~100 μA 
level. Moreover, a sinusoidal current of 1 ampere through this small 400-ohm 
resistance would dissipate 200 W, enough to damage it.  Note that if ωmin is increased 
by a factor of F, then r decreases by F0.5. 

- 79 -




 

3.2.4 Transformers 

Transformers are passive devices used to raise or lower the voltages of alternating currents or 
transients.  The voltage v across two terminals of any coil can be found using Faraday’s law 
(2.4.14): 

v∫ d E d• s  = − μ
C dt ∫∫ o H • da (3.2.27)

A 

which leads to the voltage across any N turns of a coil, as given by (3.2.13): 

v d  = Λ d t  (3.2.28)

where the flux linkage Λ = Nψm and the magnetic flux ψm within the cross-sectional area A of 
the coil is defined by (3.2.7): 

Ψ =m ∫∫ μH • da  [Webers = Vs  ] (3.2.29)
A 

Consider the ideal toroidal transformer of Figure 3.2.7.   

 

 

Cross-sectional area A 

μ >> μo ; e.g. iron 

+ 

N1 turns 

i1(t) 
-

N2 turns 
i2(t) 

-
+ 

⎯Hv2(t) 

v1(t) 

Figure 3.2.7 Toroidal transformer. 

Its high permeability traps the magnetic flux within it so that ψm is constant around the toroid, 
even though A varies. From (3.2.28) we see that the voltage vk across coil k is therefore: 

vk = Λd k dt  = N d  Ψ k m dt  (3.2.30)

The ratio between the voltages across two coils k = 1,2 is therefore: 

v v  = N 2 1  2  N1 (3.2.31)

where N2/N1 is the transformer turns ratio.

 If current i2 flows in the output coil, then there will be an added contribution to v1 and v2 due 
to the contributions of i2 to the original ψm from the input coil alone. Note that current flowing 
into the “+” terminal of both coils in the figure contribute to⎯H in the illustrated direction; this 
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various currents flowing through the windings.  Consider a simple toroid for which H, B, and the 
cross-sectional area A are the same everywhere around the average circumference πD.  In this  
case the voltage V1 across the N1 turns of coil (1) is: 

V1 = jωN1 (3.2.32)

Ψ = μHA (3.2.33)

H = (N1I1 + N2I2)/πD (3.2.34)

Therefore: 

V1 = jω[μAN1(N1I1 + N2I2)/πD] = jω(L11I1 + L12I2) (3.2.35) 

where the self-inductance L11 and mutual inductance L12 [Henries] are: 

L11 = μAN 2
1 /πD L12 = μAN1N2/πD (3.2.36) 

Equation (3.2.35) can be generalized for a two-coil transformer: 

⎡ V1 ⎤ ⎡L
= 11 L12 ⎤ ⎡ I1 ⎤ 

⎢ ⎥ ⎢V  ⎥ ⎢ ⎥ (3.2.37)
⎣ 2 ⎦ ⎣L21 L22 ⎦ ⎣ I 2 ⎦ 

distinguishes the positive terminal from the negative terminal of each coil.  If the flux coupling 
between the two coils is imperfect, then the output voltage is correspondingly reduced.  Any 
resistance in the wires can increment these voltages in proportion to the currents. 

Figure 3.2.8 suggests traditional symbols used to represent ideal transformers and some 
common configurations used in practice.  The polarity dot at the end of each coil indicates which 
terminals would register the same voltage for a given change in the linked magnetic flux.  In the 
absence of dots, the polarity indicated in (a) is understood.  Note that many transformers consist 
of a single coil with multiple taps.  Sometimes one of the taps is a commutator that can slide 
across the coil windings to provide a continuously variable transformer turns ratio.  As 
illustrated, the presence of an iron core is indicated by parallel lines and an auto-transformer 
consists of only one tapped coil. 

(a) (c) (d)(b) 

Figure 3.2.8 Transformer configurations:   
(a) air-core, (b) iron-core, (c) tapped, and (d) auto-transformer. 

The terminal voltages of linear transformers for which μ ≠ f(H) are linearly related to the 
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Consider the simple toroidal step-up transformer illustrated in Figure 3.2.9 in which the 
voltage source drives the load resistor R through the transformer, which has N1 and N2 turns on 
its input and output, respectively.  The toroid has major diameter D and cross-sectional area A. 

D 
I1 

area A 

+ 

-
Vs 

N1 turns 

I2 

RV2 

+ 

-
N2 turns 

μ 

μo 

ψm 

Figure 3.2.9 Toroidal step-up transformer loaded with resistor R. 

Combining (3.2.33) and (3.2.34), and noting that the sign of I2 has been reversed in the 
figure, we obtain the expression for total flux: 

Ψ = μA (N1I1 + N2I2)/πD (3.2.38) 

We can find the admittance seen by the voltage source by solving (3.2.38) for I1 and dividing by 
Vs: 

I1 = (πDΨ/μAN1) + I2 N2/N1 (3.2.39) 

Vs = jωN1Ψ = V2N1/N2 = I2RN1/N2 (3.2.40) 

I1/Vs = (πDΨ/μAN1)/jωN1Ψ + I2N2
2/(N1

2I2R) (3.2.41) 

= - jπD/(ωN1
2μA) + (N2/N1)2/R = 1/jωL11 + (N2/N1)2/R (3.2.42) 

Thus the admittance seen at the input to the transformer is that of the self-inductance (1/jωL11) in 
parallel with the admittance of the transformed resistance [(N2/N1)2/R].  The power delivered to 
the load is |V2|2/2R = |V1|2(N2/N1)2/2R, which is the time-average power delivered to the 
transformer, since |V2|2 = |V1|2(N2/N1)2; see (3.2.31). 

