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Preface

The initial development of electrical science and engineering a century ago occurred almost
entirely within the domain of electromagnetics. Most electrical curricula remained polarized
around that theme until the mid-twentieth century when signal, device, and computational
subjects became dominant. Continued expansion of the field has currently relegated
undergraduate electromagnetics to perhaps a one-semester subject even though electromagnetic
technology has expanded substantially and is basic to most applications. To meet the increasing
educational challenge of providing both breadth and depth in electromagnetics within a brief
presentation, this text uses a more physics-based approach and novel methods of explaining
certain phenomena. It introduces students to electrodynamics across the entire range from statics
to dynamics, and from motors to circuits, communications, optical fibers, and lasers. For
example, we currently cover approximately ninety percent of the text in a one-semester subject
meeting with faculty four hours per week. The text could also support undergraduate offerings
over two quarters or even two semesters, and could perhaps also be used at the entry graduate
level.

The main objectives of the text are to: 1) convey those big ideas essential to understanding
the electromagnetic aspects of modern electrical and computer systems, 2) expose students to
enough examples to make the big ideas tangible and erase most naiveté about dominant
applications, 3) provide computational experience with Maxwell’s equations sufficient to treat
the basic examples, 4) provide the understanding and skills prerequisite to follow-on subjects,
and 5) reinforce prior exposure to physics, mathematics, and electrical systems so as to help
integrate student learning, including problem solving and design methods.

The first two chapters are the core of the text. They review the basic physics of
electromagnetics and electromechanics and introduce the Lorentz force law, Maxwell’s
equations, media, boundary conditions, static field solutions, uniform plane waves, and power
and energy. Although the chapters are best read sequentially, the four topical areas that follow
the core can be read in any sequence and include: 1) Chapters 3, 5, and 6, which treat RLC
devices and circuits; electromagnetic forces on charges, conductors, and media; and motors, 2)
Chapters 4, 7, and 8, which treat quasistatics, solutions to Laplace’s equation, and TEM lines,
including matching, resonators, and transients, 3) Sections 4.1-4.3 plus Chapter 9, which treat
field relaxation, non-uniform plane waves, reflection, waveguides, and cavity resonators, and 4)
Chapters 10 and 11, which treat radiation, wire and aperture antennas, and applications such as
communications systems and radar. Two “capstone” chapters then follow: Chapter 12
introduces optical waveguides, laser amplifiers, laser oscillators, and other optical devices
(Chapters 9 and 11 are prerequisites), and Chapter 13 reviews most wave phenomena in an
acoustic context after Chapters 7, 9, and 10 have been covered. This organization permits use of
the text in a wide variety of formats, including one- and two-semester options. Most
prerequisites are reviewed briefly in the Appendix or within the text. Future versions will have
home problems and more examples.

Special thanks are owed to the many MIT faculty who have taught this subject and its three

merged predecessors while sharing their insights with the author over the past forty years.
Without such collegial participation the scope and brevity of this text would not have been

-iX -



possible. The sections on waves, optics, acoustics, resonators, and statics benefited particularly
from interactions with Professors Kong and Haus, Ippen and Bers, Stevens and Peake, Smullin,
and Haus and Zahn, respectively. Scott Bressler and Laura von Bosau have been particularly
helpful in reducing the graphics and text to the printed page.

This is a preliminary version of the final text and therefore any comments on content or
potential additions or corrections would be appreciated.

David H. Staelin

January 5, 2011



Chapter 1: Introduction to Electromagnetics and Electromagnetic
Fields

1.1 Review of foundations

1.1.1  Introduction

Electromagnetics involves the macroscopic behavior of electric charges in vacuum and matter.
This behavior can be accurately characterized by the Lorentz force law and Maxwell’s equations,
which were derived from experiments showing how forces on charges depend on the relative
locations and motions of other charges nearby. Additional relevant laws of physics include
Newton’s law, photon quantization, and the conservation relations for charge, energy, power,
and momentum. Electromagnetic phenomena underlie most of the “electrical” in “electrical
engineering” and are basic to a sound understanding of that discipline.

Electrical engineering has delivered four “miracles” — sets of phenomena that could each
be considered true magic prior to their development. The first of these to impress humanity was
the electrical phenomenon of lightning, often believed to be a tool of heaven, and the less
powerful magnetic force that caused lodestones to point north. The explanation and application
of these invisible forces during the eighteenth and nineteenth centuries vaulted electrical
engineering to the forefront of commercial interest as motors, generators, electric lights,
batteries, heaters, telephones, record players, and many other devices emerged.

The second set of miracles delivered the ability to communicate instantly without wires
around the world, not only dots and dashes, but also voice, images, and data. Such capabilities
had been commonplace in fairy tales, but were beyond human reach until Hertz demonstrated
radiowave transmission in 1888, 15 years after Maxwell’s predictions. Marconi extended the
technique to intercontinental distances.

Third came electronics and photonics — the ability to electrically manipulate individual
electrons and atoms in vacuum and in matter so as to generate, amplify, manipulate, and detect
electromagnetic signals. During the twentieth century vacuum tubes, diodes, transistors,
integrated circuits, lasers, and superconductors all vastly extended the capabilities and
applications of electromagnetics.

The fourth set of electrical phenomena involves cybernetics and informatics — the
manipulation of electrical signals so complex that entirely new classes of functionality are
obtained, such as optimum signal processing, computers, robotics, and artificial intelligence.
This text focuses on the electromagnetic nature of the first three sets of phenomena and explores
many of their most important applications.

Chapter 1 of this text begins with a brief review of the underlying laws of physics, followed
by the Lorentz force law and the nature of electric and magnetic fields. Chapter 2 introduces
electrodynamics and Maxwell’s equations, leading to uniform plane waves in space and media,
and definitions of power, energy, boundary conditions, and uniqueness. The next four chapters
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address static and quasistatic systems beginning with Chapter 3, which explores electromagnetics
in the context of RLC circuits and devices. Chapter 4 addresses the more general behavior of
quasistatic electric and magnetic fields in homogeneous and inhomogeneous media. Chapter 5
introduces electromagnetic forces while Chapter 6 addresses their application to motors,
generators, actuators, and sensors.

The second half of the text focuses on electrodynamics and waves, beginning with TEM
transmission lines in Chapters 7 and 8, and waves in media and at boundaries in Chapter 9.
Antennas and radiation are treated in Chapters 10 and 11, while optical and acoustic systems are
addressed in Chapters 12 and 13, respectively. Acoustics is introduced on its own merits and as
a useful way to review electromagnetic wave phenomena such as radiation and resonance in a
more physical and familiar context. The appendices list natural constants and review some of the
prerequisite mathematics.

The rationalized international system of units (rationalized SI units) is used, which largely
avoids factors of 4. SI units emphasize meters (m), kilograms (kg), seconds (s), Amperes (A),
and Kelvins (K); most other units can be expressed in terms of these. The SI system also favors
units in multiples of 10°; for example, it favors meters and millimeters over centimeters. The
algebraic convention used here is that operations within parentheses are performed before others.
Within parentheses and exponents and elsewhere, exponentiation is performed first, and
multiplication before division; all these operations are performed before addition and subtraction.

1.1.2  Review of basic physical concepts and definitions

The few basic concepts summarized below are central to electromagnetics. These concepts
include conservation of energy, power, and charge, and the notion of a photon, which conveys
one quantum of electromagnetic energy. In addition, Newton’s laws characterize the kinematics
of charged particles and objects influenced by electromagnetic fields. The conservation laws
also follow from Maxwell’s equations, which are presented in Section 2.1 and, together with the
Lorentz force law, compress all macroscopic electromagnetic behavior into a few concise
statements.

This text neglects relativistic issues introduced when mass approaches the velocity of light
or is converted to or from energy, and therefore we have conservation of mass: the total mass m
within a closed envelope remains constant.

Conservation of energy requires that the total energy wr [Joules] remains constant within
any system closed so that no power enters or leaves, even though the form of the internally
stored energy may be changing. This total energy wr may include electric energy w,, magnetic
energy W, thermal energy wrp, mechanical kinetic energy wy, mechanical potential energy wy,
and energy in chemical, atomic, or other forms Wother; Wother 18 neglected here. Conservation of
energy means:

WT = We + Wi + Wi + W, + Wrp + Womer [JOules] = constant (1.1.1)
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In this text we generally use lower case letters to indicate totals, and upper case letters to
indicate densities. Thus we represent total energy by wr [J] and total energy density by
Wr [J m™]. Similarly, f [N] denotes the total force on an object and F [N m™] denotes the force
density.

Unfortunately the number of electromagnetic variables is so large that many letters are used
in multiple ways, and sometimes the meaning must be extracted from the context. For example,
the symbol f is used to signify both force and frequency.

Newton’s law says that a one-Newton force f would cause an otherwise force-free kilogram
mass to accelerate at one meter per second per second; this defines the Newfon. One Newton is
roughly the terrestrial gravitational force on a quarter-pound weight (e.g. the weight of the apple
that allegedly fell on Newton’s head, prompting him to conceive the law of gravity). Newton’s
law may be expressed as:

f =ma [Newtons] (1.1.2)
where m is the mass of the object [kg] and a is the induced acceleration [ms™].

The unit of energy, the Joule, is the total energy wr delivered to an object when a force f of
one Newton is applied to it as it moves one meter in the direction z of the force. Therefore:

f:dcle_ZT (1.1.3)

The kinetic energy wy of a mass m moving at velocity v is:

Wi = %mvz [J] (1.1.4)

which, when added to its potential energy wy, equals its total energy wr relative to a motionless
reference position; i.e.:

W= Wi + Wp (1.1.5)

It is easy to see that if w, remains constant, then (1.1.3) and (1.1.4) are consistent with f = ma;
that is, f = dw1/dz = dwy/dz = mv dv/dz = m(dz/dt)(dv/dz) = m dv/dt = ma.

Conservation of power means, for example, that the total power Py, [Js"'] entering a closed
volume must equal the rate of increase [Js'] of the total energy stored there; that is:

dw

Py, [W] = dtT [Js] (1.1.6)

where dw1/dt is the time derivative of wr, and the units [Joules per second] are often replaced by
their equivalent, Watts [W]. If dwy/dt = 0, then the power flowing into a closed volume must
equal the power flowing out so that power is conserved. These laws also apply to
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electromagnetic power and energy, and their definition in terms of electromagnetic fields appears
in Section 2.7.

In mechanical systems one watt is delivered to an object if it received one joule in one
second. More generally the mechanical power P delivered to an object is P = fv [W], where f is
the only force [N] acting on the object, and v [ms™] is the object’s velocity in the same direction
as the force vector f. More generally,

P=fev=fvcosd [W] (1.1.7)

where v is the velocity vector and 0 is the angle between f and v.

Conservation of momentum requires that the total momentum of a set of interacting masses
m; remains constant if the set is free from external forces. The momentum of any object is mv
[kg ms™], so in a force-free environment:

d(Xmyv; )/de=0 (1.1.8)

Conservation of charge requires that the total electric charge Q inside any volume must
remain constant if no net charge crosses the boundaries of that volume. This is analogous to
conservation of mass, although nuclear and other processes can convert mass m to energy E and
vice-versa (E = mc?). Charge conservation, however, has no significant exceptions. Electric
charge 1s generally quantized in positive or negative multiples of the charge e on an electron,
where:

=-1.6021 x 10" Coulombs (1.1.9)

The unit of charge, one Coulomb, is the charge conveyed by one Ampere flowing for one
second, where the Ampere is the unit of electric current.

Photons carry the smallest unit of energy that can be conveyed by electromagnetic waves.
The energy E of a single photon is:

E =hf [J] (1.1.10)
where h is Planck’s constant (6.624x107>* [J s]) and f is the photon frequency [Hz]. Sometimes
it is more convenient to think of electromagnetic waves as continuous waves, and sometimes it is
more convenient to think of them as consisting of particles (photons), each of energy E. The
total power P conveyed by an electromagnetic wave at frequency f is therefore the number N of
photons passing per second times the photon energy E:

P =N hf [W] (1.1.11)

The frequency of a wave is simply related to its wavelength A and the velocity of light c:
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f=c/h (1.1.12)

Example 1.1A
A typical fully charged 1-kilowatt-hour car battery can accelerate a perfectly efficient 1000-kg

electric automobile to what maximum speed?

Solution: The battery energy we[J] equals 1000 watts times 3600 seconds (one kilowatt-hour).
It also equals the maximum kinetic energy, wi = mv>/2, of the speeding automobile
(mass = m = 1000, velocity = v) after the battery is totally drained. Therefore
Wi = 3.6x10° = v = 2wi/m)"’ = (7.2x10%1000)** = 85 m s = 190 mph.

Example 1.1B

A sunny day delivers ~1kw m™; to how many photons N per second per square meter does this
correspond if we (incorrectly) assume they all have the same wavelength A = 5x10” meters?
(0.5 microns is in the visible band.)?

Solution: Power = Nhf = Nhe/A = 1 kw, so N = 10°A/hc = 10°x5x107/(6.6x107*x3x10%) =
2.5x10* photons m™s™.

1.2 Forces and the measurement and nature of electromagnetic fields

Electric fields E and magnetic fields H are manifest only by the forces they exert on free or
bound electric charges q [Coulombs]. These forces are completely characterized by the Lorentz
force law:

f[N]= q(E+§x pOH) (Lorentz force law) (1.2.1)

Thus we can define electric field E (volts/meter) in terms of the observable force vector f:

E[v/m]=1/q (electric field)  (1.2.2)

for the special case of a charge q with velocity v=0.

Similarly we can define magnetic field H [A m™'] in terms of the observed force vector f
given by the Lorentz force equation when E =0; H can be sensed only by charges in motion
relative to the observer. Although a single measurement of force on a motionless charge suffices
to determine E, measurements of two charge velocity vectors v or current directions I are
required to determine H. For example, the arbitrary test charge velocity vector £v; yields f; =
quoviH sin®, where 0 is the angle between v and H in the £- plane (see Figure 1.2.1). The

A

unit vector y is defined as being in the observed direction fl X ;1 where fl defines the 2 axis.
A second measurement with the test charge velocity vector j v, yields f; = quovoH cosO. If vy =
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v, then the force ratio fi/f, = tan 0, yielding 6 within the X-J plane, plus the value of H: H =

fi/(quovy sin 0). There is no other physical method for detecting or measuring static electric or
magnetic fields; we can only measure the forces on charges or on charged bodies, or measure the
consequences of that force, e.g., by measuring the resulting currents.

—E
qO—=f=qE
C—>E

Motionless charge q Moving charge q with E =0

Figure 1.2.1 Measurement of electric and magnetic fields using charges.

It is helpful to have a simple physical picture of how fields behave so that their form and
behavior can be guessed or approximately understood without recourse to mathematical
solutions. Such physical pictures can be useful even if they are completely unrelated to reality,
provided that they predict all observations in a simple way. Since the Lorentz force law plus
Maxwell’s equations explain essentially all non-relativistic and non-quantum electromagnetic
behavior in a simple way using the fields E and H, we need only to ascertain how E and H
behave given a particular distribution of stationary or moving charges q.

First consider static distributions of charge. Electric field lines are parallel to E, and the
strength of E is proportional to the density of those field lines. Electric field lines begin on
positive charges and terminate on negative ones, and the more charge there is, the more field
lines there are. Field strength is proportional to lines per square meter. These lines pull on those
charges to which they are attached, whether positive or negative, much as would a rubber band.
Like rubber bands, they would also like to take the shortest path between two points, except that
they also tend to repel their neighbors laterally, as do the charges to which they are attached.

Figure 1.2.2 Electric field lines between two conducting cylinders.

Figure 1.2.2 illustrates the results of this mutual field-line repulsion, even as they pull opposite
charges on conducting cylinders toward one another. Later we shall see that such electric field
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lines are always perpendicular to perfectly conducting surfaces. Although these lines are
illustrated as discrete, they actually are a continuum, even if only two charges are involved.

The same intuition applies to magnetic field lines H. For example, Figure 1.2.2 would
apply if the two cylinders corresponded instead to the north (+) and south (-) poles of a magnet,
and if E became H, although H need not emerge perfectly perpendicular to the magnet surface.
In this case too the field lines would physically pull the two magnet poles toward one another.
Both electric and magnetic motors can be driven using either the attractive force along field lines
or the lateral repulsive force between lines, depending on motor design, as discussed later.

Another intuitive picture applies to time-dependent electromagnetic waves, where
distributions of position-dependent electric and magnetic fields at right angles propagate as plane
waves in the direction E x H much like a rigid body at the speed of light ¢, ~3x10°® m/s.
Because electromagnetic waves can superimpose, it can be shown that any distribution of electric
and magnetic fields can be considered merely as the superposition of such plane waves. Such
plane waves are introduced in Section 2.2. If we examine such superpositions on spatial scales
small compared to a wavelength, both the electric and magnetic fields behave much as they
would in the static case.

Example 1.2A

A typical old vacuum tube accelerates electrons in a ~10* v m™ electric field. What is the
resulting electron velocity v(t) if it starts from rest? How long (t) does it take the electron to
transit the 1-cm tube?

Solution: Force f=ma = qE, and so v = at = gEt/m = 1.6x10™"x10* t/(9.1x107%) = 1.8x10"* t
[ms”]. Obviously v cannot exceed the speed of light ¢, ~3x10° m/s. In this text we
deal only with non-relativistic electrons traveling much slower than c. Distance
traveled = d = at®/2 = 0.01, so the transit time © = (2d/a)’’ = (de/qE)O'5 =
[2x0.01x9.1x10%/(1.6x107x10%)]%° = 1.1x107 seconds. This slow transit limited
most vacuum tubes to signal frequencies below several megahertz, although smaller
gaps and higher voltages have enabled simple tubes to reach 100 MHz and higher.
The microscopic gaps of semiconductors can eliminate transit time as an issue for
most applications below 1 GHz; other phenomena often determine the frequency
range instead.

1.3  Gauss’s Law and electrostatic fields and potentials

While the Lorentz force law defines how electric and magnetic fields can be observed,
Maxwell’s four equations explain how these fields can be created directly from charges and
currents, or indirectly and equivalently from other time varying fields. One of those four
equations is Gauss’s Law for charge, which states that the total charge Q [Coulombs] within
volume V equals the integral of the normal component of the electric displacement vector D
over the surface area A of that volume:
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Cﬁ)A(B oi)da = mvp dv=Q (Gauss’s Law for charge)  (1.3.1)

In vacuum:
D=¢,E (1.3.2)

where the permittivity of vacuum g, = 8. 854x10"? Farads/m. Equation (1.3.1) reveals the
dimensions of D: Coulombs/m?, often abbreviated here as [C/m’].

A few simple examples illustrate typical electric fields for common charge distributions, and
how Gauss’s law can be used to compute those fields. First consider a sphere of radius R
uniformly filled with charge of density p, [C/m’], as illustrated in Figure 1.3.1(a).