The transformer equivalent circuit is thus L11 in parallel with the input of an ideal 
transformer with turns ratio N2/N1. Resistive losses in the input and output coils could be 
represented by resistors in series with the input and output lines.  Usually jωL11 for an iron-core 
transformer is so great that only the ideal transformer is important. 

One significant problem with iron-core transformers is that the changing magnetic fields 
within them can generate considerable voltages and eddy currents by virtue of Ohm’s Law (⎯J = 
σ⎯E) and Faraday’s law: 
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v∫ E • ds  = − j ωμ
C ∫ H • da  (3.2.43) 

A

where the contour C circles each conducting  magnetic element.  A simple standard method for 
reducing the eddy currents⎯J and the associated dissipated power ∫V (σ|J|2/2)dv is to reduce the 
area A by laminating the core; i.e., by fabricating it with thin stacked insulated slabs of iron or 
steel oriented so as to interrupt the eddy currents.  The eddy currents flow perpendicular to⎯H, so 
the slab should be sliced along the direction of⎯H. If N stacked slabs replace a single slab, then 
A, E, and J are each reduced roughly by a factor of N, so the power dissipated, which is 
proportional to the square of J, is reduced by a factor of ~N2. Eddy currents and laminated cores 
are discussed further at the end of Section 4.3.3. 

3.3 Quasistatic behavior of devices 

3.3.1 Electroquasistatic behavior of devices 

The voltages and currents associated with all interesting devices sometimes vary.  If the 
wavelength λ = c/f associated with these variations is much larger than the device size D, no 
significant wave behavior can occur. The device behavior can then be characterized as 
electroquasistatic if the device stores primarily electric energy, and magnetoquasistatic if the 
device stores primarily magnetic energy.  Electroquasistatics involves the behavior of electric 
fields plus the first-order magnetic consequences of their variations.  The electroquasistatic 
approximation includes the magnetic field⎯H generated by the varying dominant electric field 
(Ampere’s law), where:  

∂D ∇×  H = σE + (3.3.1)
∂t 

The quasistatic approximation neglects the second-order electric field contributions from the 
time derivative of the resulting⎯H in Faraday’s law: ∇ × =E −μ ∂H  o / ∂t ≅ 0 . 

One simple geometry involving slowly varying electric fields is a capacitor charged to 
voltage V(t), as illustrated in Figure 3.3.1. It consists of two circular parallel conducting plates 
of diameter D and area A that are separated in vacuum by the distance d << D.  Boundary 
conditions require⎯E to be perpendicular to the plates, where E(t) = V(t)/d, and the surface 
charge density is given by (2.6.15): 

E • =n̂ ρ ε s / o = V  /  d  (3.3.2)

ρ =s εoV / d  [C m−2] (3.3.3)
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⎯E 

φ̂ H 
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-
V 

r−ρs 

Figure 3.3.1 Quasistatic electric and magnetic fields in a circular capacitor. 

Since the voltage across the plates is the same everywhere, so are⎯E and ρs, and therefore the 
total charge is: 

Q(t) ≅ ρsA ≅ (εoA/d)V = CV(t) (3.3.4) 

where C ≅ εoA/d is the capacitance, as shown earlier (3.1.10).  The same surface charge density 
ρs(t) can also be found by evaluating first the magnetic field⎯H(r,t) produced by the slowly 
varying (quasistatic) electric field⎯E(t), and then the surface current⎯Js(r,t) associated 
with⎯H(r,t); charge conservation then links⎯Js(r,t) to ρs(t). 

Ampere’s law requires a non-zero magnetic field between the plates where⎯J = 0: 

v∫C
H ds  •  = ε  o ∫∫  A′ (∂E ∂t ) • da (3.3.5) 

Symmetry of geometry and excitation requires that⎯H between the plates be in the φ̂ direction 
and a function only of radius r, so (3.3.5) becomes: 

2πr H(r) = εoπr2 dE/dt = (εoπr2/d) dV/dt (3.3.6) 

H(r) = (εor/2d) dV/dt (3.3.7) 

If V(t) and the magnetic field H are varying so slowly that the electric field given by Faraday’s 
law for H(r) is much less than the original electric field, then that incremental electric field can 
be neglected, which is the essence of the electroquasistatic approximation.  If it cannot be 
neglected, then the resulting solution becomes more wavelike, as discussed in later sections. 

The boundary condition n̂ ×⎯H =⎯Js (2.6.17) then yields the associated surface current⎯Js(r) 
flowing on the interior surface of the top plate: 

⎯Js(r) = r̂ (εor/2d) dV/dt = r̂ Jsr (3.3.8) 
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This in turn is related to the surface charge density ρs by conservation of charge (2.1.19), where 
the del operator is in cylindrical coordinates: 

∇ •⎯Js = -∂ρs/∂t = - r-1∂ (r Jsr)/∂r (3.3.9) 

Substituting Jsr from (3.3.8) into the right-hand side of (3.3.9) yields: 

∂ρs/∂t = (εo/d) dV/dt (3.3.10) 

Multiplying both sides of (3.3.10) by the plate area A and integrating over time then yields Q(t) 
= CV(t), which is the same as (3.3.4).  Thus we could conclude that variations in V(t) will 
produce magnetic fields between capacitor plates by virtue of Ampere’s law and the values of 
either D t  between the capacitor plates or∂ ∂ ⎯Js within the plates.  These two approaches to
finding⎯H (using D t∂ ∂  or⎯Js) yield the same result because of the self-consistency of 
Maxwell’s equations. 