(a) (b)
sphere, radius R cylinder, radius R
— Ay :
S - §urface area = 4mr Wi surface area = 2TRW

N ?’;}L)

/ \ *,/ E(r) o I/r,r >R

- - Charge = A [C/m]

Figure 1.3.1 Electric fields E(r) produced by uniformly charged spheres and cylinders.

The symmetry of the solution must match the spherical symmetry of the problem, so E must be
independent of 0 and ¢, although it can depend on radius r. This symmetry requires that E be
radial and, more particularly:

E(1,0,0) = fE(r) [V/m] (1.3.3)

We can find E(r) by substituting (1.3.3) into (1.3.1). First consider r > R, for which (1.3.1)
becomes:

4nr’e, B(r) = (4/3)nR’po = Q (1.3.4)

E0)=tg S _ (r>R) (13.5)

Inside the sphere the same substitution into (1.3.1) yields:

4nr’eo E(r) = (4/3)nr’po (1.3.6)
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E(r) = £ por/3€, [V/m] (r<R) (1.3.7)

It is interesting to compare this dependence of E on r with that for cylindrical geometries,
which are also illustrated in Figure 1.3.1. We assume a uniform charge density of p, within
radius R, corresponding to A coulombs/meter. Substitution of (1.3.4) into (1.3.1) yields:

2mrWe, E(r) = nR*p,W = AW [C] (r>R) (1.3.8)
_ A R%p
= T = T 0
E(r) r2n80r 3 2r [V/m] (r>R) (1.3.9)

Inside the cylinder (r < R) the right-hand-side of (1.3.9) still applies, but with R? replaced with r?,
so E(r) = frpo/2¢, instead.

To find the voltage difference, often called the difference in electrical potential ® or the
potential difference, between two points in space [V], we can simply integrate the static electric
field Eef [V/m] along the field line E connecting them. Thus in the spherical case the voltage
difference ®(r;) - O(r2) between points at r; and at r; > 1) is:

O(r) - O(r) = [*Eedr =2 [* Lpegr=-—L_2=_Q (i-iJ V] (13.10)
5 N op

2=
dme, Iy dne,r i dne,\np 1

If we want to assign an absolute value to electrical potential or voltage V at a given location, we
usually define the potential ®@ to be zero at r, = o0, so a spherical charge Q produces an electric
potential @(r) for r > R which is:

®(r) = Q/dneyr [V] (1.3.11)

The same computation for the cylindrical charge of Figure 1.3.1 and the field of (1.3.9)
yields:

@(m)-@(rz)ﬂfﬁodf: A j&%f.cﬁ: Alnrpn,_ A

A
Pmeg I 2me, I - In(r,/17) (1.3.12)

A third simple geometry is that of charged infinite parallel conducting plates separated by
distance d, where the inner-facing surfaces of the upper and lower plates have surface charge
density +ps and -p, [C/m*], respectively, as illustrated in Figure 1.3.2 for finite plates. The
uniformity of infinite plates with respect to x, y, and ¢ requires that the solution E also be
independent of x, y, and ¢. The symmetry with respect to ¢ requires that E point in the +z
direction. Gauss’s law (1.3.1) then requires that E be independent of z because the integrals
of D over the top and bottom surfaces of any rectangular volume located between the plates
must cancel since there is no charge within such a volume and no D passing through its sides.
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+V volts
+ps [C/m?
AreaA\\ \/ ps [C/m’]

i

0 volts

Figure 1.3.2 Electric field between parallel plates.

This solution for E is consistent with the rubber-band model for field lines, which suggests
that the excess positive and negative charges will be mutually attracted, and therefore will be
pulled to the inner surfaces of the two plates, particularly if the gap d between the plates is small
compared to their width. Gauss’s Law (1.3.1) also tells us that the displacement vector D
integrated over a surface enclosing the entire structure must be zero because the integrated
charge within that surface is zero; that is, the integrated positive charge, psA, balances the
integrated negative charge, - p;A and D external to the device can be zero everywhere. The
electric potential difference V between the two plates can be found by integrating E between the
two plates. That is, V = E,d volts for any path of integration, where E, = py/e, by Gauss’s law.

Although the voltage difference between equipotentials can be computed by integrating
along the electric field lines themselves, as done above, it is easy to show that the result does not
depend on the path of integration. Assume there are two different paths of integration P, and P,
between any two points of interest, and that the two resulting voltage differences are V; and V.
Now consider the closed contour C of integration that is along path P; in the positive direction
and along P, in the reverse direction so as to make a closed loop. Since this contour integral
must yield zero, as shown below in (1.3.13) using Faraday’s law for the static case where 0/0t =
0, it follows that V| = V, and that all paths of integration yield the same voltage difference.

Vl-vzszIE-dg i jPZE-dg = § Eeds = -%”AE-dE -0 (13.13)

In summary, electric fields decay as 1/r* from spherical charge concentrations, as 1/r from
cylindrical ones, and are uniform in planar geometries. The corresponding electric potentials
decay as 1/r, -In r, and x, respectively, as a result of integration over distance. The potential @
for the cylindrical case becomes infinite as r—oo because the cylinder is infinitely long; the
expression for the potential difference between concentric cylinders of finite radius is valid,
however. Within both uniform spherical and cylindrical charge distributions the electric field
increases from zero linearly with radius r. In each case the electric field distribution is explained
by the rubber-band model in which the rubber bands (field lines) repel each other laterally while
being pulled on by opposite electric charges.

It is extremely useful to note that Maxwell’s equations are linear, so that superposition
applies. That is, the total electric field E equals that due to the sum of all charges present, where
the contribution to E from each charge Q is given by (1.3.5). Electric potentials @ also
superimpose, where the contribution from each charge Q is given by (1.3.11).

-20 -



1.4 Ampere’s Law and magnetostatic fields

The relevant Maxwell’s equation for static current densities T_[A/mz] 1s Ampere’s law, which
says that for time-invariant cases the integral of magnetic field H around any closed contour in a
right-hand sense equals the area integral of current density J [A/m’] flowing through that
contour:

C_[)cﬁodizﬂATodE (1.4.1)

Figure 1.4.1 illustrates a simple cylindrical geometry for which we can readily compute H
produced by current I; the radius of the cylinder is R and the uniform current density flowing
through it is J, [A/m?]. The cylinder is infinitely long.

:.' d§ ,/, .
r X

Jo [am G - \ )
— H(r) c 1/r,r >R N and i
Current=1[A] '2R"' ¢hd VIew

Circumference = 2ntr

Figure 1.4.1 Magnetic field produced by a uniform cylindrical current.

Because the problem is cylindrically symmetric (not a function of 0), and uniform with
respect to the cylindrical axis z, so is the solution. Thus H depends only upon radius r.
Substitution of H(r) into (1.4.1) yields:

21 — A 2w ¢R
jO”H(r) «drdo = jonjo J,rdrdo=1J nR? =1[A] (1.4.2)

where the total current I is simply the uniform current density J, times the area mR” of the
cylinder. The left-hand-side of (1.4.2) simply equals H(r) times the circumference of a circle of
radius r, so (1.4.2) becomes:

2
~ b J,mR

T — 1
H(r) =06 2mr 2mr

[A/m] (r>R) (1.4.3)

Within the cylindrical wire where r <R, (1.4.2) becomes:
2
H(r)2mr = [ 7 [ Vo rdrdo =’ (1.4.4)

H(r)= 8J,/2 [A/m] (r<R) (1.4.5)
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Therefore H(r) increases linearly with r within the wire and current distribution, and is
continuous at r = R, where both (1.4.3) and (1.4.5) agree that H(r) = J,R/2.

Another simple geometry involves parallel plates. Assume equal and opposite current
densities, Js [A/m], flow in infinite parallel plates separated by distance d, as illustrated in Figure
1.4.2 for finite plates. The integral of Ampere’s law (1.4.1) around any contour C; circling both
plates is zero because the net current through that contour is zero. A non-zero integral would
require an external source of field, which we assume does not exist here. Thus H above and
below the plates is zero. Since the integral of (1.4.1) around any contour C, that circles the
upper plate yields HyW = J;W, where the x component of the magnetic field anywhere between
the plates is Hy = J; [A/m]; thus the magnetic field H between the plates is uniform. An integral
around any contour in any y-z plane would circle no net current, so H, = 0, and a similar
argument applies to Hy, which is also zero. This configuration is discussed further in Section
3.2.1.

= = A
I, [A/mﬁ

Figure 1.4.2 Static magnetic field between parallel plates.

More generally, because Maxwell’s equations are linear, the total magnetic field H at any
location is the integral of contributions made by current densities J nearby. Section 10.1 proves
the Biot-Savart law (1.4.6), which defines how a current distribution J' at position r' within
volume V' contributes to H at position r:

A = [[], Tx(T- r)d' (Biot-Savart law)  (1.4.6)
An|T-T

To summarize, electric and magnetic fields are simple fictions that explain all
electromagnetic behavior as characterized by Maxwell’s equations and the Lorentz force law,
which are examined further in Chapter 2. A simple physical model for the static behavior of
electric fields is that of rubber bands that tend to pull opposite electric charges toward one
another, but that tend to repel neighboring field lines laterally. Static magnetic fields behave
similarly, except that the role of magnetic charges (which have not been shown to exist) is
replaced by current loops acting as magnetic dipoles in ways that are discussed later.
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Chapter 2: Introduction to Electrodynamics

2.1  Maxwell’s differential equations in the time domain

Whereas the Lorentz force law characterizes the observable effects of electric and magnetic
fields on charges, Maxwell’s equations characterize the origins of those fields and their
relationships to each other. The simplest representation of Maxwell’s equations is in differential

form, which leads directly to waves; the alternate integral form is presented in Section 2.4.3.

The differential form uses the vector del operator V:

\%

~0 , ~0  ,0
x8X+y6y+282 (2.1.1)

where X, §, and Z are defined as unit vectors in cartesian coordinates. Relations involving V
are summarized in Appendix D. Here we use the conventional vector dot product' and cross
product’ of V with the electric and magnetic field vectors where, for example:

E=3%E, +JEy +2E, (2.1.2)
—_ OE, OE, OE

VeE=—X+_YL 42 1.
oE - (2.1.3)

We call V oE the divergence of E because it is a measure of the degree to which the vector
field E diverges or flows outward from any position. The cross product is defined as:

= OE OF
VxE zx[aEZ——ij(aEx_@Ezju[ y_aExj

dy oz 0z X Ox oy

x y Z (2.1.4)
=det|d/ox oloy Ofoz

E, Ey E

which is often called the curl of E. Figure 2.1.1 illustrates when the divergence and curl are
zero or non-zero for five representative field distributions.

" The dot product of A and B can be defined as AeB=ABx +AyBy +A;B; = |AllBI cos 0, where 0 is the
angle between the two vectors. _ _

2 The cross product of A and B can be defined as AxB= ji(AyBZ —AZBy)+ 9(A,Bx —AxB,)+
2 (AXBy - AyBy ) ; its magnitude is [l eIBlsin®. Alternatively, A x B =det|[A\,Ay,A,],[B.B,.B,L[X, J, 2 ]I.
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curl E=0 curl E#0

Figure 2.1.1 Fields with zero or non-zero divergence or curl.

The differential form of Maxwell’s equations in the time domain are:

VxE=—%3 Faraday’s Law (2.1.5)
Vxﬁ:j+%) Ampere’s Law (2.1.6)
VeD=p Gauss’s Law (2.1.7)
VeB=0 Gauss’s Law (2.1.8)

The field variables are defined as:

E electric field [volts/meter; Vm™'] (2.1.9)
H magnetic field [amperes/meter; Am™']  (2.1.10)
B magnetic flux density [Tesla; T] (2.1.11)
D electric displacement [coulombs/m?; Cm™]  (2.1.12)
1 electric current density [amperes/m’; Am™]  (2.1.13)
p electric charge density [coulombs/m’; Cm™]  (2.1.14)

These four Maxwell equations invoke one scalar and five vector quantities comprising 16
variables. Some variables only characterize how matter alters field behavior, as discussed later
in Section 2.5. In vacuum we can eliminate three vectors (9 variables) by noting:
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D=¢,E (constitutive relation for D) (2.1.15)

asf

B Ho (constitutive relation for B)  (2.1.16)

J=pv=cE (constitutive relation for J)  (2.1.17)

where &, = 8.8542x10™" [farads m™] is the permittivity of vacuum, p, = 47x107 [henries m™'] is
the permeability of vacuum’®, v is the VCIOClty of the local net charge density p, and o is the
conductivity of a medium [Siemens m™]. If we regard the electrical sources p and J as given,
then the equations can be solved for all remaining unknowns. Specifically, we can then find E
and H, and thus compute the forces on all charges present. Except for special cases we shall

avoid solving problems where the electromagnetic fields and the motions of p are
interdependent.

The constitutive relations for vacuum, D:SOE and E:uoﬁ, can be generalized to

D=¢E ,B= pﬁ , and J=cE for simple media. Media are discussed further in Section 2.5.

Maxwell’s equations require conservation of charge. By taking the divergence of Ampere’s
law (2.1.6) and noting the vector identity Ve(VxA) =0, we find:

v-(wﬁ):ozv-%[)w oJ (2.1.18)

Then, by reversing the sequence of the derivatives in (2.1.18) and substituting Gauss’s law
VeD=p (2.1.7), we obtain the differential expression for conservation of charge:

Vel=—"22 (conservation of charge) (2.1.19)

The integral expression can be derived from the differential expression by using Gauss'’s
divergence theorem, which relates the integral of V G over any volume V to the integral of

Gei over the surface area A of that volume, where the surface normal unit vector 2 points
outward:

H v VeG dv= Cﬁ)A Genida (Gauss’s divergence theorem)  (2.1.20)
Thus the integral expression for conservation of charge is:

%J:”V pdv= —@Ajo i da (conservation of charge)  (2.1.21)

* The constant 47 x 107 is exact and enters into the definition of an ampere.
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which says that if no net current J flows through the walls A of a volume V, then the total charge
inside must remain constant.

Example 2.1A
If the electric field in vacuum is E = £E cos(wt —ky), what is H?

Solution: From Faraday’s law (2.1.5): po( aﬁ/at) = -(VxE) = 20E,/0y = 2KE, sin (ot-ky),
using (2.1.4) for the curl operator. Integration of this equation with respect to time
yields: H=—2(kE,/u,0)cos(wt—ky).

Example 2.1B
Does the electric field in vacuum E = %E, cos(ot—kx) satisfy Maxwell’s equations? Under

what circumstances would this E satisfy the equations?

Solution: This electric field does not satisfy Gauss’s law for vacuum, which requires
VeD=p=0. It satisfies Gauss’s law only for non-zero charge density:
p=VeD=¢g,0E,/ox = 0[g,E, cos(mt —kx)|/ox = ke E, sin(wt —kx) # 0. To satisfy
the remaining Maxwell equations and conservation of charge (2.1.19) there must also
be a current J#0 corresponding to p:J =oE = £6E, cos (ot —kx), where (2.1.17)
simplified the computation.

2.2 Electromagnetic waves in the time domain

Perhaps the greatest triumph of Maxwell’s equations was their ability to predict in a simple way
the existence and velocity of electromagnetic waves based on simple laboratory measurements of
the permittivity and permeability of vacuum. In vacuum the charge density p = J = 0, and so
Maxwell’s equations become:

= oH

VxE =-n, F (Faraday’s law in vacuum) (2.2.1)
VxH= € %E (Ampere’s law in vacuum) (2.2.2)
VeE=0 (Gauss’s law in vacuum) (2.2.3)
VeH=0 (Gauss’s law in vacuum) (2.2.4)

We can eliminate H from these equations by computing the curl of Faraday’s law, which
introduces VxH on its right-hand side so Ampere’s law can be substituted:
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o(VxH) _ OE°
T— —}108081:—2 (225)

Vx(VxE)= —Ho
Using the well known vector identity (see Appendix D):
Vx(VxA)=V(VeA)-V?A (“well-known vector identity”)  (2.2.6)

and then using (2.2.3) to eliminate Ve E, (2.2.5) becomes the electromagnetic wave equation,
often called the Helmholtz wave equation:

— 25
V2E- oo 8_;5 =0 (Helmholtz wave equation) (2.2.7)
ot
where:
_ 2 2 2
VZE=| O+ Oy OO \(5B, + JE, + 2B, ) (2.2.8)
ox~ 0Oy~ oz

The solutions to this wave equation (2.2.7) are any fields E(f,t) for which the second

spatial derivative (V2 E) equals a constant times the second time derivative (82E/ 6‘[2). The

position vector r=3x+y+2z. The wave equation is therefore satisfied by any arbitrary

E(r,t) having identical dependence on space and time within a constant multiplier. For
example, arbitrary functions of the arguments (z - ct), (z + ct), or (t £ z/c) have such an identical
dependence and are among the valid solutions to (2.2.7), where c is some constant to be
determined. One such solution is:

E(r,t)=E(z—ct) = £E,(z—ct) (2.2.9)

where the arbitrary function Ex(z - ct) might be that illustrated in Figure 2.2.1 at time t = 0 and
again at some later time t. Note that as time advances within the argument (z - ct), z must
advance with ct in order for that argument, or E at any point of interest on the waveform, to
remain constant.

Figure 2.2.1 Arbitrary electromagnetic wave propagating in the +z direction.
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We can test this candidate solution (2.2.9) by substituting it into the wave equation (2.2.7),
yielding:

02 [E(z—ct)]

oz2

0? [E(z—ct)]
ot

sz(z—ct) = =E"(z—ct)
(2.2.10)

= e (—)* E"(z—ct)

where we define A'(q) as the first derivative of A with respect to its argument q and A"(q) as
its second derivative. Equation (2.2.10) is satisfied if:

S N (2.2.11)

(TN

where we define c as the velocity of light in vacuum:
c=2.998x10° [ms'] (velocity of light)  (2.2.12)

Figure 2.2.1 illustrates how an arbitrary E(z,t) can propagate by translating at velocity c.

However, some caution is warranted when E(z,t) is defined. Although our trial solution (2.2.9)

satisfies the wave equation (2.2.7), it may not satisfy Gauss’s laws. For example, consider the
case where:

E(zt)=2E,(z—ct) (2.2.13)

Then Gauss’s law V e E =0 is not satisfied:

OEz

VeE=
* 0z

# 0 for arbitrary E(z) (2.2.14)

In contrast, if E(z,t) is oriented perpendicular to the direction of propagation (in the £ and/or §
directions for z-directed propagation), then all Maxwell’s equations are satisfied and the solution
is valid. In the case E(zt)= JEy (z—ct), independent of x and y, we have a uniform plane
wave because the fields are uniform with respect to two of the coordinates (x,y) so that
GE/('?X = 8E/8y =0. Since this electric field is in the y direction, it is said to be y-polarized; by

convention, polarization of a wave refers to the direction of its electric vector. Polarization is
discussed further in Section 2.3.4.

Knowing E(zt)= JE(z—ct) for this example, we can now find H(z,t) using Faraday’s
law (2.2.1):
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@z_(VxE)

2.2.15
= (2.2.15)
We can evaluate the curl of E using (2.1.4) and knowing E, =E, :6% :% =0:
— [oE, OEy A(aEX 8EZ) [PEy ©OE,| OEy
VxE—x( 3y % + 9 5% ox +2 x 3y =t (2.2.16)
Then, by integrating (2.2.15) over time it becomes:
— VxE OE, (z—ct
H(z,t)z—jt udtzyeijt Mdt
—©  Ho Ho 7= 0z
(2.2.17)

~ 1 ~ €
=—% E,(z—ct)=-% /—OE z—ct
Clo Y Ko y( )

H(z 1) = \/ftzéxf(z,t) =2x E(zY) (2.2.18)

Mo

where we used the velocity of lightc =1/,/e 1, , and defined n, = \/p, /e, -

Thus E and H in a uniform plane wave are very simply related. Their directions are
orthogonal to each other and to the direction of propagation, and the magnitude of the electric

field is (mo/eo)™ times that of the magnetic field; this factor No =+/Mo/€y 1 known as the

characteristic impedance of free space and equals ~377 ohms. That is, for a single uniform
plane wave in free space,

[E/IH = n, = /uy/e, =377 [ohms] (2.2.19)

Electromagnetic waves can propagate in any arbitrary direction in space with arbitrary time
behavior. That is, we are free to define X, §, and Z in this example as being in any three

orthogonal directions in space. Because Maxwell’s equations are linear in field strength,
superposition applies and any number of plane waves propagating in arbitrary directions with
arbitrary polarizations can be superimposed to yield valid electromagnetic solutions. Exactly
which superposition is the valid solution in any particular case depends on the boundary
conditions and the initial conditions for that case, as discussed later in Chapter 9 for a variety of
geometries.
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Example 2.2A
Show that E = JE, (t+27/c) satisfies the wave equation (2.2.7). In which direction does this

wave propagate?

2

. . 2 a = 1 " " A, 4 .

Solution: (V _WJE = yc—z[EO (t+z/c)-E, (t+z/c)] =0; Q.E.D". Since the argument
(t + z/c) remains constant as t increases only if z/c decreases correspondingly, the
wave is propagating in the -z direction.

2.3 Maxwell’s equations, waves, and polarization in the frequency domain

2.3.1 Sinusoidal waves

Linear systems are easily characterized by the magnitude and phase of each output as a function
of the frequency at which the input is sinusoidally stimulated. This simple characterization is
sufficient because sinusoids of different frequencies can be superimposed to construct any
arbitrary input waveform’, and the output of a linear system is the superposition of its responses
to each superimposed input. Systems with multiple inputs and outputs can be characterized in
the same way. Nonlinear systems are more difficult to characterize because their output
frequencies generally include harmonics of their inputs.

Fortunately free space is a linear system, and therefore it is fully characterized by its

response to sinusoidal plane waves. For example, the arbitrary z-propagating x-polarized
uniform plane wave of (2.2.9) and Figure 2.2.1 could be sinusoidal and represented by:

E(r,t)=%E, cos| k(z—ct) ] (2.3.1)

H(r,t) = Pyfeo/io Eq cos[k(z—ct) ] (2.3.2)

where the wave amplitude E, is a constant and the factor k is related to frequency, as shown
below.

It is more common to represent sinusoidal waves using the argument (wt - kz) so that their
frequency and spatial dependences are more evident. The angular frequency ® is simply related

to frequency f [Hz]:

o = 2nf [radians s™'] (angular frequency) (2.3.3)

* Q.E.D. is the abbreviation for the Latin phrase “quod erat demonstratum” or “that which was to be demonstrated.”

> The Fourier transform pair (10.4.17) and (10.4.18) relate arbitrary pulse waveforms h(t) to their corresponding
spectra H(f), where each frequency f has its own magnitude and phase represented by H(f).
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and the spatial frequency k, often called the wavenumber, is simply related to ® and wavelength
A [m], which is the length of one period in space:

k=2n/A = o/c [radians m™'] (wave number) (2.3.4)

The significance and dimensions of ® and k are directly analogous; they are radians s and
radians m™', respectively.

Therefore we can alternatively represent the wave of (2.3.1) and (2.3.2) as:

E(r,t) = £E, cos (ot —kz) [vm!] (2.3.5)
H(zt) = prfeg/ig Eg cos(ot—kz) [Am™] (2.3.6)

Figure 2.3.1 suggests the form of this wave. Its wavelength is A, the length of one cycle,
where:

A =c/f [m] (wavelength) (2.3.7)

The figure illustrates how these electric and magnetic fields are in phase but orthogonal to each
other and to the direction of propagation. When the argument (ot — kz) equals zero, the fields
are maximum, consistent with cos(wt - kz).

direction of
propagation

Figure 2.3.1 +z propagating y-polarized uniform plane wave of wavelength A.

This notation makes it easy to characterize uniform plane waves propagating in other
directions as well. For example:

E (r, t) = £E, cos (ot +kz) (x-polarized wave in -z direction) (2.3.8)
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E(r,t) = JE, cos(ot—kz) (y-polarized wave in +z direction)  (2.3.9)
E(f, t) = JE, cos(mt —kx) (y-polarized wave in +x direction)  (2.3.10)

E(r,t) = 2E, cos(wt + kx) (z-polarized wave in -x direction)  (2.3.11)

2.3.2  Maxwell’s equations in the complex-frequency domain

Electromagnetic fields are commonly characterized in the frequency domain in terms of their
magnitudes and phases as a function of position r for frequency f. For example, the %
component of a general sinusoidally varying E might be:

E(r,t) = 2B (cos| ot + ¢(r) ] (2.3.12)

This might become E(;,t) = XE, cos(ot —kz) for a uniform plane wave propagating in the +z
direction.

It is generally more convenient to express phase using complex notation (see Appendix B).
The x-component of the wave of (2.3.12) can also be represented as:

B, (7. = R [E, el _ gr (g Do) (2.3.13)

where the spatial and frequency parts of Ex(f,t) have been separated and Er) = |Ex(f)|ej¢x(a is

called a phasor. The simplicity will arise later when we omit R, {[ Jeiot } from our expressions

as “understood”, so only the phasors remain. The underbar under E, indicates E, is not a
function of time, but rather is a complex quantity with a real part and an imaginary part, where:

Ex(®) = R {ExD) + I, (B0} = [E D] (2.3.14)

and ¢,(r) = tan‘l(Im{EXG)}/ Re{EX(f)}). A general vector can also be a phasor, e.g., E(r) =
RE,(r) + JE,(r) + 2E,(r), where E(r,t) =R, {EG)eit} .

We can use such phasors to simplify Maxwell’s equations. For example, we can express
Faraday’s law (2.2.1) as:

VxR EDe® = —aR, (B!} /ot = R, [V x EDeI®!} = R, {-joBDe!®}  (2.3.15)
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The other Maxwell equations can be similarly transformed, which suggests that the notation
R, {[ ]ejmt} can be omitted and treated as understood. For example, removing this redundant
notation from (2.3.15) results in: VxE =—joB. Any problem solution expressed as a phasor,

e.g. E(r), can be converted back into a time-domain expression by the operator R, {[ ]ej(”t}.

These omissions of the understood notation result in the complex or time-harmonic Maxwell
equations:

VxE=-joB (Faraday’s law)  (2.3.16)
VxH=J+ joD (Ampere’s law)  (2.3.17)
VeD=p (Gauss’s law)  (2.3.18)
VeB=0 (Gauss’s law)  (2.3.19)

Note that these equations are the same as before [i.e., (2.2.1-4)], except that we have simply

replaced the operator 0/0t with jo and placed an underbar under all variables, signifying that they
are now phasors.

We can immediately derive the time-harmonic equation for conservation of charge (2.1.19)
by computing the divergence of (2.3.17), noting that V e (VxA)=0 for any A, and substituting
VeD=p (2.3.18):

Vel+jop=0 (2.3.20)
Example 2.3A
Convert the following expressions into their time-domain equivalents: joV xQ =Rj, Ee_jkz,

and E = 23+ §j4.
Solution: —o(VxQ)sin(wt) =-Rsinot, Rcos(wt—kz), and 3% cos ot —4§sin ot .

Example 2.3B
Convert the following expressions into their complex frequency-domain equivalents:

Acos(ot+kz), and Bsin(wt+¢).

Solution: Ae+jkz, and —jBejd) =—jBcos¢+Bsing.
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2.3.3  Sinusoidal uniform plane waves

We can readily derive from Maxwell’s equations the time-harmonic Helmholtz wave equation
for vacuum (2.2.7) by substituting jo for o/ot or, as we did earlier, by taking the curl of
Faraday’s law, using the well known vector identity (2.2.6) and Gauss’s law, replacing B by
MOH, and using Ampere’s law to replace VxH. In both cases the Helmholtz wave equation

becomes:
2., 2 = .
(V +m poao)E =0 (wave equation)  (2.3.21)

As before, the solution E(r) to the wave equation can be any arbitrary function of space
(r) such that its second spatial derivative (V2 E) equals a constant (—0)280“0) times that same
function E(T). One solution with these properties is the time-harmonic version of the time-

domain expression E(;, t) = B, cos(wt —kz) :

E(t)=E,e i [ym!] (2.3.22)
Substituting (2.3.22) into the wave equation (2.3.21) yields:

([02/022 ]+ 0yt )E = [~k + 02ioe, JE=0 (2.3.23)
which is satisfied if the wavenumber k is:

k = o\1yE, =%=2—7gf=% I:radians m'l:l (2.3.24)

It is now an easy matter to find the magnetic field that corresponds to (2.3.22) by using
Faraday’s law (2.3.16), B = uOH , and the definition of the “Vx” operator (2.1.1):

C(VxE) 1 FOBy kB i

H(r) =" =- =
jop,  jop, oz S (2.3.25)
=—)%LEOe_ij [Am1]
Mo

As before, E and H are orthogonal to each other and to the direction of propagation, and
[El=n, |H

As another example, consider a z-polarized wave propagating in the -x direction; then:
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E(r)=2E,e" ™ | H(r)=5E.e™ /n, (2.3.26)

It is easy to convert phasor expressions such as (2.3.26) into time-domain expressions. We
simply divide the phasor expressions into their real and imaginary parts, and note that the real
part varies as cos(wt - kz) and the imaginary part varies as sin(wt - kz). Thus the fields in
(2.3.22) could be written instead as a real time-domain expression:

E(1,t) = $E, cos(ot —kz) (2.3.27)

Had the electric field solution been instead the phasor )‘/jEOe_ij , the time domain expression

R, {E (r) ej“’t} would then be:

E(r,t) =—JE, sin (ot —kz) (2.3.28)

The conversion of complex phasors to time-domain expressions, and vice-versa, is discussed
further in Appendix B.

2.3.4  Wave polarization

Complex notation simplifies the representation of wave polarization, which characterizes the
behavior of the sinusoidally varying electric field vector as a function of time. It is quite distinct
from the polarization of media discussed in Section 2.5.3. Previously we have seen waves for
which the time-varying electric vector points only in the £x, ty, or £z directions, corresponding
to X, y, or z polarization, respectively. By superimposing such waves at the same frequency and
propagating in the same direction we can obtain any other desired time-harmonic polarization.
Linear polarization results when the oscillating electric vector points only along a single
direction in the plane perpendicular to the direction of propagation, while elliptical polarization
results when the x and y components of the electric vector are out of phase so that the tip of the
electric vector traces an ellipse in the same plane. Circular polarization results only when the
phase difference between x and y is 90 degrees and the two amplitudes are equal. These various
polarizations for +Zz propagation are represented below at z = 0 in the time domain and as
phasors, and in Figure 2.3.2.

E(t) = JE, cos mt E = JE, (y-polarized)  (2.3.29)
E(t) = 2E, cos ot E =iE, (x-polarized)  (2.3.30)
E(t)=(2+9)E, cosot E=(2+9)E, (45°-polarized)  (2.3.31)
E(t) =E, (*cos ot + jsin ot) E=(2-jp)E, (right-circular)  (2.3.32)
E(t) =E, (fcosot+1.5ysinmt) E=(%-1.5j»)E, (right-elliptical) ~ (2.3.33)



E(t) = E, [#cos ot + jcos (ot +20°)]

es]]

—(5+395)B,  (leftelliptical) (2.3.34)

=

y-polarized

A

Y

A

x-polarized 45°-polarized
$ .

left-elliptical

right-elliptical HPY
polarization

polarization

A

right-
circular

Y

=

Figure 2.3.2 Polarization ellipses for +z-propagating plane waves (into the page).

The Institute of Electrical and Electronics Engineers (IEEE) has defined polarization as
right-handed if the electric vector traces a right-handed ellipse in the x-y plane for a wave
propagating in the +z direction, as suggested in Figure 2.3.3. That is, for right-handed
polarization the fingers of the right hand circle in the direction taken by the electric vector while
the thumb points in the direction of propagation. This legal definition is opposite that commonly
used in physics, where that alternative definition is consistent with the handedness of the “screw”

formed by the instantaneous three-dimensional loci of the tips of the electric vectors comprising
a wave.

Wave propagation

y

N>

Figure 2.3.3 IEEE definition of right-handed polarization.

Example 2.3C

IfE= Eoe_jkz , what polarizations correspond to: E, = §, E, =£+27, and

es]l

ozﬁ_ﬁ?

Solution: y polarization, linear polarization at angle tan™'2 relative to the x-z plane, and right-
circular polarization.

-36 -



2.4  Relation between integral and differential forms of Maxwell’s equations

2.4.1 Gauss’s divergence theorem

Two theorems are very useful in relating the differential and integral forms of Maxwell’s
equations: Gauss’s divergence theorem and Stokes theorem. Gauss’s divergence theorem
(2.1.20) states that the integral of the normal component of an arbitrary analytic vector field A
over a surface S that bounds the volume V equals the volume integral of Ve A over V. The
theorem can be derived quickly by recalling (2.1.3):

_ oA
VeA= 6‘;; + ayy + 8?; (2.4.1)

Therefore Ve A at the position Xo, Yo, Zo can be found using (2.4.1) in the limit where Ax, Ay,
and Az approach zero:
VeA = Aliiir}) {[AX (xo +AX/2)— Ay (X, —AX/Z)]/AX
+[Ay (Yo +Ay/2)=Ay (o - Ay/z)] /Ay (2.4.2)
+[A, (2o +A72) - A, (2, - A72) | /A7)

= lim {AyAz[ Ay (xo+A%/2) = Ay (xo —AX/2)]

- +AXAZ[Ay (Yo +AY/2)~Ay (Yo~ Ay/Z)} (2.4.3)
+AXAy [AZ (zo +AZ2)-A, (2o - Az/2)]}/AXAyAZ

~ lim {@Scx.ﬁ da/Av} (2.4.4)

Av—>0

where 7 is the unit normal vector for an incremental cube of dimensions Ax, Ay, Az; da is its

differential surface area; S is its surface area; and Av is its volume, as suggested in Figure
2.4.1(a).

We may now stack an arbitrary number of such infinitesimal cubes to form a volume V such
as that shown in Figure 2.4.1(b). Then we can sum (2.4.4) over all these cubes to obtain:

lim Z(V e A)Av; = lim Z{Cﬁ)s Aei dai} (2.4.5)

Av—>0 1 Av—0 1
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(a) i (b)

surface S, surface S.
\ da
s,
Y i cube
~——— —
-Ay(z, - AZ/2) Az, + Az/2) ,
Ax A da
Az

Figure 2.4.1 Derivation of Gauss’s divergence theorem.

Since all contributions to Zi {#SK i dai} from interior-facing adjacent cube faces cancel, the

only remaining contributions from the right-hand side of (2.4.5) are from the outer surface of the
volume V. Proceeding to the limit, we obtain Gauss’s divergence theorem:

1] jV(V-K)dv = @S(Koﬁ)da (2.4.6)

2.4.2  Stokes’ theorem

Stokes’ theorem states that the integral of the curl of a vector field over a bounded surface equals
the line integral of that vector field along the contour C bounding that surface. Its derivation is
similar to that for Gauss’s divergence theorem (Section 2.4.1), starting with the definition of the
z component of the curl operator [from Equation (2.1.4)]:

(VxA), = 2(%— 6?; j (2.4.7)

=z lim | A (X, +Ax2)—Ay(x,—Ax/2) |/Ax
A"’AY*O{[ ' ' J (2.4.8)

_I:AX (YO + AY/Z) _Ax (YO _AY/Q')]/AY}
=2 lim {Ay[Ay(xo+A%2)-Ay (x, ~AX/2) [/AxAy
A0 (2.4.9)
—~Ax [AX (Yo +AY/2)— Ay (yo— Ay/2)]/AXAy}

Consider a surface in the x-y plane, perpendicular to Z and 7, the local surface normal, as
illustrated in Figure 2.4.2(a).
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contour C

Figure 2.4.2 Derivation of Stokes’ theorem.

Then (2.4.9) applied to AxAy becomes:

AXAy(VxX)0ﬁ=(.iSCKOd§ (2.4.10)

where ds is a vector differential length [m] along the contour C bounding the incremental area
defined by AxAy = da. The contour C is transversed in a right-hand sense relative to 77. We can
assemble such infinitesimal areas to form surfaces of arbitrary shapes and area A, as suggested in
Figure 2.4.2(b). When we sum (2.4.10) over all these infinitesimal areas da, we find that all
contributions to the right-hand side interior to the area A cancel, leaving only the contributions
from contour C along the border of A. Thus (2.4.10) becomes Stokes’ theorem:

HA(VXK)-ﬁ da:CﬁCKodé (2.4.11)

where the relation between the direction of integration around the loop and the orientation of 7
obey the right-hand rule (if the right-hand fingers curl in the direction of ds, then the thumb
points in the direction 7).