Because the curl of⎯H in Ampere’s law equals the sum of current density⎯J and D t∂ ∂ , th e 
derivative D t∂ ∂  is often called the displacement current density because the units are the same, 
A/m2. For the capacitor of Figure 3.3.1 the curl of⎯H near the feed wires is associated only 
with⎯J (or I), whereas between the capacitor plates the curl of⎯H is associated only with 
displacement current. 

Section 3.3.4 treats the electroquasistatic behavior of electric fields within conductors and 
relaxation phenomena. 

3.3.2 Magnetoquasistatic behavior of devices 

All currents produce magnetic fields that in turn generate electric fields if those magnetic fields 
vary. Magnetoquasistatics characterizes the behavior of such slowly varying fields while 
neglecting the second-order magnetic fields generated by ∂D t∂  in Ampere’s law, (2.1.6): 

∇× H =  J + ∂D  ∂t ≅ J  (quasistatic Ampere’s law) (3.3.11)

The associated electric field⎯E can then be found from Faraday's law: 

∇× E =  −∂B  ∂t  (Faraday’s law) (3.3.12) 

Section 3.2.1 treated an example for which the dominant effect of the quasistatic magnetic 
field in a current loop is voltage induced via Faraday’s law, while the example of a short wire 
follows; both are inductors. Section 3.3.4 treats the magnetoquasistatic example of magnetic 
diffusion, which is dominated by currents induced by the first-order induced voltages, and 
resulting modification of the original magnetic field by those induced currents.  In every 
quasistatic problem wave effects can be neglected because the associated wavelength λ >> D, 
where D is the maximum device dimension. 
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We know from (3.2.23) that the inductance of any device can be expressed in terms of the 
magnetic energy stored as a function of its current i: 

L 2= w  2  [ ]m i H (3.3.13)

Therefore to estimate L we first estimate H  and wm. If the cylinder were infinitely long then 
H ≅ θ̂  H ( )r  must obey Ampere’s law and exhibit the same cylindrical symmetry, as suggested in 
the figure. Therefore: 

v∫ H • ds = 2  πr H   ( )r = i ( )t   (3.3.14)
C 

and H r  ( ) ≅ i  2  πr . Therefore the instantaneous magnetic energy density is: 

1 2 ( )  1= μoH r = μo (
2 W i  2  πr) ⎡⎣J/m  3 ⎤⎦ m (3.3.15)2 2 

To find the total average stored magnetic energy we must integrate over volume.  Laterally 
we can neglect fringing fields and simply integrate over the length D.  Integration with respect 
to radius will produce a logarithmic answer that becomes infinite if the maximum radius is 
infinite.  A plausible outer limit for r is ~D because the Biot-Savart law (1.4.6) says fields 
decrease as r2 from their source if that source is local; the transition from slow cylindrical field 
decay as r-1 to decay as r-2 occurs at distances r comparable to the largest dimension of the 
source: r ≅ D. With these approximations we find: 

We can roughly estimate the inductance of a short wire segment by modeling it as a 
perfectly conducting cylinder of radius ro and length D carrying a current i(t), as illustrated in 
Figure 3.3.2. An exact computation would normally be done using computer tools designed for 
such tasks because analytic solutions are practical only for extremely simple geometries.  In this 
analysis we neglect any contributions to⎯H from currents in nearby conductors, which requires 
those nearby conductors to have much larger diameters or be far away.  We also make the 
quasistatic assumption λ >> D. 

D 

r 

ro 

⎯H(r) 

i(t) 

θ z 

Figure 3.3.2 Inductance of an isolated wire segment. 
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D D	 2 
∫

D 1 i w ≅ m ∫ dz W m 2πr dr ≅ D ∫ μ o ( ) 2πr dr 
0	 ro ro 2 2πr (3.3.16) 

= μ( i  2 2
oD D4 lπ) n r  = ( μ D i  π) (4 ln  D r  [ ]ro  o  o ) J

Using (3.3.13) we find the inductance L for this wire segment is: 

≅ μ D  2  π) ln  (D  r  L ( o o ) [Hy  ] (3.3.17)

where the units “Henries” are abbreviated here as “Hy”.  Note that superposition does not apply 
here because we are integrating energy densities, which are squares of field strengths, and the 
outer limit of the integral (3.3.16) is wire length D, so longer wires have slightly more 
inductance than the sum of shorter elements into which they might be subdivided. 

3.3.3 Equivalent circuits for simple devices 

Section 3.1 showed how the parallel plate resistor of Figure 3.1.1 would exhibit resistance R = 
d/σA ohms and capacitance C = εA/d farads, connected in parallel.  The currents in the same 
device also generate magnetic fields and add inductance.  

Referring to Figure 3.1.1 of the original parallel plate resistor, most of the inductance will 
arise from the wires, since they have a very small radius ro compared to that of the plates.  This 
inductance L will be in series with the RC portions of the device because their two voltage drops 
add. The R and C components are in parallel because the total current through the device is the 
sum of the conduction current and the displacement current, and the voltages driving these two 
currents are the same, i.e., the voltage between the parallel plates.  The corresponding first-order 
equivalent circuit is illustrated in Figure 3.3.3. 

	

R 
+ -

CL 

Figure 3.3.3 Equivalent RLC circuit of a parallel-plate capacitor. 