2.4.3 Maxwell’s equations in integral form

The differential form of Maxwell’s equations (2.1.5-8) can be converted to integral form using
Gauss’s divergence theorem and Stokes’ theorem. Faraday’s law (2.1.5) is:

Vsz—a—B

= (2.4.12)

Applying Stokes’ theorem (2.4.11) to the curved surface A bounded by the contour C, we obtain:
Fenda=d Feds=_[[ Bes
ﬂA(vXE)-nda_gSCE-ds_ ”A&t /i da (2.4.13)

This becomes the integral form of Faraday’s law:
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™

Teqs_ O e s ,
Cﬁc Ods——a .[ABon da (Faraday’s Law) (2.4.14)

A similar application of Stokes’ theorem to the differential form of Ampere’s law yields its
integral form:

Feas_f |7,.0D |, :
q;CH ods= IJA[J +§} e/i da (Ampere’s Law) (2.4.15)

Gauss’s divergence theorem (2.1.20) can be similarly applied to Gauss’s laws to yield their
integral form:

I, (veD)av=[[f pdv=gp, (Des) da (2.4.16)

This conversion procedure thus yields the integral forms of Gauss’s laws. That is, we can

integrate De/ and Be# in the differential equations over the surface A that bounds the volume
V:

CJEJSA(E efi)da= JHV p dv (Gauss’s Law for charge) (2.4.17)

@A(E. A)da=0 (Gauss’s Law for B)  (2.4.18)

Finally, conservation of charge (1.3.19) can be converted to integral form as were Gauss’s
laws:

Cﬁ)A (Jen)da= —”‘J-V% dv (conservation of charge)  (2.4.19)
Faraday's law Gauss's law for charge
o] D
ot
_{ ©
=N
Ampere's law 5 Gauss's law for B
Not B
J \J
H

Figure 2.4.3 Maxwell’s equations in sketch form.
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The four sketches of Maxwell’s equations presented in Figure 2.4.3 may facilitate
memorization; they can be interpreted in either differential or integral form because they capture
the underlying physics.

Example 2.4A
Using Gauss’s law, find E at distance r from a point charge q.

Solution: The spherical symmetry of the problem requires E to be radial, and Gauss’s law
requires IA g,Ee7 dA = IVp dv=q= 47‘[1‘280Er ,s0 E=7E, = fq/47c80r2 .

Example 2.4B

What is Hatr= 1 cm from a line current I =2 [amperes] positioned at r = 0?

Solution: Because the geometry of this problem is cylindrically symmetric, so is the solution.
Using the integral form of Ampere’s law (2.4.15) and integrating in a right-hand
sense around a circle of radius r centered on the current and in a plane orthogonal to

it, we obtain 2nrH =1, so H= 6100/2n [A m™].

2.5  Electric and magnetic fields in media

2.5.1 Maxwell’s equations and media

The great success of Maxwell’s equations lies partly in their simple prediction of
electromagnetic waves and their simple characterization of materials in terms of conductivity
o [Siemens m™], permittivity ¢ [Farads m™], and permeability p [Henries m']. In vacuum we
find o = 0, € = &, and u = Y, where g, = 8.8542x107? and o = 47tx10”. For reference,
Maxwell’s equations are:

F__0B
VXE=-% (2.5.1)
H=j.oD
VxH=1+% (2.5.2)
VeD=p (2.5.3)
VeB=0 (2.5.4)

The electromagnetic properties of most media can be characterized by the constitutive relations:

D=¢E (2.5.5)
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B=pH (2.5.6)

J=oE (2.5.7)

In contrast, the nano-structure of media can be quite complex and requires quantum
mechanics for its full explanation. Fortunately, simple classical approximations to atoms and
molecules suffice to understand the origins of G, €, and L, as discussed below in that sequence.

2.5.2  Conductivity

Conduction in metals and n-type semiconductors® involves free electrons moving many atomic
diameters before they lose momentum by interacting with atoms or other particles. Acceleration
induced by the small applied electric field inside the conductor restores electron velocities to

produce an equilibrium current. The total current density J [A m™] is proportional to the
product of the average electron velocity v [m s'] and the number density n [m™] of free
electrons. A related conduction process occurs in ionic liquids, where both negative and positive
ions can carry charge long distances.

In metals there is approximately one free electron per atom, and in warm n-type
semiconductors there is approximately one free electron per donor atom, where the sparse donor
atoms are easily ionized thermally. Since, for non-obvious reasons, the average electron velocity

(v) is proportional to E, therefore J = —ensy (v) =cE , as stated in (2.5.7). As the conductivity

o approaches infinity the electric field inside a conductor approaches zero for any given current
density J.

Warm donor atoms in n-type semiconductors can be easily ionized and contribute electrons
to the conduction band where they move freely. Only certain types of impurity atoms function
as donors--those that are most easily ionized. As the density of donor atoms approaches zero and
as temperature declines, the number of free electrons and the conductivity approach very low
values that depend on temperature and any alternative ionization mechanisms that are present.

In p-type semiconductors the added impurity atoms readily trap nearby free electrons to
produce a negative ion; this results in a corresponding number of positively ionized
semiconductor atoms that act as “holes”. As a result any free electrons typically move only short
distances before they are trapped by one of these holes. Moreover, the threshold energy required
to move an electron from a neutral atom to an adjacent positive ion is usually less than the
available thermal energy, so such transfers occur rapidly, causing the hole to move quickly from

® n-type semiconductors (e.g., silicon, germanium, gallium arsenide, indium phosphide, and others) are doped with a
tiny percentage of donor atoms that ionize easily at temperatures of interest, releasing mobile electrons into the
conduction band of the semiconductor where they can travel freely across the material until they recombine with
another ionized donor atom. The conduction band is not a place; it refers instead to an energy and wave state of
electrons that enables them to move freely. The conductivity of semiconductors therefore increases with
temperature; they become relatively insulating at low temperatures, depending on the ionization potentials of the
impurity atoms.
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place to place over long distances. Thus holes are the dominant charge carriers in p-type
semiconductors, whereas electrons dominate in n-type semiconductors.

More broadly, semiconductors have a conduction band in which free electrons can
propagate long distances; this band is separated by an energy of one or a few electron volts from
the valence band in which electrons cannot move. The conduction band is not a location, it is a
family of possible electron wave states. When electrons are excited from the valence band to the
conduction band by some energetic process, they become free to move in response to electric
fields. Semiconductor conductivity is approximately proportional to the number of free electrons
or holes produced by the scarce impurity atoms, and therefore to the doping density of those
impurity atoms. Easily ionized impurity atoms are the principal mechanism by which electrons
enter the conduction band, and impurities that readily trap adjacent electrons are the principal
mechanism by which holes enter and move in the valence band. Semiconductors are discussed
further in Section 8.2.4. The current leakage processes in insulators vaguely resemble electron
and hole conduction in semiconductors, and can include weak surface currents as well as bulk
conduction; microscopic flaws can also increase conductivity. The conductivities of typical
materials are listed in Table 2.5.1.

Table 2.5.1 Nominal conductivities ¢ of common materials [Siemens m™].

paraffin 10— 10" | sea water 3-5
glass 1072 iron 10
dry earth 10*-10° | copper 5.8x107
distilled water 2x10™ silver 6.14x10’

In some exotic materials the conductivity is a function of direction and can be represented

by the 3x3 matrix 5; such materials are not addressed here, but Section 2.5.3 addresses similar
issues in the context of permittivity €.

Some materials exhibit superconductivity, or infinite conductivity. In these materials pairs
of electrons become loosely bound magnetically and move as a unit called a Cooper pair.
Quantum mechanics prevents these pairs from colliding with the lattice and losing energy.
Because the magnetic binding energy for these pairs involves electron spins, it is quite small.
Normal conductivity returns above a threshold critical temperature at which the pairs are shaken
apart, and it also returns above some threshold critical magnetic field at which the magnetic
bonds coupling the electrons break as the electron spins all start to point in the same direction.
Materials having critical temperatures above 77K (readily obtained in cryogenic refrigerators)
are difficult to achieve. The finite number of such pairs at any temperature and magnetic field
limits the current to some maximum value; moreover that current itself produces a magnetic field
that can disrupt pairs. Even a few pairs can move so as to reduce electric fields to zero by short-
circuiting the normal electrons until the maximum current carrying capacity of those pairs is
exceeded. If the applied fields have frequency f > 0, then the Cooper pairs behave much like
collisionless electrons in a plasma and therefore the applied electric field can penetrate that
plasma to its skin depth, as discussed in Section 9.8. Those penetrating electric fields interact
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with a small number of normal electrons to produce tiny losses in superconductors that increase
with frequency.

2.5.3  Permittivity

The permittivity €, of free space is 8.854x10"? farads/meter, where D = &, E. The permittivity
¢ of any material deviates from ¢, for free space if applied electric fields induce electric dipoles
in the medium; such dipoles alter the applied electric field seen by neighboring atoms. Electric

fields generally distort atoms because E pulls on positively charged nuclei (f =qE [N]) and

repels the surrounding negatively charged electron clouds. The resulting small offset d of each
atomic nucleus of charge +q relative to the center of its associated electron cloud produces a tiny
electric dipole in each atom, as suggested in Figure 2.5.1(a). In addition, most asymmetric
molecules are permanently polarized, such as H,O or NH3, and can rotate within fluids or gases
to align with an applied field. Whether the dipole moments are induced, or permanent and free
to rotate, the result is a complete or partial alignment of dipole moments as suggested in Figure
2.5.1(b).

These polarization charges generally cancel inside the medium, as suggested in Figure
2.5.1(b), but the immobile atomic dipoles on the outside surfaces of the medium are not fully
cancelled and therefore contribute the surface polarization charge psp.

(a) (c)
electron
cloud

dielectric metal

L/ plates

surface charge o

positive bound charge

d—| |=—

Pp=0 +nq [C m”]

-nq [C m'3]\ P

medium

negative bound charge

Figure 2.5.1 Polarized media.

Figure 2.5.1(c) suggests how two charged plates might provide an electric field E that
polarizes a dielectric slab having permittivity € > &,. [The electric field E is the same in vacuum
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as it is inside the dielectric (assuming no air gaps) because the path integral of Eeds from plate
to plate equals their voltage difference V in both cases. The electric displacement vector

De =¢E and therefore differs.] We associate the difference between Do = goE (vacuum) and

D¢ =<E (dielectric) with the electric polarization vector P , where:
D=¢E=g,E+P=¢g,E(1+7) (2.5.8)

The polarization vector P is defined by (2.5.8) and is normally parallel to E in the same
direction, as shown in Figure 2.5.1(c); it points from the negative surface polarization charge to

the positive surface polarization charge (unlike E, which points from positive charges to
negative ones). As suggested in (2.5.8), P =Ee,y, where y is defined as the dimensionless
susceptibility of the dielectric. Because nuclei are bound rather tightly to their electron clouds,
is generally less than 3 for most atoms, although some molecules and crystals, particularly in

fluid form, can exhibit much higher values. It is shown later in (2.5.13) that P simply equals the
product of the number density n of these dipoles and the average vector electric dipole moment

of each atom or molecule, p=qd, where d is the offset (meters) of the positive charge relative
to the negative charge:

P-nqd [Cm?2] (2.5.9)
Gauss’s law relates D to charge density p [C m™], but we now have two types of density:
that of free charges py, including ions and surface charges on conductors, and that of any locally
un-neutralized polarization charge p, bound within charge-neutral atoms or molecules. Gauss’s
law says:
VeD =p¢ (2.5.10)
where py is the free charge density [C m™].
We can derive a relation similar to (2.5.10) for P by treating materials as distributed bound
positive and negative charges with vacuum between them; the net bound charge density is

designated the polarization charge density p, [C m™]. Then in the vacuum between the charges
D =¢,E and (2.5.10) becomes:

g0V eE =ps +pp, (2.5.11)
From V e (2.5.8), we obtain VeD =g ,VeE+V eP =p;. Combining this with (2.5.11) yields:

VeP=—p (2.5.12)

p
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The negative sign in (2.5.12) is consistent with the fact that P, unlike E, is directed from
negative to positive polarization charge, as noted earlier.

Outside a polarized dielectric the polarization P is zero, as suggested by Figure 2.5.1(d).
Note that the net polarization charge density is tnq for only an atomic-scale distance d at the
boundaries of the dielectric, where we model the positive and negative charge distributions
within the medium as continuous uniform rectilinear slabs of density = nq [C m™]. These two
slabs are offset by the distance d. If P is in the z direction and arises from n dipole moments
p=qd per cubic meter, where d is the offset [m] of the positive charge relative to the negative
charge, then (2.5.12) can be integrated over a volume V that encloses a unit area of the left-hand

face of a polarized dielectric [see Figure 2.5.1(d)] to yield the polarization vector P inside the
dielectric:

F=JVV0FdV=—ijp dv=nqd (2.5.13)

The first equality of (2.5.13) involving P follows from Gauss’s divergence theorem: [yV o P dv
=JsPe2da=P,if A=1. Therefore, P =nqd, proving (2.5.9).

When the electric displacement D varies with time it becomes displacement current, oD /ot
[A/m?], analogous to J, as suggested by Ampere's law: V x H = J + 0D/6t. For reference,

Table 2.5.2 presents the dielectric constants &/e, for some common materials near 1 MHz, after
Von Hippel (1954).

Table 2.5.2 Dielectric constants €/, of common materials near 1 MHz.

vacuum 1.0 fused quartz 3.78
fir wood 1.8-2.0 ice 4.15
Teflon, petroleum 2.1 pyrex glass 5.1
vaseline 2.16 aluminum oxide 8.8
paper 2-3 ethyl alcohol 24.5
polystyrene 2.55 water 81.0
sandy soil 2.59 titaniumdioxide 100.0

Most dielectric materials are lossy because oscillatory electric fields dither the directions
and magnitudes of the induced electric dipoles, and some of this motion heats the dielectric.
This effect can be represented by a frequency-dependent complex permittivity g, as discussed
further in Section 9.5. Some dielectrics have direction-dependent permittivities that can be
represented by €; such anisotropic materials are discussed in Section 9.6. Lossy anisotropic

materials can be characterized by ;
Some special dielectric media are spontaneously polarized, even in the absence of an

externally applied E. This occurs for highly polarizable media where orientation of one electric
dipole in the media can motivate its neighbors to orient themselves similarly, forming domains
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of atoms, molecules, or crystal unit cells that are all polarized the same. Such spontaneously
polarized domains are illustrated for magnetic materials in Figure 2.5.2. As in the case of
ferromagnetic domains, in the absence of externally applied fields, domain size is limited by the
buildup of stored field energy external to the domain; adjacent domains are oriented so as to
largely cancel each other. Such ferroelectric materials have large effective values of ¢, although
D saturates if E is sufficient to produce ~100% alignment of polarization. They can also
exhibit hysteresis as do the ferromagnetic materials discussed in Section 2.5.4.

Example 2.5A

What are the free and polarization charge densities pr and p, in a medium having conductivity
G =0, /(1 +2), permittivity & =3¢, , and current density J= 2J,?

Solution: J=oE,so E=2J,(1+2)/c, =g,E+P.

From (2.5.10) pp =V e D = (8/0z)[3e,J, (1+2)/o, | =3e5To/0, LCm™].
From (2.5.12) p, =-V eP=-Ve(c—g,)E=—(002)2¢,],(1+2)/o,

=2¢,J, /0, [cm?].

2.5.4  Permeability

The permeability p, of free space is 4w10” Henries/meter by definition, where B = pH. The
permeability p of matter includes the additional contributions to B from atomic magnetic
dipoles aligning with the applied H. These magnetic dipoles and their associated magnetic
fields arise either from electrons orbiting about atomic nuclei or from spinning charged particles,
where such moving charge is current. All electrons and protons have spin £1/2 in addition to any
orbital spin about the nucleus, and the net spin of an atom or nucleus can be non-zero. Their

magnetic fields are linked to their equivalent currents by Ampere’s law, Vxﬁ=j+8ﬁ/8t.

Quantum theory describes how these magnetic moments are quantized at discrete levels, and for
some devices quantum descriptions are necessary. In this text we average over large numbers of

atoms, so that B=pH accurately characterizes media, and quantum effects can be ignored.

In any medium the cumulative contribution of induced magnetic dipoles to B is
characterized by the magnetization M , which is defined by:

B=pH=p, (H+M) =poH(1+%xm) (2.5.14)

where ¥ is the magnetic susceptibility of the medium. Because of quantum effects y., for
diamagnetic materials is slightly negative so that p < p,; examples include silver, copper, and
water, as listed in Table 2.5.3. The table also lists representative paramagnetic materials, which
have slightly positive magnetic susceptibilities, and ferromagnetic materials, which have very
large susceptibilities (e.g., cobalt, etc.).
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Table 2.5.3 Approximate relative permeabilities p/p, of common materials.

bismuth 0.99983 aluminum 1.00002
silver 0.99998 cobalt 250
lead 0.999983 nickel 600
copper 0.999991 mild steel 2000
water 0.999991 iron 5000
vacuum 1.000000 mumeltal 100,000
air 1.0000004 supermalloy 1,000,000

The sharp difference between normal materials with p = ., and ferromagnetic materials
having p >> p, is due to the spontaneous alignment of atomic magnetic dipoles in the same
direction so as to increase the applied field, reorienting the remaining dipoles. That is, if the
susceptibility of a material is above some threshold, then the atomic magnetic dipoles
spontaneously align over regions of size limited by grain structure or energy considerations, as
suggested in Figure 2.5.2(a and b). These regions of nearly perfect alignment are called
magnetic domains. These domains are normally quite small (perhaps micron-size) so as to
minimize the stored magnetic energy pH”. In this regime, if only energy considerations control
domain size, then the sizes of those domains oriented in the general direction of the applied
magnetic field grow as that field increases, while other domains shrink, as suggested in Figure
2.5.2(c). Since domain walls cannot easily move across grain walls, the granular structure of the
material can be engineered to control magnetic properties. If domain walls move easily, the
magnetic susceptability yn, is large.

(a) atoms or crystal
. DD%%V’ unit celrl};

gy e

Sele

egeSogscec ey

Q%DDDDCQ - a—-domain wall
L

o

Figure 2.5.2 Magnetic domains in ferromagnetic materials.

At sufficiently high magnetic fields all domains will expand to their maximum size and/or

rotate in the direction of H. This corresponds to the maximum value of M and magnetic
saturation. The resulting typical non-linear behavior of the magnetization curve relating B and
H for ferromagnetic materials is suggested in Figure 2.5.3(a). The slope of the B vs. H curve is
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~u near the origin and ~, beyond saturation. If the domains resist change and dissipate energy
when doing so, the hysteresis curve of Figure 2.5.3(b) results. It can be shown that the area

enclosed by the figure is the energy dissipated per cycle as the applied H oscillates.

(a) (b) \B

Figure 2.5.3 Magnetization curve and hysterisis loop for a ferromagnetic material.

Hard magnetic materials have large values of residual flux density B, and magnetic coercive
force or coercivity He, as illustrated. B, corresponds to the magnetic strength B of this

permanent magnet with no applied H. The magnetic energy density W, :EOE/Z =0 inside
permanent magnets because H =0, while W, = pOHz/Z [J m”] outside. To demagnetize a

permanent magnet we can apply a magnetic field H of magnitude H,, which is the field strength
necessary to drive B to zero.

If we represent the magnetic dipole moment of an atom by m, where m for a current loop of
magnitude I and area AA is AIA [A m]’, then it can be shown that the total magnetization M of
a medium is nm [A m’'] via the same approach used to derive P=np (2.5.13) for the
polarization of dielectrics; n is the number of dipoles per m’.