Examination of Figure 3.3.3 suggests that at very low frequencies the resistance R 
dominates because, relative to the resistor, the inductor and capacitor become approximate short 
and open circuits, respectively.  At the highest frequencies the inductor dominates.  As f 
increases from zero beyond where R dominates, either the RL or the RC circuit first dominates, 
depending on whether C shorts the resistance R at lower frequencies than when L open-circuits 
R; that is, RC dominates first when R > L/C .  At still higher frequencies the LC circuit 
dominates, followed by L alone.  For certain combinations of R, L, and C, some transitions can 
merge. 
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Even this model for a resistor is too simple; for example, the wires also exhibit resistance 
and there is magnetic energy stored between the end plates because ∂D dt  ≠ 0 there. Since such 
parasitic effects typically become important only at frequencies above the frequency range 
specified for the device, they are normally neglected.  Even more complex behavior can result if 
the frequencies are so high that the device dimensions exceed ~λ/8, as discussed later in Section 
7.1. Similar considerations apply to every resistor, capacitor, inductor, or transformer 
manufactured.  Components and circuits designed for very high frequencies minimize unwanted 
parasitic capacitance and parasitic inductance by their very small size and proper choice of 
materials and geometry.  It is common for circuit designers using components or wires near their 
design limits to model them with simple lumped-element equivalent circuits like that of Figure 
3.3.3, which include the dominant parasitic effects.  The form of these circuits obviously depends 
on the detailed structure of the modeled device; for example, R and C might be in series. 

Example 3.3A 
What are the approximate values L and C for the100-Ω resistor designed in Example 3.1A if 
ε = 4εo, and what are the three critical frequencies (RC)-1, R/L, and (LC)-0.5? 

Solution:	 The solution to 3.1A said the conducting caps of the resistor have area A = πr2 = 
π(2.5×10-4)2, and the length of the dielectric d is 1 mm.  The permittivity ε = 4εo, so 
the capacitance (3.1.10) is C = εA/d = 4×8.85×10-12×π(2.5×10-4)2/10-3 ≅  7×10-15 

farads. The inductance L of this device would probably be dominated by that of the 
connecting wires because their diameters would be smaller and their length longer. 
Assume the wire length is D = 4d = 4×10-3, and its radius r is 10-4. Then (3.3.17) 
yields L ≅  (μoD/16π)ln(D/r) = (1.26×10-6 ×  4×10-3/16π)ln(40) = 
3.7×10-10 [Hy]. The critical frequencies R/L, (RC)-1, and (LC)-0.5 are 2.7×1011, 
6.2×1011, and 1.4×1012 [r s-1], respectively, so the maximum frequency for which 
reasonably pure resistance is obtained is ~10 GHz (~R/2πL4). 

3.4 General circuits and solution methods 

3.4.1 Kirchoff’s laws 

Circuits are generally composed of lumped elements or “branches” connected at nodes to form 
two- or three-dimensional structures, as suggested in Figure 3.4.1. They can be characterized by 
the voltages vi at each node or across each branch, or by the currents ij flowing in each branch or 
in a set of current loops. To determine the behavior of such circuits we develop simultaneous 
linear equations that must be satisfied by the unknown voltages and currents.  Kirchoff’s laws 
generally provide these equations. 

Although circuit analysis is often based in part on Kirchoff’s laws, these laws are imperfect 
due to electromagnetic effects.  For example, Kirchoff’s voltage law (KVL) says that the voltage 
drops vi associated with each lumped element around any loop must sum to zero, i.e.: 

∑ vi i = 0	 (Kirchoff’s voltage law [KVL]) (3.4.1) 
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which can be derived from the integral form of Faraday’s law: 

v∫ E • ds  = −( ∂  ∂  t ) w∫∫ B • da  (3.4.2)
C A 

This integral of E • ds  across any branch yields the voltage across that branch.  Therefore the 
sum of branch voltages around any closed contour is zero if the net magnetic flux through that 
contour is constant; this is the basic assumption of KVL. 

KVL is clearly valid for any static circuit.  However, any branch carrying time varying 
current will contribute time varying magnetic flux and therefore voltage to all adjacent loops plus 
others nearby.  These voltage contributions are typically negligible because the currents and loop 
areas are small relative to the wavelengths of interest (λ = c/f) and the KVL approximation then 
applies. A standard approach to analyzing circuits that violate KVL is to determine the magnetic 
energy or inductance associated with any extraneous magnetic fields, and to model their effects 
in the circuit with a lumped parasitic inductance in each affected current loop. 

The companion relation to KVL is Kirchoff’s current law (KCL), which says that the sum of 
the currents ij flowing into any node is zero: 

∑ i j = 0 (Kirchoff’s current law) (3.4.3) j

This follows from conservation of charge (2.4.19) when no charge storage on the nodes is 
allowed: 

(∂ ∂t ) ∫∫∫ ρ dv  = −  
V w∫∫ J • da (conservation of charge) (3.4.4) 

A

If no charge can be stored on the volume V of a node, then (∂ ∂t ) ∫∫∫ ρ dv  = 0, and there can be
V 

no net current into that node. 

For static problems, KCL is exact.  However, the physical nodes and the wires connecting 
those nodes to lumped elements typically exhibit varying voltages and D , and therefore have 

branches nodes 

v1 

i1 

-

v2 

i2 

current loop 

Figure 3.4.1 Circuit with branches and current loops. 
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capacitance and the ability to store charge, violating KCL.  If the frequency is sufficiently high 
that such parasitic capacitance at any node becomes important, that parasitic capacitance can be 
modeled as an additional lumped element attached to that node. 

3.4.2 Solving circuit problems 

To determine the behavior of any given linear lumped element circuit a set of simultaneous 
equations must be solved, where the number of equations must equal or exceed the number of 
unknowns. The unknowns are generally the voltages and currents on each branch; if there are b 
branches there are 2b unknowns. 

Figure 3.4.2(a) illustrates a simple circuit with b = 12 branches, p = 6 loops, and n = 7 
nodes. A set of loop currents uniquely characterizes all currents if each loop circles only one 
“hole” in the topology and if no additional loops are added once every branch in the circuit is 
incorporated in at least one loop.  Although other definitions for the loop currents can adequately 
characterize all branch currents, they are not explored here.  Figure 3.4.2(b) illustrates a bridge 
circuit with b = 6, p = 3, and n = 4. 

b = 12, p = 6, n = 7 

I 

a d 

b 

c 

1 2 

3 4 

5 

6 

(a) (b) 

Figure 3.4.2 12-branch circuit and bridge circuit.


The simplest possible circuit has one node and one branch, as illustrated in Figure 3.4.3(a).


b=1 p=1 b=3 

(a) (b) (c) 

n = p = 1 b = n = 2 n = p = 2 

Figure 3.4.3 Simple circuit topologies;   
n, p, and b are the numbers of nodes, loops, and branches, respectively. 

It is easy to see from the figure that the number b of branches in a circuit is: 

b = n + p – 1 (3.4.5) 
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As we add either nodes or branches to the illustrated circuit in any sequence and with any 
placement, Equation (3.4.5) is always obeyed.  If we add voltage or current sources to the circuit, 
they too become branches. 

The voltage and current for each branch are initially unknown and therefore any circuit has 
2b unknowns. The number of equations is also b + (n – 1) + p = 2b, where the first b in this 
expression corresponds to the equations relating voltage to current in each branch, n-1 is the 
number of independent KCL equations, and p is the number of loops and KVL equations; (3.4.5) 
says (n – 1) + p = b. Therefore, since the numbers of unknowns and linear equations match, we 
may solve them.  The equations are linear because Maxwell’s equations are linear for RLC 
circuits. 

Often circuits are so complex that it is convenient for purposes of analysis to replace large 
sections of them with either a two-terminal Thevenin equivalent circuit or Norton equivalent 
circuit. This can be done only when that circuit is incrementally linear with respect to voltages 
imposed at its terminals.  Thevenin equivalent circuits consist of a voltage source VTh(t) in series 
with a passive linear circuit characterized by its frequency-dependent impedance Z(ω) = R + jΧ, 
while Norton equivalent circuits consist of a current source INo(t) in parallel with an impedance 
Z(ω). 

An important example of the utility of equivalent circuits is the problem of designing a 
matched load  ZL(ω) = RL(ω) + jXL(ω) that accepts the maximum amount of power available 
from a linear source circuit, and reflects none. The solution is simply to design the load so its 
impedance ZL(ω) is the complex conjugate of the source impedance: 
ZL(ω) = Z*(ω).  For both Thevenin and Norton equivalent sources the reactance of the matched 
load cancels that of the source [XL(ω) = - X(ω)] and the two resistive parts are set equal, R = RL. 

One proof that a matched load maximizes power transfer consists of computing the time-
average power Pd dissipated in the load as a function of its impedance, equating to zero its 
derivative dPd/dω, and solving the resulting complex equation for RL and XL. We exclude the 
possibility of negative resistances here unless those of the load and source have the same sign; 
otherwise the transferred power can be infinite if RL = -R. 

Example 3.4A 
The bridge circuit of Figure 3.4.2(b) has five branches connecting four nodes in every possible 
way except one. Assume both parallel branches have 0.1-ohm and 0.2-ohm resistors in series, 
but in reverse order so that R1 = R4 = 0.1, and R2 = R3 = 0.2.  What is the resistance R of the 
bridge circuit between nodes a and d if R5 = 0?  What is R if R5 = ∞? What is R if R5 is 0.5 
ohms? 

Solution: When R5 = 0 then the node voltages vb = vc, so R1 and R3 are connected in parallel 
and have the equivalent resistance R13//. Kirchoff’s current law “KCL” (3.4.3) says 
the current flowing into node “a” is I = (va - vb)(R1

-1 + R3
-1). If Vab ≡ (va - vb), then 

Vab = IR13// and R13// = (R1
-1 + R3

-1)-1 = (10+5)-1 = 0.067Ω = R24//. These two circuits 
are in series so their resistances add: R = R13// + R24// ≅ 0.133 ohms.  When R5 = ∞, R1 
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and R2 are in series with a total resistance R12s of 0.1 + 0.2 = 0.3Ω = R34s.  These two 
resistances, R12s and R34s are in parallel, so R = (R12s

-1 + R34s 
-1)-1 = 0.15Ω. When R5 

is finite, then simultaneous equations must be solved.  For example, the currents 
flowing into each of nodes a, b, and c sum to zero, yielding three simultaneous 
equations that can be solved for the vector V = [v  , v  , v  ] ; we define vd = 0. Thusa b c 

(va - vb)/R1 + (va - vc)/R3 = I = va(R1
-1 + R3

-1) - vbR1
-1 -vcR3

-1 = 15va - 10vb - 5vc. KCL 
for nodes b and c similarly yield: -10va + 17vb - 2vc = 0, and -5va -2vb + 17vc = 0. If 
we define the current vector I  = [I, 0, 0], then these three equations can be written as 
a matrix equation: 

⎡ 15 −10 −5⎤ 

Gv = I , where G = ⎢
⎢−10  17  −2⎥

⎥ . 
⎢ −5 −2  17  ⎥⎣ ⎦ 

Since the desired circuit resistance between nodes a and d is R = va/I, we need only 
−1 

solve for va in terms of I, which follows from = Iv G , provided the conductance 
matrix G is not singular (here it is not).  Thus R = 0.146Ω, which is intermediate 
between the first two solutions, as it should be. 