Example 2.5B

Show how the power dissipated in a hysteretic magnetic material is related to the area circled in
Figure 2.5.3(b) as H oscillates. For simplicity, approximate the loop in the figure by a rectangle
bounded by +H, and £B,.

Solution: We seek the energy dissipated in the material by one traverse of this loop as H goes
from +H, to -H, and back to +H,. The energy density Wy, = BH/2 when B=0 at t =
01is Wp =0; Wyu—>BH/2 [J m'3] as B—>B,. As H returns to 0 while B = B,, this
energy is dissipated and cannot be recovered by an external circuit because any
voltage induced in that circuit would be o« 0B/ot = 0. As H—>-H,, W,—B,H,/2; this
energy can be recovered by an external circuit later as B—0 because 0B/ot # 0. As
B—-B,, Wn—>BH,/2, which is lost later as H—>0 with 0B/ot = 0. The energy stored

"/ is the unit vector normal to the tiny area A enclosed by the current I, using the right-hand-rule.
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as H>H, with B = -B, is again recoverable as B—0 with H = H,. Thus the minimum
energy dissipated during one loop traverse is vB,H,[J], where v is material volume.
If the drive circuits do not recapture the available energy but dissipate it, the total
energy dissipated per cycle is doubled.

2.6 Boundary conditions for electromagnetic fields

2.6.1 Introduction

Maxwell’s equations characterize macroscopic matter by means of its permittivity e,
permeability p, and conductivity o, where these properties are usually represented by scalars and
can vary among media. Section 2.5 discussed media for which €, 1, and c are represented by
matrices, complex quantities, or other means. This Section 2.6 discusses how Maxwell’s
equations strongly constrain the behavior of electromagnetic fields at boundaries between two
media having different properties, where these constraint equations are called boundary
conditions.  Section 2.6.2 discusses the boundary conditions governing field components
perpendicular to the boundary, and Section 2.6.3 discusses the conditions governing the parallel
field components. Section 2.6.4 then treats the special case of fields adjacent to perfect
conductors.

One result of these boundary conditions is that waves at boundaries are generally partially
transmitted and partially reflected with directions and amplitudes that depend on the two media
and the incident angles and polarizations. Static fields also generally have different amplitudes
and directions on the two sides of a boundary. Some boundaries in both static and dynamic
situations also possess surface charge or carry surface currents that further affect the adjacent
fields.

2.6.2  Boundary conditions for perpendicular field components

The boundary conditions governing the perpendicular components of E and H follow from the
integral forms of Gauss’s laws:

@S(ﬁo A)da = ”‘J‘Vp dv (Gauss’s Law for D) (2.6.1)

@S(E ei)da=0 (Gauss’s Law for B)  (2.6.2)

We may integrate these equations over the surface S and volume V of the thin infinitesimal
pillbox illustrated in Figure 2.6.1. The pillbox is parallel to the surface and straddles it, half
being on each side of the boundary. The thickness & of the pillbox approaches zero faster than
does its surface area S, where S is approximately twice the area A of the top surface of the box.
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surface charge density o pillbox surface S, volume V

Figure 2.6.1 Elemental volume for deriving boundary conditions
for perpendicular field components.

Beginning with the boundary condition for the perpendicular component D, we integrate
Gauss’s law (2.6.1) over the pillbox to obtain:

P (Desig)daz (D, ~Dyy)A=[[[ pdv=pA (2.6.3)

where ps is the surface charge density [Coulombs m™]. The subscript s for surface charge ps
distinguishes it from the volume charge density p [C m™]. The pillbox is so thin (8 — 0) that: 1)
the contribution to the surface integral of the sides of the pillbox vanishes in comparison to the
rest of the integral, and 2) only a surface charge q can be contained within it, where ps = /A =
lim pd as the charge density p — o and & — 0. Thus (2.6.3) becomes D;; - D,; = ps, which can
be written as:

ne (51 —Bz) =Py (boundary condition for D ) (2.6.4)

where 7 is the unit vector normal to the boundary and points into medium 1. Thus the
perpendicular component of the electric displacement vector D changes value at a boundary in
accord with the surface charge density ps.

Because Gauss’s laws are the same for electric and magnetic fields, except that there are no
magnetic charges, the same analysis for the magnetic flux density B in (2.6.2) yields a similar
boundary condition:

Ae(B1—-B2)=0 (boundary condition for B ) (2.6.5)

Thus the perpendicular component of B must be continuous across any boundary.
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2.6.3  Boundary conditions for parallel field components

The boundary conditions governing the parallel components of E and H follow from Faraday’s
and Ampere’s laws:

—_— —_— _ 6 _ A )
Cj)CE ods= —aHAB e/ da (Faraday’s Law) (2.6.6)

C»[)Cﬁ eds= ”A [j + %)} e/ da (Ampere’s Law) (2.6.7)

We can integrate these equations around the elongated rectangular contour C that straddles the
boundary and has infinitesimal area A, as illustrated in Figure 2.6.2. We assume the total height
d of the rectangle is much less than its length W, and circle C in a right-hand sense relative to the
surface normal 7, .

n ds area A E, Hj

Js .-~

.
.,
.,
.

surface current density

" Ba,H2

-~ medium 1

________

medium 2

boundary

contour C around area A

Figure 2.6.2 Elemental contour for deriving boundary conditions for parallel field components.

Beginning with Faraday’s law, (2.6.6), we find:

- (= _ __g -
§Eeds=(Ery~E2y)W=-£ [[ Besigda—0 (2.6.8)

where the integral of B over area A approaches zero in the limit where 8§ approaches zero too;

there can be no impulses in B. Since W # 0, it follows from (2.6.8) that E;, - Ey = 0, or more
generally:

Ax(E1—E2)=0 (boundary condition for E//) (2.6.9)

Thus the parallel component of E must be continuous across any boundary.

A similar integration of Ampere’s law, (2.6.7), under the assumption that the contour C is

chosen to lie in a plane perpendicular to the surface current Jg and is traversed in the right-hand
sense, yields:
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cﬁcHodéz(ﬁl//—ﬁz//)W

— (2.6.10)
_ 7. 0D | . 7oA T

= J-J‘A[J+§}n da = ﬂAJ-na da=TsW

where we note that the area integral of Gﬁ/é‘t approaches zero as 6 — 0, but not the integral over

the surface current Js, which occupies a surface layer thin compared to 8. Thus Hiy —Hay/ =
Js, or more generally:

Ax(Hy —H2 ) =TJs (boundary condition for Hy)  (2.6.11)

where 7 is defined as pointing from medium 2 into medium 1. If the medium is nonl]
conducting, J;=0.

A simple static example illustrates how these boundary conditions generally result in fields
on two sides of a boundary pointing in different directions. Consider the magnetic fields Hj and
H» illustrated in Figure 2.6.3, where p, # pi, and both media are insulators so the surface
current must be zero. If we are given Hj, then the magnitude and angle of H> are determined
because Hy/ and B are continuous across the boundary, where Bj = p;Hi. More specifically,

H2// =Hiy/, and:

Hy, =By /iy =By /mp =pHi1/ho (2.6.12)

Figure 2.6.3 Static magnetic field directions at a boundary.

It follows that:

0, = tan_1(|ﬁ2//VH2L) = tan_l(u2|ﬁ1//|/u1Hu) = tan_l[(uz/ul)tanGIJ (2.6.13)
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Thus 0, approaches 90 degrees when p, >> p;, almost regardless of 0, so the magnetic flux
inside high permeability materials is nearly parallel to the walls and trapped inside, even when
the field orientation outside the medium is nearly perpendicular to the interface. The flux
escapes high-p material best when 6; = 90°. This phenomenon is critical to the design of motors
or other systems incorporating iron or nickel.

If a static surface current Js flows at the boundary, then the relations between Bj and B2
are altered along with those for H; and H2. Similar considerations and methods apply to static
electric fields at a boundary, where any static surface charge on the boundary alters the
relationship between Di and D2. Surface currents normally arise only in non-static or
“dynamic” cases.

Example 2.6A

Two insulating planar dielectric slabs having €, and &, are bonded together. Slab 1 has E; at
angle 0; to the surface normal. What are E> and 0, if we assume the surface charge at the
boundary ps=0? What are the components of E2 if ps = 0?

Solution: E// 1s continuous across any boundary, and if ps = 0, then D = aiE 1 1S continuous
too, which implies E21 =(g;/e;)E1L. Also, 0 =tan" (E//E;.), and
0, =tan"' (E;/Ey1). It follows that 8, = tan~! [(e2/e1)tan 0 ]. If ps# 0 then Ey
is unaffected and D21 = D11 +7ipg so that E21 =D21/e; =(g1/e2)E1L +7pg/es .

2.6.4  Boundary conditions adjacent to perfect conductors

The four boundary conditions (2.6.4), (2.6.5), (2.6.9), and (2.6.11) are simplified when one
medium is a perfect conductor (¢ = o) because electric and magnetic fields must be zero inside
it. The electric field is zero because otherwise it would produce enormous J =GE so as to
redistribute the charges and to neutralize that E almost instantly, with a time constant t = g/o
seconds, as shown in Equation (4.3.3).

It can also be easily shown that B is zero inside perfect conductors. Faraday’s law says
VxE=-0B/ét, so if E=0, then dB/6t=0. If the perfect conductor were created in the
absence of B then B would always remain zero inside. It has further been observed that when
certain special materials become superconducting at low temperatures, as discussed in Section
2.5.2, any pre-existing B is thrust outside.

The boundary conditions for perfect conductors are also relevant for normal conductors

because most metals have sufficient conductivity ¢ to enable J and p, to cancel the incident
electric field, although not instantly. As discussed in Section 4.3.1, this relaxation process by

which charges move to cancel E is sufficiently fast for most metallic conductors that they
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largely obey the perfect-conductor boundary conditions for most wavelengths of interest, from
DC to beyond the infrared region. This relaxation time constant is T = &/c seconds. One
consequence of finite conductivity is that any surface current penetrates metals to some depth
8 =./2/ouc , called the skin depth, as discussed in Section 9.2. At sufficiently low frequencies,

even sea water with its limited conductivity largely obeys the perfect-conductor boundary
condition.

The four boundary conditions for fields adjacent to perfect conductors are presented below
together with the more general boundary condition from which they follow when all fields in
medium 2 are zero:

AeB=0 [fromﬁO(E—ﬁz):O_ (2.6.14)
ﬁOﬁ:ps [fromﬁ0(51—52)=ps_ (2.6.15)
AxE=0 [fromﬁx(ﬁl—ﬁz)zO_ (2.6.16)
ﬁxﬁ:js [fromﬁx(ﬁ1—ﬁ2)=js_ (2.6.17)

These four boundary conditions state that magnetic fields can only be parallel to perfect
conductors, while electric fields can only be perpendicular. Moreover, the magnetic fields are
always associated with surface currents flowing in an orthogonal direction; these currents have a
numerical value equal to H. The perpendicular electric fields are always associated with a
surface charge p, numerically equal to D ; the sign of o is positive when D points away from
the conductor.

Example 2.6B
What boundary conditions apply when p—o0, 6 =0, and € = &,?

Solution: Inside this medium H=0 and J=0 because otherwise infinite energy densities,
uH|*/2, are required; static E and B are unconstrained, however.  Since
VxH=0=J+ 65/& inside, dynamic E and D =0 there too. Since Hy and B are
continuous across the boundary, Hy =0 and H, can be anything at the boundary.
Since E;; and D] are continuous (let’s assume ps = 0 if J=0 ), static E and D are
unconstrained at the boundary while dynamic E=D =0 there because there is no
dynamic electric field inside and no dynamic surface charge. Since only H] #0 at

the boundary, this is non-physical and such media don’t exist. For example, there is
no way to match boundary conditions for an incoming plane wave. This impasse

would be avoided if ¢ # 0, for then dynamic ﬁ// and E | could be non-zero.
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2.7  Power and energy in the time and frequency domains, Poynting theorem

2.7.1 Poynting theorem and definition of power and energy in the time domain

To derive the Poynting theorem we can manipulate Maxwell’s equations to produce products of
variables that have the dimensions and character of power or energy. For example, the power

dissipated in a resistor is the product of its voltage and current, so the product EeJ [W m™]

would be of interest. The dimensions of E and J are volts per meter and amperes per square
meter, respectively. Faraday’s and Ampere’s laws are:

VxE = %3 (Faraday’s law) (2.7.1)
oD )
VxH=T+ ¥ (Ampere’s law) (2.7.2)

We can produce the product EeJ and preserve symmetry in the resulting equation by taking the

dot product of E with Ampere’s law and subtracting from it the dot product of H with
Faraday’s law, yielding:

Ee(VxH)-He(VxE) =Ee J+Eo%—]t)+Ho%—lt3 2.7.3)

where (2.7.4) is a vector identity. Equations (2.7.3) and (2.7.4) can be combined to form the
Poynting theorem:

Ve(ExH)+EeT+FEel i HeB -0 [wm?] 2.7.5)

ot ot

The dimension of EeJ and every other term in this equation is W m>. If D=¢E and
- — - — 2 - 2
B=upH, then EedD/ot = 6[8@ /2:|/8t and HedB/ot = 6[ulﬁ| /2]/8‘[ . The factor of one-half
arises because we are now differentiating with respect to a squared quantity rather than a single

quantity, as in (2.7.5). It follows that 8|E|2/2 and u|ﬁ|2/2 have the dimension of J m™ and
represent electric and magnetic energy density, respectively, denoted by W, and W,. The
product EeJ can represent either power dissipation or a power source, both denoted by Py. If

- = =2 ) .. ) .
J=0cE, then P; = G|E| [W m?3] , where o is the conductivity of the medium, as discussed later
in Section 3.1.2. To summarize:

Py = JeE [W m'3:| (power dissipation density) (2.7.6)
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W, = %8|E|2 [J m'3] (electric energy density) (2.7.7)

W, = %M|ﬁ|z [J m'ﬂ (magnetic energy density) (2.7.8)

Thus we can write Poynting’s theorem in a simpler form:

VO(EXE)-I-EOj-i-%(We +Wm) =0 [Wmﬂ (Poynting theorem) (2.7.9)

suggesting that the sum of the divergence of electromagnetic power associated with ExH , the
density of power dissipated, and the rate of increase of energy storage density must equal zero.

The physical interpretation of Ve(ExH) is best seen by applying Gauss’s divergence
theorem to yield the integral form of the Poynting theorem:

— — R — = 1 — — PR —
@A(EXH)-n da+mVE-J dv+(a/at)jij§(E-D+H-B)dv=o [W] (2.7.10)
which can also be represented as:

@A (ExH)en da+ P4 +§(we + wm) =0 [W] (Poynting theorem) (2.7.11)

Based on (2.7.8) and conservation of power (1.1.6) it is natural to associate ExH [W m™]
with the instantaneous power density of an electromagnetic wave characterized by E [V m™]
and H [A m™']. This product is defined as the Poynting vector:

S=ExH [Wm?Z] (Poynting vector)  (2.7.12)

The instantaneous electromagnetic wave intensity of a uniform plane wave. Thus Poynting’s
theorem says that the integral of the inward component of the Poynting vector over the surface of
any volume V equals the sum of the power dissipated and the rate of energy storage increase
inside that volume.

Example 2.7A
Find S(t) and (S(t)) for a uniform plane wave having E = £E cos(wt—kz) . Find the electric

and magnetic energy densities W¢(t,z) and W,(t,z) for the same wave; how are they related?

Solution: H = 2xE/n, = JE, cos(wt —kz)/m, where no = (Lo/g,)"". S=ExH= 2E,’cos*(ot —
kz)/me and (S(t)) = 2E.2n, [Wm?]. We(t,z) = &Eo’ cos’ (ot-kz)/2 [Jm™] and
W(t,z) = uOEoz cos” (wt — 1{2)/21102 = g,Eo” cos” (ot — kz)/2 = We(t,2); the electric and
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magnetic energy densities vary together in space and time and are equal for a single
uniform plane wave.

2.7.2  Complex Poynting theorem and definition of complex power and energy

Unfortunately we cannot blindly apply to power and energy our standard conversion protocol
between frequency-domain and time-domain representations because we no longer have only a
single frequency present. Time-harmonic power and energy involve the products of sinusoids
and therefore exhibit sum and difference frequencies. More explicitly, we cannot simply

represent the Poynting vector S(t)for a field at frequency f [Hz] by Re{S ejwt} because power

has components at both f = 0 and 2f Hz, where @ = 2nf. Nonetheless we can use the
convenience of the time-harmonic notation by restricting it to fields, voltages, and currents while
representing their products, i.e. power and energy, only by their complex averages.

To understand the definitions of complex power and energy, consider the product of two
sinusoids, a(t) and b(t), where:

a(t)=R, {Aej(”t} =R, {Aejaej(’)t} =Acos(ot+a), b(t)=Bcos(ot+p) (2.7.13)
a(t)b(t) = ABcos (ot +a) cos (ot +B) = (AB/2)[ cos (o —B) +cos (2ot +a+B)| (2.7.14)

where we used the identity cosycos® = cos(y—0)+cos(y + 6)]/2 . If we time average (2.7.14)

over a full cycle, represented by the operator (o), then the last term becomes zero, leaving:

(a(t)b(1)) = %ABcos(oc —B)= %Re {Aei*Be P} = LR _{AB*} (2.7.15)

N~

By treating each of the x, y, and z components separately, we can readily show that (2.7.15) can
be extended to vectors:

(A(H)eB(1)) == R, {E.E*} (2.7.16)

N —

The time average of the Poynting vector S(t) = E(t)x H(t) is:
_ B 1 {— —*} _ 1 — I: 2:| . .
<S(t)> = ERe ExH _ERG{S} W/m~ | (Poynting average power density) (2.7.17)
where we define the complex Poynting vector as:

S=ExH" I:W m'z:l (complex Poynting vector)  (2.7.18)
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Note that S is complex and can be purely imaginary. Its average power density is given by
(2.7.17).