3.5 Two-element circuits and RLC resonators 

3.5.1 Two-element circuits and uncoupled RLC resonators 

RLC resonators typically consist of a resistor R, inductor L, and capacitor C connected in series 
or parallel, as illustrated in Figure 3.5.1.  RLC resonators are of interest because they behave 
much like other electromagnetic systems that store both electric and magnetic energy, which 
slowly dissipates due to resistive losses.  First we shall find and solve the differential equations 
that characterize RLC resonators and their simpler sub-systems: RC, RL, and LC circuits.  This 
will lead to definitions of resonant frequency ωo and Q, which will then be related in Section 
3.5.2 to the frequency response of RLC resonators that are coupled to circuits. 

R 
C 

L 

i(t) 

(a) 
+ 

-

R CL
v(t) 

(b) 

Figure 3.5.1 Series and parallel RLC resonators. 

The differential equations that govern the voltages across R’s, L’s, and C’s are, respectively: 

vR = iR  (3.5.1) 
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vL = Ldi dt (3.5.2) 

vC = (1   C  ) ∫ i dt  (3.5.3) 

Kirchoff’s voltage law applied to the series RLC circuit of Figure 3.5.1(a) says that the sum of 
the voltages (3.5.1), (3.5.2), and (3.5.3) is zero: 

d 2i dt2 + (R L di dt + (1 LC i ) = 0 (3.5.4) 

where we have divided by L and differentiated to simplify the equation.  Before solving it, it is 
useful to solve simpler versions for RC, RL, and LC circuits, where we ignore one of the three 
elements. 

In the RC limit where L = 0 we add (3.5.1) and (3.5.3) to yield the differential equation: 

di dt + (1 RC i 

) 

) = 0 (3.5.5) 

This says that i(t) can be any function with the property that the first derivative is the same as the 
original signal, times a constant.  This property is restricted to exponentials and their sums, such 
as sines and cosines. Let's represent i(t) by Ioest, where: 

i t  ( ) = R st
e o{I  e  } (3.5.6) 

where the complex frequency s is: 

s ≡ α +  jω  (3.5.7)

We can substitute (3.5.6) into (3.5.5) to yield: 

Re{⎡s + (1 RC st
⎣ )⎤ I e } = ⎦ o 0 (3.5.8)

Since est is not always zero, to satisfy (3.5.8) it follows that s = - 1/RC and: 

i ( ) −(1 RC  t  t  = I e ) = I e−t τ 
o o  (RC current response) (3.5.9)

where τ equals RC seconds and is the RC time constant. Io is chosen to satisfy initial conditions, 
which were not given here. 

A simple example illustrates how initial conditions can be incorporated in the solution.  We 
simply need as many equations for t = 0 as there are unknown variables.  In the present case we 
need one equation to determine Io. Suppose the RC circuit [of Figure 3.5.1(a) with L = 0] was at 
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rest at t = 0, but the capacitor was charged to Vo volts. Then we know that the initial current Io at 
t = 0 must be Vo/R. 

In the RL limit where C = ∞ we add (3.5.1) and (3.5.2) to yield di/dt + (R/L)i = 0, which has 
the same form of solution (3.5.6), so that s = -R/L and: 

i t  ( ) = I e−(R L  t  ) = I e−t τ  (RL current response) (3.5.10)o o 

where the RL time constant τ is L/R seconds. 

In the LC limit where R = 0 we add (3.5.2) and (3.5.3) to yield: 

2d i  dt2 + (1 LC i  ) = 0 (3.5.11) 

Its solution also has the form (3.5.6).  Because i(t) is real and ejωt is complex, it is easier to 
assume sinusoidal solutions, where the phase φ and magnitude Io would be determined by initial 
conditions. This form of the solution would be: 

i t( ) = Io cos  (ω  + φot )  (LC current response) (3.5.12) 

where ωo = 2πfo is found by substituting (3.5.12) into (3.5.11) to yield [ωo
2 – (LC)-1]i(t) = 0, so: 

ω =  1 ⎡⎣ radians s -1⎤⎦  (LC resonant frequency) (3.5.13)o LC 

We could alternatively express this solution (3.5.12) as the sum of two exponentials using the 
ω ≡  j tω j t  )− ω  identity cos t (e + e 2 . 

RLC circuits exhibit both oscillatory resonance and exponential decay.  If we substitute the 
generic solution Ioest (3.5.6) into the RLC differential equation (3.5.4) for the series RLC 
resonator of Figure 3.5.1(a) we obtain: 

2  st  st  )(s + sR  L  +1 LC  I e  o = (s − s1 )(  s − s2 ) I e o = 0 (3.5.14) 

The RLC resonant frequencies s1 and s2 are solutions to (3.5.14) and can be found by solving this 
quadratic equation9 to yield: 

si = −R  2L  ± j⎡
⎣(1 LC  ) − (R  2L  )2 ⎤

⎦
0.5 

(series RLC resonant frequencies) (3.5.15) 

When R = 0 this reduces to the LC resonant frequency solution (3.5.13). 