We can re-derive Poynting’s theorem to infer the physical significance of this complex
vector, starting from the complex Maxwell equations:

VxE=-joB (Faraday’s law)  (2.7.19)

VxH=J+ joD (Ampere’s law)  (2.7.20)

To see how time-average dissipated power, E o7 /2 is related to other terms, we compute the dot

product of E and the complex conjugate of Ampere’s law, and subtract it from the dot product

of H andF araday’s law to yield:

E*O(VXE)—EO(VXE*):—ij eB-EeJ +joEeD (2.7.21)

Using the vector identity in (2.7.4), we obtain from (2.7.21) the differential form of the complex
Poynting theorem:

Ve (E «H ) =—Ee 1* - ]@(E* eB—EeD ) (complex Poynting theorem) (2.7.22)

The integral form of the complex Poynting theorem follows from the complex differential
form as it did in the time domain, by using Gauss’s divergence theorem. The integral form of
(2.7.22), analogous to (2.7.10), therefore is:

4, (ExH")e da+mV{E-i* +jolH" eB-EeD")fdv=0 (2.7.23)

We can interpret the complex Poynting theorem in terms of physical quantities using
(2.7.17) and by expressing the integral form of the complex Poynting theorem as:

2<j:j> Sei da+2m [ Eel +2jo(Wy-W )}dv=o (2.7.24)

where the complex energy densities and time-average power density dissipated Py are:

0 .13:%&\3\2 [3/m3] (2.7.25)

clE [ym?] (2.7.26)
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Fa = %c"E'z +][],, 200 [We - Wy Jdv = [Wim?] (2.7.27)

. . —2
We recall that the instantaneous magnetic energy density Wy(t) is u|H| /2 [J/m’] from (2.7.8),

. . . —2 . . . —2 . .
and that its time average is u|ﬂ| /4 because its peak density is u|H| /2 and it varies
sinusoidally at 2f Hz. If B=pH = (u, + ju;)H and D = ¢E = (¢, + j&;)E, then (2.7.25)-(2.5.27)
become:

<Wm (t)> = %Re {wm} = %ur |E|2 [J/mﬂ (magnetic energy density) (2.7.28)
<We (t)) = %Re {w sr |E| [J/ 3] (electric energy density) (2.7.29)

Py = %G|E|2 + ”J.V 201, [We - W, [dv = [ W/m?] (power dissipation density) (2.7.30)

We can now interpret the physical significance of the complex Poynting vector S by
restating the real part of (2.7.24) as the time-average quantity:

Py +pg =0 [W] (2.7.31)

where the time-average total power radiated outward across the surface area A is:

—%RegﬁﬁA{S-ﬁ} da [W] (2.7.32)

as also given by (2.7.17), and pq 1s the time-average power dissipated [W] within the volume V,
as given by (2.7.27). The flux density or time-average radiated power intensity [W/m’] is

therefore P, =0.5R [S] . Note that the dissipated power pq can be negative if there is an external
or internal source (e.g., a battery) supplying power to the volume; it is represented by negative

contribution to E o i . The imaginary part of the radiation (2.7.24) becomes:

SEJB [Ses da+m( { .J}+4m[ Wi (8)) - e(t)}])dV:O [W] (2.7.33)

The surface integral over A of the imaginary part of the Poynting vector is the reactive power,
which is simply related by (2.7.33) to the difference between the average magnetic and electric
energies stored in the volume V and to any reactance associated with J.
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2.7.3  Power and energy in uniform plane waves

Consider the +z-propagating uniform time-harmonic plane wave of (2.3.1-2), where:

E(r,t)=%E, cos(z—ct) [V/m] (2.7.34)
H(r,t)= 9\/1‘3;150 cos(z—ct) [A/m?] (2.7.35)

The flux density for this wave is given by the Poynting vector S(t) (2.7.12):
2
= - — E
S(t):Etzfn—Ocosz(z—ct) [W/m?2] (2.7.36)
(6]

where the characteristic impedance of free space is 1, = /u /e, ohms (2.2.19). The time average
of S(t) in (2.7.36) is 2E2/2n, [W/m?].

The electric and magnetic energy densities for this wave can be found from (2.7.7-8):

W, = %8|E|2 = %%Eg cos? (z—ct) [ J/m3] (electric energy density)  (2.7.37)
o1l w22 [ 3] . .
W, = §M|H| =~ €oEj cos (z—ct) LJ/m (magnetic energy density)  (2.7.38)

Note that these two energy densities, W, and Wy, are equal, non-negative, and sinusoidal in
behavior at twice the spatial frequency k = 2n/A [radians/m] of the underlying wave, where
cos’(z - ct) = 0.5[1 + cos 2(z - ct)], as illustrated in Figure 2.7.1; their frequency f[Hz] is also
double that of the underlying wave. They have the same space/time form as the flux density,
except with a different magnitude.

The complex electric and magnetic fields corresponding to (2.7.34-5) are:

E(r)=%E, [V/m] (2.7.39)

H(r) = peg /i Bo [Am?] (2.7.40)

The real and imaginary parts of the complex power for this uniform plane wave indicate the
time average and reactive powers, respectively:

(S(t)) = %Re [S]= %Re [BxH"]=: 2:10 E,[ =2%no [ [wim?] (2.7.41)
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I (S} = 1 {ExH} =0 (2.7.42)

If two superimposed plane waves are propagating in opposite directions with the same
polarization, then the imaginary part of the Poynting vector is usually non-zero. Positive reactive
power flowing into a volume is generally associated with an excess of time-average magnetic
energy storage over electric energy storage in that volume, and vice-versa, with negative reactive
power input corresponding to excess electric energy storage.

E(r,t)=
£E, cos(z—ct)

I |
SG)- \/

Q(Eg/no ) cos? (z—ct)

0l

Figure 2.71 Electric field, electric and magnetic storage, and wave intensity
for a uniform plane wave.

Example 2.7B

Two equal x-polarized plane waves are propagating along the z axis in opposite directions such
that E(t) =0 at z= 0 for all time t. Whatis S(z)?

Solution: E(z)= (e ke _otikz) _( gt 5 = 0; and H(z):j/(Eo/‘r]o)(e_ij+e+jkz), SO
S=ExH =2( z/no) —j2ke _ +jdkz) Z2J( oz/no)sin(2kz). S is pure

imaginary and varies sinusoidally along z between inductive and capacitive reactive
power, with nulls at intervals of A/2.

2.8 Uniqueness theorem

Throughout this text we often implicitly assume uniqueness when we first guess the solution to
Maxwell’s equations for a given set of boundary conditions and then test that solution against
those equations. This process does not guarantee that the resulting solution is unique, and often
there are an infinite number of possible solutions, of which we might guess only one. The
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uniqueness theorem is quite useful for it sets forth constraints on the boundary conditions that
guarantee there is only one solution to Maxwell’s equations, which we can find as usual.

To prove the uniqueness theorem we begin by considering a volume V enclosed by surface
S and governed by Maxwell’s equations:

VeDi=p (2.8.1)

V.Ei:O Vin:— VXHI T+ 2t

(2.8.2)

where 1 =1, 2 correspond to two possible solutions consistent with the given source distributions
p and J. We can now show that the difference Kd = A] — A2 between these two solutions must
be zero under certain conditions, and therefore there can then be no more than one solution: A
represents D, B, E, H, or J.

If we subtract (2.8.1) for i =2 from (2.8.1) for i = 1 we obtain:
Ve(Di—-D2)=VeD4g=0 (2.8.3)

Similar subtraction of corresponding equations for (2.8.2) yield three more Maxwell’s equations
that the difference fields Bg and D4 must satisfy:
oDy

V xHg == (2.8.4)

O0Bd4

VeBg=0 VxEqd =-— ot

where we note that the source terms p and J have vanished from (2.8.3) and (2.8.4) because they
are given and fixed.

The boundary constraints that ensure uniqueness are:

(1) At some time t = 0 the fields are known everywhere so that at that instant
Eq=Dg=Hqg=Bg=0.

(2) At all times and at each point on the surface S either the tangential E or the tangential
H is known.

Applying Poynting’s theorem (2.7.10) to the difference fields at time t proves uniqueness subject
to these constraints:

_m [Hd aBd+Ed agtd}dvﬂﬁﬁs(ﬁdxﬁd).dg:o (2.8.5)
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Boundary constraint (2) ensures that the tangential component of either Eq or Hq is always
zero, thus forcing the cross product in the second integral of (2.8.5) to zero everywhere on the
enclosing surface S. The first integral can be simplified if D =¢E and B=uH, where both &

and p can be functions of position. Because this volume integral then involves only the time

derivative of the squares of the difference fields (|ﬁd|2 and |Ed|2) , and because these fields are

zero at t = 0 by virtue of constraint (1), the difference fields can never depart from zero while
satisfying (2.8.5). Since (2.8.5) holds for all time, the difference fields must therefore always be
zero everywhere, meaning there can be no more than one solution to Maxwell’s equations
subject to the two constraints listed above.

-64 -



Chapter 3: Electromagnetic Fields in Simple Devices and Circuits

3.1  Resistors and capacitors

3.1.1 Introduction

One important application of electromagnetic field analysis is to simple electronic components
such as resistors, capacitors, and inductors, all of which exhibit at higher frequencies
characteristics of the others. Such structures can be analyzed in terms of their: 1) static behavior,
for which we can set 0/0t = 0 in Maxwell’s equations, 2) quasistatic behavior, for which 0/ot is
non-negligible, but we neglect terms of the order 6%/dt’, and 3) dynamic behavior, for which
terms on the order of &*/dt* are not negligible either; in the dynamic case the wavelengths of
interest are no longer large compared to the device dimensions. Because most such devices have
either cylindrical or planar geometries, as discussed in Sections 1.3 and 1.4, their fields and
behavior are generally easily understood. This understanding can be extrapolated to more
complex structures.

One approach to analyzing simple structures is to review the basic constraints imposed by
symmetry, Maxwell’s equations, and boundary conditions, and then to hypothesize the electric
and magnetic fields that would result. These hypotheses can then be tested for consistency with
any remaining constraints not already invoked. To illustrate this approach resistors, capacitors,
and inductors with simple shapes are analyzed in Sections 3.1-2 below.

All physical elements exhibit varying degrees of resistance, inductance, and capacitance,
depending on frequency. This is because: 1) essentially all conducting materials exhibit some
resistance, 2) all currents generate magnetic fields and therefore contribute inductance, and 3) all
voltage differences generate electric fields and therefore contribute capacitance. R’s, L’s, and
C’s are designed to exhibit only one dominant property at low frequencies. Section 3.3 discusses
simple examples of ambivalent device behavior as frequency changes.

Most passive electronic components have two or more terminals where voltages can be
measured. The voltage difference between any two terminals of a passive device generally
depends on the histories of the currents through all the terminals. Common passive linear two-
terminal devices include resistors, inductors, and capacitors (R’s, L’s. and C’s, respectively),
while transformers are commonly three- or four-terminal devices. Devices with even more
terminals are often simply characterized as N-port networks. Connected sets of such passive
linear devices form passive linear circuits which can be analyzed using the methods discussed in
Section 3.4. RLC resonators and RL and RC relaxation circuits are most relevant here because
their physics and behavior resemble those of common electromagnetic systems. RLC resonators
are treated in Section 3.5, and RL, RC, and LC circuits are limiting cases when one of the three
elements becomes negligible.

3.1.2 Resistors

Resistors are two-terminal passive linear devices characterized by their resistance R [ohms]:
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v=iR (3.1.1)

where v(t) and i(t) are the associated voltage and current. That is, one volt across a one-ohm
resistor induces a one-ampere current through it; this defines the ohm.

The resistor illustrated in Figure 3.1.1 is comprised of two parallel perfectly conducting end-
plates between which is placed a medium of conductivity o, permittivity €, permeability u, and
thickness d; the two end plates and the medium all have a constant cross-sectional area A [m’] in
the x-y plane. Let’s assume a static voltage v exists across the resistor R, and that a current i
flows through it.

a b
(@) (b) TV /p
e
x I
, d
YYYVYVVYVYYVY YV YY i
I/ """""" I
+v

Figure 3.1.1 Simple resistor.

Boundary conditions require the electric field E at any perfectly conducting plate to be
perpendicular to it [see (2.6.16); Ex7=0], and Faraday’s law requires that any line integral of
E from one iso-potential end plate to the other must equal the voltage v regardless of the path of
integration (1.3.13). Because the conductivity ¢ [Siemens/m] is uniform within walls parallel to
2, these constraints are satisfied by a static uniform electric field E = 2E, everywhere within the

conducting medium, which would be charge-free since our assumed E is non-divergent. Thus:
d_ A
J.OEozdz=E0d:v (3.1.2)
where E, = v/d [vm™].
Such an electric field within the conducting medium induces a current density J, where:

J=0E [Am?] (3.1.3)
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The total current i flowing is the integral of Je 2 over the device cross-section A, so that:

i= J.J-A.T e 2 dxdy = J-J.A GE e 2 dxdy = HA oE, dxdy =cE A = voA/d (3.1.4)

But i = v/R from (3.1.1), and therefore the static resistance of a simple planar resistor is:
R =v/i=d/cA [ohms] (3.1.5)

The instantaneous power p [W] dissipated in a resistor is i’R = v?/R, and the time-average
power dissipated in the sinusoidal steady state is |1|2 R/Z = |X|2 /2R watts. Alternatively the

local instantaneous power density Py =EeJ [W m'3] can be integrated over the volume of the
resistor to yield the total instantaneous power dissipated:

p=[[J EeTdv=([] EecE dv=olEl’ ad=cAv}/d=v}/R [W] (3.1.6)

which is the expected answer, and where we used (2.1.17): J=cE.

Surface charges reside on the end plates where the electric field is perpendicular to the
perfect conductor. The boundary condition 7ie D =p, (2.6.15) suggests that the surface charge

density ps on the positive end-plate face adjacent to the conducting medium is:
ps = ¢E, LCm?] 3.1.7)

The total static charge Q on the positive resistor end plate is therefore p;A coulombs. By
convention, the subscript s distinguishes surface charge density p, [C m™] from volume charge
density p [C m>]. An equal negative surface charge resides on the other end-plate. The total

stored charged Q = p;A = CV, where C is the device capacitance, as discussed further in Section
3.1.3.

The static currents and voltages in this resistor will produce fields outside the resistor, but
these produce no additional current or voltage at the device terminals and are not of immediate
concern here. Similarly, p and € do not affect the static value of R. At higher frequencies,
however, this resistance R varies and both inductance and capacitance appear, as shown in the
following three sections. Although this static solution for charge, current, and electric field
within the conducting portion of the resistor satisfies Maxwell’s equations, a complete solution
would also prove uniqueness and consistency with H and Maxwell’s equations outside the
device. Uniqueness is addressed by the uniqueness theorem in Section 2.8, and approaches to
finding fields for arbitrary device geometries are discussed briefly in Sections 4.4—6.
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Example 3.1A
Design a practical 100-ohm resistor. If thermal dissipation were a problem, how might that

change the design?

Solution: Resistance R = d/cA (3.1.5), and if we arbitrarily choose a classic cylindrical shape
with resistor length d = 4r, where r is the radius, then A = 7’ = nd*/16 and
R = 16/nrdo = 100. Discrete resistors are smaller for modern low power compact
circuits, so we might set d = 1 mm, yielding 6 = 16/ndR = 16/(t10°x100) =
51 Sm™. Such conductivities roughly correspond, for example, to very salty water or
carbon powder. The surface area of the resistor must be sufficient to dissipate the
maximum power expected, however. Flat resistors thermally bonded to a heat sink
can be smaller than air-cooled devices, and these are often made of thin metallic film.
Some resistors are long wires wound in coils. Resistor failure often occurs where the
local resistance is slightly higher, and the resulting heat typically increases the local
resistance further, causing even more local heating.

3.1.3  Capacitors

Capacitors are two-terminal passive linear devices storing charge Q and characterized by their
capacitance C [Farads], defined by:

Q= Cv [Coulombs] (3.1.8)

where v(t) is the voltage across the capacitor. That is, one static volt across a one-Farad
capacitor stores one Coulomb on each terminal, as discussed further below; this defines the
Farad [Coulombs per volt].

The resistive structure illustrated in Figure 3.1.1 becomes a pure capacitor at low
frequencies if the media conductivity c — 0. Although some capacitors are air-filled with ¢ = ¢,
usually dielectric filler with permittivity € > g, is used. Typical values for the dielectric constant
/e, used in capacitors are ~1-100. In all cases boundary conditions again require that the
electric field E be perpendicular to the perfectly conducting end plates, i.e., to be in the +z
direction, and Faraday’s law requires that any line integral of E from one iso-potential end plate
to the other must equal the voltage v across the capacitor. These constraints are again satisfied
by a static uniform electric field E = 2E, within the medium separating the plates, which is

uniform and charge-free.

We shall neglect temporarily the effects of all fields produced outside the capacitor if its
plate separation d is small compared to its diameter, a common configuration. Thus E, = v/d
[V m"'] (3.1.2). The surface charge density on the positive end-plate face adjacent to the

conducting medium is o, = €E, [C m™], and the total static charge Q on the positive end plate of
area A is therefore:

Q=Ac, = AgE, = Aev/d=Cv [C] (3.1.9)
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Therefore, for a parallel-plate capacitor:
C=¢A/d [Farads] (parallel-plate capacitor) (3.1.10)

Using (3.1.2) and the fact that the charge Q(t) on the positive plate is the time integral of the
current i(t) into it, we obtain the relation between voltage and current for a capacitor:

v =Q/c=(yc)[" i(Ddt G.1.11)

i(t)=C dv(t)/dt (3.1.12)

When two capacitors are connected in parallel as shown in Figure 3.1.2, they are equivalent
to a single capacitor of value Cq storing charge Q.q, where these values are easily found in terms
of the charges (Q1, Q.) and capacitances (C;, C,) associated with the two separate devices.

(@) b
1@> +o 1@, 4+ o————
Q Q2 Q.
v(t) == == Yo = Ceq =
Ci+C
- o Y —

Figure 3.1.2 Capacitors in parallel.

Because the total charge Q.q is the sum of the charges on the two separate capacitors, and
capacitors in parallel have the same voltage v, it follows that:

Qeq = Q1 + Q2= (C; + Co)v =Ceqv (3.1.13)
Ceq=C1 +C (capacitors in parallel)  (3.1.14)
(a) (t) (b)
i, . +V=1=- M, o0
Qv C
v(t) va(t) E:Q(t) v(t) Q(gz Ceq! =
1 G Cil+ Gyt
-0 - o0— |

Figure 3.1.3 Capacitors in series.
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When two capacitors are connected in series, as illustrated in Figure 3.1.3, then their two
charges Q; and Q, remain equal if they were equal before current i(t) began to flow, and the total
voltage is the sum of the voltages across each capacitor:

Ceq =V/Q=(Vi +V)/Q=C;" + ! (capacitors in series)  (3.1.15)

The instantaneous electric energy density W, [J m™] between the capacitor plates is given by

—2
Poynting’s theorem: W, = ¢|El /2 (2.7.7). The total electric energy w, stored in the capacitor is
the integral of W, over the volume Ad of the dielectric:

we =|[ jv(glﬁlz/z)dv _eAdEP L =eavihd=cvih 1] (3.1.16)

The corresponding expression for the time-average energy stored in a capacitor in the sinusoidal
steady state is:

we=Cly/?/a [ ] (3.1.17)

The extra factor of two relative to (3.1.9) enters because the time average of a sinsuoid squared is
half its peak value.