9 A quadratic equation in x has the form ax2 + bx + c = 0 and the solution x = (-b ± [b2 - 4ac]0.5)/2a. 
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 The generic solution i t( ) = Io ′ e
st  is complex, where Io ′ ≡ Ioejφ: 


s t  jφ −(R 2L t  ) e jωt} = I e  −(R 2L t  ) cos  ω + φ 
( t ) (3.5.16)i t( ) = R {I ′ e 1 } = R {I e  ee o e o o 

where ω = [(LC)-1 + (R/2L)2]0.5 ≅ (LC)-0.5 . Io and φ can be found from the initial conditions, 
which are the initial current through L and the initial voltage across C, corresponding to the 
initial energy storage terms.  If we choose the time origin so that the phase φ = 0, the 
instantaneous magnetic energy stored in the inductor (3.2.23) is: 

2 2wm(t)  = Li  2 2 = (LI  o 2 e  ) −Rt L  cos  2 ωt = (LI  o 4 e  ) −Rt L  (1+ cos 2  ωt) (3.5.17) 

Because wm = 0 twice per cycle and energy is conserved, the peak electric energy we(t) stored in 
the capacitor must be intermediate between the peak magnetic energies stored in the inductor 
(eRt/LLIo

2/2) during the preceding and following cycles.  Also, since dvC/dt = i/C, the cosine 
variations of i(t) produce a sinusoidal variation in the voltage vC(t) across the capacitor. 
Together these two facts yield: we(t) ≅ (LIo

2/2)e-Rt/L sin2ωt.  If we define Vo as the maximum 
initial voltage corresponding to the maximum initial current Io, and recall the expression (3.1.16) 
for we(t), we find: 

2 2 −Rt L  2  ω =  t ( o2we(t)  = Cv  2  ≅ (CV 2 e  o ) −Rt  L  (1− cos 2  ωt ) (3.5.18)sin  CV 4 e  

Comparison of (3.5.17) and (3.5.18) in combination with conservation of energy yields: 

Vo ≅ (L C  )0.5 Io (3.5.19) 

Figure 3.5.2 illustrates how the current and energy storage decays exponentially with time 
while undergoing conversion between electric and magnetic energy storage at 2ω radians s-1; the 
time constant for current and voltage is τ = 2L/R seconds, and that for energy is L/R. 

One useful way to characterize a resonance is by the dimensionless quantity Q, which is the 
number of radians required before the total energy wT decays to 1/e of its original value, as 
illustrated in Figure 3.5.2(b).  That is: 

wT = wTo  e− α2 t  = wTo  e−ωt Q  [J] (3.5.20) 

The decay rate α for current and voltage is therefore simply related to Q: 

α = ω/2Q (3.5.21) 

) 
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wT = wTo e -(R/L)t

 = wm(t) + we(t) 

wm(t) 

we(t) 

Stored energy 

t0 

0 t 

i(t) 

Io e-(R/2L)t = Io e -αt 

(a) (b) 

wTo 

wTo/e 

Q radians, Q/ω seconds 

Figure 3.5.2 Time variation of current and energy storage in RLC circuits. 

If we find the power dissipated Pd [W] by differentiating total energy wT with respect to time 
using (3.5.20), we can then derive a common alternative definition for Q: 

Pd = −dw  T dt  = (ω Q) wT (3.5.22) 

Q = ωw P (one definition of Q) (3.5.23)T d  

For the series RLC resonator α = R/2L and ω ≅ (LC)-0.5, so (3.5.21) yields: 

Q = ω  α = ω  2  L R  ≅ (L C  )0.5 R (Q of series RLC resonator) (3.5.24) 

Figure 3.5.1(b) illustrates a parallel RLC resonator. KCL says that the sum of the currents 
into any node is zero, so: 

C dv dt + v R + (1 L ) ∫ v dt = 0 (3.5.25) 

2d v  dt2 + (1  RC  dv  dt  + (1 LC  ) v = 0 (3.5.26) 

If v = Voest, then: 

) 

L  C  )⎦⎤ = 0 (3.5.27)⎡s2 + (1 RC  s  + ()⎣ 
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s = −(1 2RC ) ± j⎣⎡(1 LC ) − (1 2RC )2 
⎦
⎤

0.5 
(parallel RLC resonance) (3.5.28) 

Analogous to (3.5.16) we find: 

s t  −(1 2RC  t  ) ( t ) (3.5.29)v(t) = R {V ′ e 1 } = V e cos ω  + φ  e o o 

where V ′ = V  e  jφ . It follows that for a parallel RLC resonator: o o 

ω = ⎡⎣(LC)−1 − (2RC )−2 ⎤⎦ 
0.5 

≅ (LC )−0.5 	 (3.5.30) 

RC  R C L  )0.5 (Q of parallel RLC resonator) (3.5.31)Q = ω  α = ω  2 = ( 

Example 3.5A 
What values of L and C would give a parallel resonator at 1 MHz a Q of 100 if R = 106/2π? 

Solution:	 LC = 1/ωo
2 = 1/(2π106)2, and Q = 100 = ωRC = 2π106(106/2π)C so C = 10-10 [F] and 

L = 1/ωo
2c ≅ 2.5×10-4 [Hy]. 

3.5.2 Coupled RLC resonators 

RLC resonators are usually coupled to an environment that can be represented by either its 
Thevenin or Norton equivalent circuit, as illustrated in Figure 3.5.3(a) and (b), respectively, for 
purely resistive circuits. 

(a)	 (b)
I(ω) I(ω) 

RTh + 
G CL

+ 

-

( )V ωNoI GNo 

R 

C 

L 

-

V(ω)+ 

-
ThV

Thevenin equivalent source Norton equivalent source 

Figure 3.5.3 Series and parallel RLC resonators   
driven by Thevenin and Norton equivalent circuits. 

A Thevenin equivalent consists of a voltage source VTh in series with an impedance 
ZTh = RTh + jX  Th , while a Norton equivalent circuit consists of a current source INo in parallel 
with an admittance YNo = GNo + jU  No  . The Thevenin equivalent of a resistive Norton 
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equivalent circuit has open-circuit voltage VTh = INo/GNo, and RTh = 1/GNo; that is, their open-
circuit voltages, short-circuit currents, and impedances are the same. No single-frequency 
electrical experiment performed at the terminals can distinguish ideal linear circuits from their 
Thevenin or Norton equivalents. 

An important characteristic of a resonator is the frequency dependence of its power 
dissipation. If RTh = 0, the series RLC resonator of Figure 3.5.3(a) dissipates: 

Pd = R [ ]2I 2 W 

(  )(  )
22 2 s s−2 2⎤

⎦
1 1  

ThV Th 1 2R  2  R  Ls  + C s = ⎣R  V  s  L  s s− −⎤ ⎡+ −⎦ 

(3.5.32) 

2Pd = ⎣
⎡ (3.5.33) 

where s1 and s2 are given by (3.5.15): 

si = −R  2L  ± j⎡⎣(1 LC  ) − (R  2L  )2 
⎦ 

0.5 
j ′ o (series RLC resonances)⎤ = −α ±  ω  (3.5.34) 

The maximum value of Pd is achieved when ω ≅ ω′ o : 

2 = 2R  (3.5.35)VThPd max  

This simple expression is expected since the reactive impedances of L and C cancel at ωo, 
leaving only R. 

If (1 LC  )� (R  2L  ) so that ω ≅ ω  ′ , then as ω - ωo increases from zero to α, | s  − s |  = o o 1 

| jω − ( j  ω + α)  |  increases from α to 2 α. This departure from resonance approximately o o 
doubles the denominator of (3.5.33) and halves Pd. As ω departs still further from ωo and 
resonance, Pd eventually approaches zero because the impedances of L and C approach infinity 
at infinite and zero frequency, respectively.  The total frequency response Pd(f) of this series 
RLC resonator is suggested in Figure 3.5.4. The resonator bandwidth or half-power bandwidth 
Δω is said to be the difference between the two half-power frequencies, or Δω ≅ 2α = R/L for 
this series circuit.  Δω is simply related to ωo and Q for both series and parallel resonances, as 
follows from (3.5.21): 

Q = ωo/2α = ωo/Δω (Q versus bandwidth) (3.5.36) 

Parallel RLC resonators behave similarly except that: 

si = −G  2L  ± j⎣⎡(1 LC  ) − (G  2L  )2 ⎤
⎦ 

0.5 
= −α ±  ω  j ′ o (parallel RLC resonances) (3.5.37) 

where R, L, and C in (3.5.34) have been replaced by their duals G, C, and L, respectively. 
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Pd 
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Δω 
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ω 

Figure 3.5.4 RLC power dissipation near resonance. 

Resonators reduce to their resistors at resonance because the impedance of the LC portion 
approaches zero or infinity for series or parallel resonators, respectively.  At resonance Pd is 
maximized when the source Rs and load R resistances match, as is easily shown by setting the 
derivative dPd/dR = 0 and solving for R.  In this case we say the resonator is critically matched 
to its source, for all available power is then transferred to the load at resonance. 

This critically matched condition can also be related to the Q’s of a coupled resonator with 
zero Thevenin voltage applied from outside, where we define internal Q (or QI) as corresponding 
to power dissipated internally in the resonator, external Q (or QE) as corresponding to power 
dissipated externally in the source resistance, and loaded Q (or QL) as corresponding to the total 
power dissipated both internally (PDI) and externally (PDE). That is, following (3.5.23): 

QI ≡ ωwT PDI   (internal Q) (3.5.38) 

QE ≡ ωwT PDE   (external Q) (3.5.39) 

QL ≡ ωwT (PDI + PDE )  (loaded Q) (3.5.40) 

Therefore these Q’s are simply related: 

QL 
−1 = QI 

−1 + QE 
−1 (3.5.41) 

It is QL that corresponds to Δω for coupled resonators (Q = ω Δω  ) .L o 

For example, by applying Equations (3.5.38–40) to a series RLC resonator, we readily 
obtain: 

QI = ωoL  R  (3.5.42) 
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QE = ωoL  R  Th  (3.5.43) 

QL = ωoL (RTh  + R ) (3.5.44) 

For a parallel RLC resonator the Q’s become: 

QI = ωoRC  (3.5.45) 

QE = ωoRTh  C (3.5.46) 

QL = ωoCR  ThR (RTh + R ) (3.5.47) 

Since the source and load resistances are matched for maximum power dissipation at 
resonance, it follows from Figure 3.5.3 that a critically coupled resonator or matched resonator 
results when QI = QE. These expressions for Q are in terms of energies stored and power 
dissipated, and can readily be applied to electromagnetic resonances of cavities or other 
structures, yielding their bandwidths and conditions for maximum power transfer to loads, as 
discussed in Section 9.4. 
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