To prove (3.1.16) for any capacitor C, not just parallel-plate devices, we can compute
W, = j'(;iv dt where i=dq/dt and q=Cv. Therefore w, = j'(EC(dV/dt)V dt=[,Cv dv=Cv?2
in general.

We can also analyze other capacitor geometries, such as the cylindrical capacitor illustrated

in Figure 3.1.4. The inner radius is “a”, the outer radius is “b”, and the length is D; its interior
has permittivity €.

Figure 3.1.4 Cylindrical capacitor.

The electric field again must be divergence- and curl-free in the charge-free regions between
the two cylinders, and must be perpendicular to the inner and outer cylinders at their perfectly
conducting walls. The solution can be cylindrically symmetric and independent of ¢. A purely
radial electric field has these properties:
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E(r)=7E,/r (3.1.18)

The electric potential ®(r) is the integral of the electric field, so the potential difference v
between the inner and outer conductors is:

b
v:cpa—cpb:jaE—;’dr:Eolnr\g’:Eoln(g) [V] (3.1.19)

This capacitor voltage produces a surface charge density ps on the inner and outer
conductors, where ps = €E = gEy/r. If @, > @y, then the inner cylinder is positively charged, the
outer cylinder is negatively charged, and E, is positive. The total charge Q on the inner cylinder
is then:

Q = ps2maD = ¢E, 21D = ev2nD/[ In(bja) | =@ [ ] (3.1.20)
Therefore this cylindrical capacitor has capacitance C:
C= 827'ED/ [ln(b/a)lﬂ [ ] (cylindrical capacitor)  (3.1.21)

In the limit where b/a — 1 and b - a = d, then we have approximately a parallel-plate capacitor
with C — gA/d where the plate area A = 2naD; see (3.1.10).

Example 3.1B
Design a practical 100-volt 10 farad (0.01 mfd) capacitor using dielectric having & = 20, and a

breakdown field strength Eg of 107 [V m™].

Solution: For parallel-plate capacitors C = ¢A/d (3.1.10), and the device breakdown voltage is
Egd = 100 [V]. Therefore the plate separation d = 100/Eg = 10” [m]. With a safety
factor of two, d doubles to 2x107, so A = dC/e = 2x10” x 10'8/(20 X 6.85x10'12) =
1.5x10° [mz]. If the capacitor is a cube of side D, then the capacitor volume is D’ =
Ad and D = (Ad)™*** = (1.5x107 x 2x10°)*** =~ 3.1 mm. To simplify manufacture,
such capacitors are usually wound in cylinders or cut from flat stacked sheets.

3.2 Inductors and transformers

3.2.1 Solenoidal inductors

All currents in devices produce magnetic fields that store magnetic energy and therefore
contribute inductance to a degree that depends on frequency. When two circuit branches share
magnetic fields, each will typically induce a voltage in the other, thus coupling the branches so
they form a transformer, as discussed in Section 3.2.4.
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Inductors are two-terminal passive devices specifically designed to store magnetic energy,
particularly at frequencies below some design-dependent upper limit. One simple geometry is
shown in Figure 3.2.1 in which current i(t) flows in a loop through two perfectly conducting
parallel plates of width W and length D, spaced d apart, and short-circuited at one end.

(a) contour Cz (b)
contour C, 7? H=0 contour C;

j > .
l(t)::> - ?’\ L !.., (o) (TJ/

; —_—

! Hy ——
i(t)<}:| 1 e

_ =0

y J
z z=0

Figure 3.2.1 Parallel-plate inductor.

To find the magnetic field from the currents we can use the integral form of Ampere’s law,
which links the variables H and T :

¢ Heds= [, (J+oD/ot)eda (3.2.1)

The contour C; around both currents in Figure 3.2.1 encircles zero net current, and (3.2.1) says
the contour integral of H around zero net current must be zero in the static case. Contour C,
encircles only the current i(t), so the contour integral of H around any C, in the right-hand sense
equals i(t) for the static case. The values of these two contour integrals are consistent with zero
magnetic field outside the pair of plates and a constant field H = H,j between them, although a

uniform magnetic field could be superimposed everywhere without altering those integrals.
Since such a uniform field would not have the same symmetry as this device, such a field would
have to be generated elsewhere. These integrals are also exactly consistent with fringing fields at
the edges of the plate, as illustrated in Figure 3.2.1(b) in the x-y plane for z > 0. Fringing fields
can usually be neglected if the plate separation d is much less than the plate width W.

It follows that:
o, Heds=i(t)=H,W (3.2.2)
H=jpH,=9i(t)/W [Am™] (H between the plates)  (3.2.3)

and H=0 elsewhere.
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Figure 3.2.2 Voltages induced on a parallel-plate inductor.

The voltage v(t) across the terminals of the inductor illustrated in Figures 3.2.1 and 3.2.2 can
be found using the integral form of Faraday’s law and (3.2.3):

T O Teds. bDddi(t) _ 2 __
(ﬁCEOds— atﬂAuHOda— W dt _Il E, (t,z)dx =—v(t,z) (3.24)

where z = D at the inductor terminals. Note that when we integrate E around contour C there is
zero contribution along the path inside the perfect conductor; the non-zero portion is restricted to
the illustrated path 1-2. Therefore:

v(t) = ”\3‘1 dh(tt) -1 did(tt) (3.2.5)

where (3.2.5) defines the inductance L [Henries] of any inductor. Therefore L, for a single-turn
current loop having length W >>d and area A = Dd is:

L= %ﬁ = % [H] (single-turn wide inductor)  (3.2.6)

To simplify these equations we define magnetic flux i, as®:

Yy = J-J.Auﬁ eda [Webers = Vs] (3.2.7)

Then Equations (3.2.4) and (3.2.7) become:
v(t) = dyp, (t)/dt (3.2.8)

ym (1) =L i(t) (single-turn inductor) (3.2.9)

¥ The symbol v,, for magnetic flux [Webers] should not be confused with ¥ for magnetic potential [Amperes].
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Since we assumed fringing fields could be neglected because W >> d, large single-turn
inductors require very large structures. The standard approach to increasing inductance L in a
limited volume is instead to use multi-turn coils as illustrated in Figure 3.2.3.

(b)

o

Figure 3.2.3 N-turn inductor: (a) solenoid, (b) toroid.

The N-turn coil of Figure 3.2.3 duplicates the current flow geometry illustrated in Figures
3.2.1 and 3.2.2, but with N times the intensity (A m™) for the same terminal current i(t), and
therefore the magnetic field H, and flux y,, are also N times stronger than before. At the same
time the voltage induced in each turn is proportional to the flux yy, through it, which is now N
times greater than for a single-turn coil (v, = NipA/W), and the total voltage across the inductor
is the sum of the voltages across the N turns. Therefore, provided that W >> d, the total voltage
across an N-turn inductor is N? times its one-turn value, and the inductance Ly of an N-turn coil
is also N? greater than L, for a one-turn coil:

o dit) 2y di(t)

v(t)=Ly = NL = (3.2.10)
_ 2 HA 12

Ly=N W [ ] (N-turn solenoidal inductor) (3.2.11)

where A is the coil area and W is its length; W >> JA >d.
Equation (3.2.11) also applies to cylindrical coils having W >> d, which is the most
common form of inductor. To achieve large values of N the turns of wire can be wound on top

of each other with little adverse effect; (3.2.11) still applies.

These expressions can also be simplified by defining magnetic flux linkage A as the
magnetic flux yy, (3.2.7) linked by N turns of the current i, where:

A =Nym= NNipA/W) = (N>uA/W)i = Li (flux linkage)  (3.2.12)

This equation A = Li is dual to the expression Q = Cv for capacitors. We can use (3.2.5) and
(3.2.12) to express the voltage v across N turns of a coil as:

v =L di/dt = dA/dt (any coil linking magnetic flux A)  (3.2.13)
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The net inductance L of two inductors L; and L, in series or parallel is related to L; and L,
in the same way two connected resistors are related:

L=L,+L, (series combination) (3.2.14)
L'=L,"+L," (parallel combination) (3.2.15)

For example, two inductors in series convey the same current i but the total voltage across the
pair is the sum of the voltages across each — so the inductances add.

Example 3.2A
Design a 100-Henry air-wound inductor.

Solution: Equation (3.2.11) says L = N*uA/W, so N and the form factor A/W must be chosen.
Since A = 7ir” is the area of a cylindrical inductor of radius r, then W = 4r implies L =
N°umr/4. Although tiny inductors (small r) can be achieved with a large number of
turns N, N is limited by the ratio of the cross-sectional areas of the coil rW and of the
wire nrwz, and is N = rz/rwz. N is further limited if we want the resistive impedance R
<<joL. If ompn 1s the lowest frequency of interest, then we want R = @y,;,[./100 =
d/(omry’) [see (3.1.5)], where the wire length d = 2nrN. These constraints eventually
yield the desired values for r and N that yield the smallest inductor. Example 3.2B
carries these issues further.

3.2.2  Toroidal inductors

The prior discussion assumed p filled all space. If u is restricted to the interior of a solenoid, L
is diminished significantly, but coils wound on a high-p foroid, a donut-shaped structure as

illustrated in Figure 3.2.3(b), yield the full benefit of high values for p. Typical values of p are
~5000 to 180,000 for iron, and up to ~10° for special materials.

Coils wound on high-permeability toroids exhibit significantly less flux leakage than
solenoids. Consider the boundary between air and a high-permeability material (u/p, >>1), as
illustrated in Figure 3.2.4.

Biy >>Hiy

Figure 3.2.4 Magnetic fields at high-permeability boundaries.
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The degree to which B is parallel or perpendicular to the illustrated boundary has been
diminished substantially for the purpose of clarity. The boundary conditions are that both B
and Hy, are continuous across any interface (2.6.5, 2.6.11). Since B =pH in the permeable core
and B=p H in air, and since Hy is continuous across the boundary, therefore B/ changes

across the boundary by the large factor w/po,. In contrast, Bl is the same on both sides.
Therefore, as suggested in Figure 3.2.4, By in air is nearly perpendicular to the boundary
because ﬁ//, and therefore _Bz//, is so very small; note that the figure has been scaled so that the
arrows representing H, and B, have the same length when p = p.

l(t) . L ) .
v(t) .§ | w>> U, €.g. iron
) : =% Cross-sectional area A

Figure 3.2.5 Toroidal inductor.

In contrast, B is nearly parallel to the boundary and is therefore largely trapped there, even if
that boundary curves, as shown for a toroid in Figure 3.2.5. The reason magnetic flux is largely
trapped within high-p materials is also closely related to the reason current is trapped within
high-c wires, as described in Section 4.3.

The inductance of a foroidal inductor is simply related to the linked magnetic flux A by

(3.2.12) and (3.2.7):

uN|[| Heda
L= A = ”A— (toroidal inductor)  (3.2.16)

where A is any cross-sectional area of the toroid.

Computing H is easier if the toroid is circular and has a constant cross-section A which is
small compared to the major radius R so that R >> JA . From Ampere’s law we learn that the
integral of H around the 2nR circumference of this toroid is:

cﬁcﬁod§;2nRH;Ni (3.2.17)

where the only linked current is i(t) flowing through the N turns of wire threading the toroid.
Equation (3.2.17) yields H = Ni/2nR and (3.2.16) relates H to L. Therefore the inductance L of
such a toroid found from (3.2.16) and (3.2.17) is:

UNA Ni _uNzA
i 2nR  2nR

L= [Henries] (toroidal inductor)  (3.2.18)

-76 -



The inductance is proportional to p, N°, and cross-sectional area A, but declines as the toroid
major radius R increases. The most compact large-L toroids are therefore fat (large A) with
almost no hole in the middle (small R); the hole size is determined by N (made as large as
possible) and the wire diameter (made small). The maximum acceptable series resistance of the
indu;:tor limits N and the wire diameter; for a given wire mass [kg] this resistance is proportional
to N~

Figure 3.2.6 Toroidal inductor with a small gap.

The inductance of a high-permeability toroid is strongly reduced if even a small gap of
width d exists in the magnetic path, as shown in Figure 3.2.6. The inductance L of a toroid with
a gap of width d can be found using (3.2.16), but first we must find the magnitude of H,, within
the toroid. Again we can use the integral form of Ampere’s law for a closed contour along the
axis of the toroid, encircling the hole.

cﬁcﬁodéz(2nR—d)Hu+Hgd;Ni (3.2.19)

where H, is the magnitude of H within the gap. Since B, is continuous across the gap faces,
noHg = pH, and these two equations can be solved for the two unknowns, H, and H,. The
second term H,d can be neglected if the gap width d << 2nRp/p. In this limiting case we have
the same inductance as before, (3.2.18). However, if A>® > d >> 2nRp,/p, then H, = Ni/d and:

L=Afi= Nyp/i= NuHoA/i= N> A/d [H]  (toroid with a gap) ~ (3.2.20)

Relative to (3.2.18) the inductance has been reduced by a factor of pu,/p and increased by a much
smaller factor of 2nR/d, a significant net reduction even though the gap is small.

Equation (3.2.20) suggests how small air gaps in magnetic motors limit motor inductance
and sometimes motor torque, as discussed further in Section 6.3. Gaps can be useful too. For
example, if p is non-linear [u = f (H)], then L # f(H) if the gap and p, dominate L. Also,
inductance dominated by gaps can store more energy when H exceeds saturation (i.e.,

B%/2y1, > B3ar/21).
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3.2.3  Energy storage in inductors

The energy stored in an inductor resides in its magnetic field, which has an instantaneous energy
density of:

W, (0 =plid?A [1m?] (3.2.21)

Since the magnetic field is uniform within the volume Ad of the rectangular inductor of Figure
3.2.1, the total instantaneous magnetic energy stored there is:

Wi = pAW[AR2 2 AW (iW)? 2 2 Li2/2 [1] (3.2.22)

That (3.2.22) is valid and exact for any inductance L can be shown using Poynting’s theorem,
which relates power P = vi at the device terminals to changes in energy storage:

W= [ v(0i(0de=]" L(di/de)ide=] (i)Li di =Li2/2[1] (3.2.23)

Earlier we neglected fringing fields, but they store magnetic energy too. We can compute

them accurately using the Biot-Savart law (10.2.21), which is derived later and expresses H
directly in terms of the currents flowing in the inductor:

) =[], av 1@ -] Lank -1 (3:2.24)

The magnetic field produced by current J(r") diminishes with distance squared, and therefore
the magnitude of the uniform field H within the inductor is dominated by currents within a
distance of ~d of the inductor ends, where d is the nominal diameter or thickness of the inductor
[see Figure 3.2.3(a) and assume d = D << W]. Therefore IH| at the center of the end-face of a
semi-infinite cylindrical inductor has precisely half the strength it has near the middle of the

same inductor because the Biot-Savart contributions to H at the end-face arise only from one
side of the end-face, not from both sides.

The energy density within a solenoidal inductor therefore diminishes within a distance of ~d
from each end, but this is partially compensated in (3.2.23) by the neglected magnetic energy
outside the inductor, which also decays within a distance ~d. For these reasons fringing fields
are usually neglected in inductance computations when d << W. Because magnetic flux is non-
divergent, the reduced field intensity near the ends of solenoids implies that some magnetic field
lines escape the coil there; they are fully trapped within the rest of the coil.

The energy stored in a thin toroidal inductor can be found using (3.2.21):

W = (u|ﬁ|2/2)A2nR (3.2.25)
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The energy stored in a toroidal inductor with a non-negligible gap of width d can be easily found
knowing that the energy storage in the gap dominates that in the high-permeability toroid, so
that:

Wi = (1oHg?/2) Ad = 1, (Nifd)* Adj2 2 Li%2 (3.2.26)

Example 3.2B
Design a practical 100-Henry inductor wound on a toroid having p = 10*p,; it is to be used for

® = 400 [r s'] (~60 Hz). How many Joules can it store if the current is one Ampere? If the
residual flux density B; of the toroid is 0.2 Tesla, how does this affect design?

Solution: We have at least three unknowns, 1,e., size, number of turns N, and wire radius r,,, and
therefore need at least three equations. Equation (3.2.18) says L = uN*A/2nR,, where
A = nr’. A fat toroid might have major radius Ry, = 3r, corresponding to a central
hole of radius 2r surrounded by an iron torus 2r thick, yielding an outer diameter of
4r. Our first equation follows: L = 100 = pN’r/6. Next, the number N of turns is
limited by the ratio of the cross-sectional area of the hole in the torus (7:4r2) and the
cross-sectional area of the wire 7r,*; our second equation is N = 4r/r,>. Although
tiny inductors (small r) can be achieved with large N, N is limited if we want the
resistive impedance R << L. If oni, is the lowest frequency of interest, then we
obtain our third equation, R = 0mi;L/100 = 400 = d/(onr,’) [see (3.1.5)], where the
wire length d = 4nrN. Eliminating r,,”> from the second and third equation yields N* =
400ct, and eliminating N* from the first equation yields r = (600/400cp)"> = 1.5mm,
where for typical wires 6 = 5x107; the maximum diameter of this toroid is 8r = 1.2

cm. Since N? = 400cr, therefore N = 5600, and ry, = 21/ x/ﬁ =~ 40 microns.

We might suppose the stored energy wy, = Li*/2 = 100x1%/2 = 50 joules. However, if
1 ampere flows through 5600 turns, and if H = 5600/273r = 5600/0.031 = 1.8x10°
[A m'], then B = uH = 2300 Tesla, well above the limit of B, = 0.2 Tesla where
saturation was said to occur. Since the incremental p, applies at high currents, this
device is quite non-linear and the computed stored energy of 50J should be reduced
by a factor of ~u/p to yield ~5 mJ. If linearity and low loss (R<<wL) are desired,
either this toroid must be made much larger so that the upper limit on uH inside the
toroid is not exceeded, or the maximum current must be reduced to the ~100 pA
level. Moreover, a sinusoidal current of 1 ampere through this small 400-ohm
resistance would dissipate 200 W, enough to damage it. Note that if ®p;, is increased
by a factor of F, then r decreases by F*-.
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3.2.4  Transformers

Transformers are passive devices used to raise or lower the voltages of alternating currents or
transients. The voltage v across two terminals of any coil can be found using Faraday’s law
(2.4.14):

gSCE-déz—%jjAuoﬁ-da (3.227)

which leads to the voltage across any N turns of a coil, as given by (3.2.13):
v=dA/dt (3.2.28)

where the flux linkage A = Ny, and the magnetic flux y,, within the cross-sectional area A of
the coil is defined by (3.2.7):

¥, = J-J-A uHeda [Webers = Vs] (3.2.29)

Consider the ideal toroidal transformer of Figure 3.2.7.

L >> U, ; €.g. iron
Cross-sectional area A

Figure 3.2.7 Toroidal transformer.

Its high permeability traps the magnetic flux within it so that y,, is constant around the toroid,
even though A varies. From (3.2.28) we see that the voltage vy across coil k is therefore:

Vi =dAy /dt =N d¥,,, /dt (3.2.30)
The ratio between the voltages across two coils k = 1,2 is therefore:

va/vi =Ny /Ny (3.2.31)
where N»/N; is the transformer turns ratio.

If current 1, flows in the output coil, then there will be an added contribution to v; and v, due
to the contributions of i, to the original yy, from the input coil alone. Note that current flowing
into the “+” terminal of both coils in the figure contribute to H in the illustrated direction; this
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distinguishes the positive terminal from the negative terminal of each coil. If the flux coupling
between the two coils is imperfect, then the output voltage is correspondingly reduced. Any
resistance in the wires can increment these voltages in proportion to the currents.

Figure 3.2.8 suggests traditional symbols used to represent ideal transformers and some
common configurations used in practice. The polarity dot at the end of each coil indicates which
terminals would register the same voltage for a given change in the linked magnetic flux. In the
absence of dots, the polarity indicated in (a) is understood. Note that many transformers consist
of a single coil with multiple taps. Sometimes one of the taps is a commutator that can slide
across the coil windings to provide a continuously variable transformer turns ratio. As
illustrated, the presence of an iron core is indicated by parallel lines and an auto-transformer
consists of only one tapped coil.

@ o o (b)) o (c) (d)
o, O o, ‘ ‘ ‘ PY O o, % O E
Figure 3.2.8 Transformer configurations:
(a) air-core, (b) iron-core, (c) tapped, and (d) auto-transformer.

The terminal voltages of linear transformers for which p # f(H) are linearly related to the
various currents flowing through the windings. Consider a simple toroid for which H, B, and the
cross-sectional area A are the same everywhere around the average circumference nD. In this
case the voltage V| across the N; turns of coil (1) is:

Vi=joN, (3.2.32)

¥ =pHA (3.2.33)

H=(Nil; + NoLb)/nD (3.2.34)
Therefore:

V| =jo[uAN;(NL; + NaoL)/aD] = jo(L;1; + Lioly) (3.2.35)

where the self-inductance L, and mutual inductance L, [Henries] are:
L, = pAN,*/nD Li> = pANNy/nD (3.2.36)

Equation (3.2.35) can be generalized for a two-coil transformer:
V, L L I
[;1} ~ { 1 12}{——1} (3.2.37)
\_/2 L21 L22 12
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Consider the simple toroidal step-up transformer illustrated in Figure 3.2.9 in which the
voltage source drives the load resistor R through the transformer, which has N; and N, turns on
its input and output, respectively. The toroid has major diameter D and cross-sectional area A.

Figure 3.2.9 Toroidal step-up transformer loaded with resistor R.

Combining (3.2.33) and (3.2.34), and noting that the sign of I, has been reversed in the
figure, we obtain the expression for total flux:

¥ =pA (NiI; + NoLb)/nD (3.2.38)

We can find the admittance seen by the voltage source by solving (3.2.38) for I, and dividing by
Vi:

I = (rDY/pAN)) + I, No/N, (3.2.39)
Vi = joN;¥ = VoN /N, = LRN /N, (3.2.40)
L,/Vs = (nDY/pAN))/joN ¥ + LN,*/(N,’LR) (3.2.41)

= - inD/(oN*nA) + (No/N /R = 1/joL; + (N2/N;)/R (3.2.42)

Thus the admittance seen at the input to the transformer is that of the self-inductance (1/joL;;) in
parallel with the admittance of the transformed resistance [(N2/N 1)2/R]. The power delivered to
the load is [Vo[”2R = |Vi[*(N2/N|)*/2R, which is the time-average power delivered to the
transformer, since |yz|2 = |y1|2(N2/N1)2; see (3.2.31).

The transformer equivalent circuit is thus L;; in parallel with the input of an ideal
transformer with turns ratio N,/N;. Resistive losses in the input and output coils could be
represented by resistors in series with the input and output lines. Usually joL,; for an iron-core
transformer is so great that only the ideal transformer is important.

One significant problem with iron-core transformers is that the changing magnetic fields
within them can generate considerable voltages and eddy currents by virtue of Ohm’s Law ( J =
¢ E) and Faraday’s law:
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gSC Eeds= —jmujAﬂ-da (3.2.43)

where the contour C circles each conducting magnetic element. A simple standard method for
reducing the eddy currents J and the associated dissipated power |y (c]J*/2)dv is to reduce the
area A by laminating the core; i.e., by fabricating it with thin stacked insulated slabs of iron or
steel oriented so as to interrupt the eddy currents. The eddy currents flow perpendicular to H, so
the slab should be sliced along the direction of H. If N stacked slabs replace a single slab, then
A, E, and J are each reduced roughly by a factor of N, so the power dissipated, which is
proportional to the square of J, is reduced by a factor of ~N*. Eddy currents and laminated cores
are discussed further at the end of Section 4.3.3.

3.3 Quasistatic behavior of devices

3.3.1 Electroquasistatic behavior of devices

The voltages and currents associated with all interesting devices sometimes vary. If the
wavelength A = c¢/f associated with these variations is much larger than the device size D, no
significant wave behavior can occur. The device behavior can then be characterized as
electroquasistatic if the device stores primarily electric energy, and magnetoquasistatic if the
device stores primarily magnetic energy. Electroquasistatics involves the behavior of electric
fields plus the first-order magnetic consequences of their variations. The electroquasistatic
approximation includes the magnetic field H generated by the varying dominant electric field
(Ampere’s law), where:

f-oE+ D
VxH=cE+ a (3.3.1)

The quasistatic approximation neglects the second-order electric field contributions from the
time derivative of the resulting H in Faraday’s law: VxE = —u,0H/6t = 0.

One simple geometry involving slowly varying electric fields is a capacitor charged to
voltage V(t), as illustrated in Figure 3.3.1. It consists of two circular parallel conducting plates
of diameter D and area A that are separated in vacuum by the distance d << D. Boundary
conditions require E to be perpendicular to the plates, where E(t) = V(t)/d, and the surface
charge density is given by (2.6.15):

Eefi=p /e, =V/d (3.3.2)

ps=g,V/d [Cm™?] (3.3.3)
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Figure 3.3.1 Quasistatic electric and magnetic fields in a circular capacitor.

Since the voltage across the plates is the same everywhere, so are E and ps, and therefore the
total charge is:

Q(t) = psA = (8,A/d)V = CV(1) (3.3.4)

where C = ¢,A/d is the capacitance, as shown earlier (3.1.10). The same surface charge density
ps(t) can also be found by evaluating first the magnetic field H(r,t) produced by the slowly
varying (quasistatic) electric field E(t), and then the surface current J|(r,t) associated
with H(r,t); charge conservation then links Jy(r,t) to ps(t).

Ampere’s law requires a non-zero magnetic field between the plates where J = 0:
C.[)CHOds =80J..[A,(8E/8t)0da (3.3.5)

Symmetry of geometry and excitation requires that H between the plates be in the ¢ direction
and a function only of radius r, so (3.3.5) becomes:

2nr H(r) = gonr® dE/dt = (gonr™/d) dV/dt (3.3.6)
H(r) = (e,1/2d) dV/dt (3.3.7)
If V(t) and the magnetic field H are varying so slowly that the electric field given by Faraday’s
law for H(r) is much less than the original electric field, then that incremental electric field can
be neglected, which is the essence of the electroquasistatic approximation. If it cannot be

neglected, then the resulting solution becomes more wavelike, as discussed in later sections.

The boundary condition i x H = J; (2.6.17) then yields the associated surface current J(r)
flowing on the interior surface of the top plate:

Jy(r) =  (eor/2d) dV/dt = £ I (3.3.8)
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This in turn is related to the surface charge density ps by conservation of charge (2.1.19), where
the del operator is in cylindrical coordinates:

Ve Jo=-0p/ot=-1'0(rJy)or (3.3.9)
Substituting Ji; from (3.3.8) into the right-hand side of (3.3.9) yields:
Ops/0t = (g,/d) dV/dt (3.3.10)

Multiplying both sides of (3.3.10) by the plate area A and integrating over time then yields Q(t)
= CV(t), which is the same as (3.3.4). Thus we could conclude that variations in V(t) will
produce magnetic fields between capacitor plates by virtue of Ampere’s law and the values of

either 65/6‘[ between the capacitor plates or J; within the plates. These two approaches to

finding H (using 65/(% or J,) yield the same result because of the self-consistency of
Maxwell’s equations.

Because the curl of H in Ampere’s law equals the sum of current density J and aﬁ/ﬁt , the
derivative 85/& is often called the displacement current density because the units are the same,

A/mz._ For the capacitor of Figure 3.3.1 the curl of H near the feed wires is associated only
with J (or 1), whereas between the capacitor plates the curl of H is associated only with
displacement current.

Section 3.3.4 treats the electroquasistatic behavior of electric fields within conductors and
relaxation phenomena.

3.3.2 Magnetoquasistatic behavior of devices

All currents produce magnetic fields that in turn generate electric fields if those magnetic fields
vary. Magnetoquasistatics characterizes the behavior of such slowly varying fields while

neglecting the second-order magnetic fields generated by ﬁﬁ/ét in Ampere’s law, (2.1.6):
VxH=J+ 65/& ~] (quasistatic Ampere’s law)  (3.3.11)
The associated electric field E can then be found from Faraday's law:
VxE = —aﬁ/ﬁt (Faraday’s law) (3.3.12)

Section 3.2.1 treated an example for which the dominant effect of the quasistatic magnetic
field in a current loop is voltage induced via Faraday’s law, while the example of a short wire
follows; both are inductors. Section 3.3.4 treats the magnetoquasistatic example of magnetic
diffusion, which is dominated by currents induced by the first-order induced voltages, and
resulting modification of the original magnetic field by those induced currents. In every
quasistatic problem wave effects can be neglected because the associated wavelength A >> D,
where D is the maximum device dimension.
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We can roughly estimate the inductance of a short wire segment by modeling it as a
perfectly conducting cylinder of radius r, and length D carrying a current i(t), as illustrated in
Figure 3.3.2. An exact computation would normally be done using computer tools designed for
such tasks because analytic solutions are practical only for extremely simple geometries. In this
analysis we neglect any contributions to H from currents in nearby conductors, which requires
those nearby conductors to have much larger diameters or be far away. = We also make the
quasistatic assumption A >> D.

N
D,

Figure 3.3.2 Inductance of an isolated wire segment.

We know from (3.2.23) that the inductance of any device can be expressed in terms of the
magnetic energy stored as a function of its current i:

L=2w,/i> [H] (3.3.13)

Therefore to estimate L we first estimate H and wy,. If the cylinder were infinitely long then

H = AH (r) must obey Ampere’s law and exhibit the same cylindrical symmetry, as suggested in
the figure. Therefore:

gSCﬁ-dézznrH(r):i(t) (3.3.14)
and H(r) =i/2nr. Therefore the instantaneous magnetic energy density is:
(W)= 21oH2 (1) = D, (if2m) - L] (3.3.15)

To find the total average stored magnetic energy we must integrate over volume. Laterally
we can neglect fringing fields and simply integrate over the length D. Integration with respect
to radius will produce a logarithmic answer that becomes infinite if the maximum radius is
infinite. A plausible outer limit for r is ~D because the Biot-Savart law (1.4.6) says fields
decrease as 1 from their source if that source is local; the transition from slow cylindrical field
decay as r' to decay as r” occurs at distances r comparable to the largest dimension of the
source: r = D. With these approximations we find:
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D (D D i \?
Wi ;J.O dz_[rO (W, )2mr dr;DJ.rO %HO(L) 2nr dr

2mr (3.3.16)
=(uODi2/4n)lnr b =(;,L0Di2/4n)ln(D/r0) [J]
Using (3.3.13) we find the inductance L for this wire segment is:
L = (p,D/27)In(D/r,) [Hy] (3.3.17)

where the units “Henries” are abbreviated here as “Hy”. Note that superposition does not apply
here because we are integrating energy densities, which are squares of field strengths, and the
outer limit of the integral (3.3.16) is wire length D, so longer wires have slightly more
inductance than the sum of shorter elements into which they might be subdivided.

3.3.3  Equivalent circuits for simple devices

Section 3.1 showed how the parallel plate resistor of Figure 3.1.1 would exhibit resistance R =
d/cA ohms and capacitance C = ¢A/d farads, connected in parallel. The currents in the same
device also generate magnetic fields and add inductance.

Referring to Figure 3.1.1 of the original parallel plate resistor, most of the inductance will
arise from the wires, since they have a very small radius r, compared to that of the plates. This
inductance L will be in series with the RC portions of the device because their two voltage drops
add. The R and C components are in parallel because the total current through the device is the
sum of the conduction current and the displacement current, and the voltages driving these two
currents are the same, i.e., the voltage between the parallel plates. The corresponding first-order
equivalent circuit is illustrated in Figure 3.3.3.

C
(T =

R

Figure 3.3.3 Equivalent RLC circuit of a parallel-plate capacitor.

Examination of Figure 3.3.3 suggests that at very low frequencies the resistance R
dominates because, relative to the resistor, the inductor and capacitor become approximate short
and open circuits, respectively. At the highest frequencies the inductor dominates. As f
increases from zero beyond where R dominates, either the RL or the RC circuit first dominates,
depending on whether C shorts the resistance R at lower frequencies than when L open-circuits

R; that is, RC dominates first when R >+/L/C. At still higher frequencies the LC circuit
dominates, followed by L alone. For certain combinations of R, L, and C, some transitions can
merge.

-87 -



Even this model for a resistor is too simple; for example, the wires also exhibit resistance
and there is magnetic energy stored between the end plates because dD/dt # 0 there. Since such

parasitic effects typically become important only at frequencies above the frequency range
specified for the device, they are normally neglected. Even more complex behavior can result if
the frequencies are so high that the device dimensions exceed ~A/8, as discussed later in Section
7.1. Similar considerations apply to every resistor, capacitor, inductor, or transformer
manufactured. Components and circuits designed for very high frequencies minimize unwanted
parasitic capacitance and parasitic inductance by their very small size and proper choice of
materials and geometry. It is common for circuit designers using components or wires near their
design limits to model them with simple lumped-element equivalent circuits like that of Figure
3.3.3, which include the dominant parasitic effects. The form of these circuits obviously depends
on the detailed structure of the modeled device; for example, R and C might be in series.

Example 3.3A
What are the approximate values L and C for thel00-Q resistor designed in Example 3.1A if

& = 4¢,, and what are the three critical frequencies (RC)”, R/L, and (LC)™?

Solution: The solution to 3.1A said the conducting caps of the resistor have area A = nr’ =
1(2.5x10™*)?, and the length of the dielectric d is 1 mm. The permittivity & = 4&,, so
the capacitance (3.1.10) is C = €A/d = 4x8.85x10"*xn(2.5x10%%10° = 7x107"°
farads. The inductance L of this device would probably be dominated by that of the
connecting wires because their diameters would be smaller and their length longer.
Assume the wire length is D = 4d = 4x107, and its radius r is 10*. Then (3.3.17)
yields L = (uwD/16m)In(D/r) = (1.26x10° x  4x107°/16m)In(40) =
3.7x107"° [Hy]. The critical frequencies R/L, (RC)", and (LC)™ are 2.7x10",
6.2x10"", and 1.4x10" [r s™'], respectively, so the maximum frequency for which
reasonably pure resistance is obtained is ~10 GHz (~R/2nL4).

3.4 General circuits and solution methods

3.4.1 Kirchoff’s laws

Circuits are generally composed of lumped elements or “branches” connected at nodes to form
two- or three-dimensional structures, as suggested in Figure 3.4.1. They can be characterized by
the voltages v; at each node or across each branch, or by the currents i; flowing in each branch or
in a set of current loops. To determine the behavior of such circuits we develop simultaneous
linear equations that must be satisfied by the unknown voltages and currents. Kirchoff’s laws
generally provide these equations.

Although circuit analysis is often based in part on Kirchoff’s laws, these laws are imperfect

due to electromagnetic effects. For example, Kirchoff’s voltage law (KVL) says that the voltage
drops v; associated with each lumped element around any loop must sum to zero, i.e.:

Zi v; =0 (Kirchoff’s voltage law [KVL]) (3.4.1)
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branches nodes

current loop

Figure 3.4.1 Circuit with branches and current loops.

which can be derived from the integral form of Faraday’s law:
¢ Eeds=—(5/et)dp, Beda (3.4.2)

This integral of Eeds across any branch yields the voltage across that branch. Therefore the
sum of branch voltages around any closed contour is zero if the net magnetic flux through that
contour is constant; this is the basic assumption of KVL.

KVL is clearly valid for any static circuit. However, any branch carrying time varying
current will contribute time varying magnetic flux and therefore voltage to all adjacent loops plus
others nearby. These voltage contributions are typically negligible because the currents and loop
areas are small relative to the wavelengths of interest (A = c/f) and the KVL approximation then
applies. A standard approach to analyzing circuits that violate KVL is to determine the magnetic
energy or inductance associated with any extraneous magnetic fields, and to model their effects
in the circuit with a lumped parasitic inductance in each affected current loop.

The companion relation to KVL is Kirchoff’s current law (KCL), which says that the sum of
the currents 1; flowing into any node is zero:

Zji i=0 (Kirchoff’s current law) (3.4.3)

This follows from conservation of charge (2.4.19) when no charge storage on the nodes is
allowed:

(6/8t) j ”V pdv= —cﬁ.)A.T eda (conservation of charge) (3.4.4)

If no charge can be stored on the volume V of a node, then (8/6t)ﬂjv p dv =0, and there can be

no net current into that node.

For static problems, KCL is exact. However, the physical nodes and the wires connecting
those nodes to lumped elements typically exhibit varying voltages and D, and therefore have
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capacitance and the ability to store charge, violating KCL. If the frequency is sufficiently high
that such parasitic capacitance at any node becomes important, that parasitic capacitance can be
modeled as an additional lumped element attached to that node.

3.4.2 Solving circuit problems

To determine the behavior of any given linear lumped element circuit a set of simultaneous
equations must be solved, where the number of equations must equal or exceed the number of
unknowns. The unknowns are generally the voltages and currents on each branch; if there are b
branches there are 2b unknowns.

Figure 3.4.2(a) illustrates a simple circuit with b = 12 branches, p = 6 loops, and n = 7
nodes. A set of loop currents uniquely characterizes all currents if each loop circles only one
“hole” in the topology and if no additional loops are added once every branch in the circuit is
incorporated in at least one loop. Although other definitions for the loop currents can adequately

characterize all branch currents, they are not explored here. Figure 3.4.2(b) illustrates a bridge
circuit withb=6, p=3, and n = 4.

b
(a) (b) 1 2
a d
b=12,p=6,n=7
T 6

Figure 3.4.2 12-branch circuit and bridge circuit.

The simplest possible circuit has one node and one branch, as illustrated in Figure 3.4.3(a).

(a) (C)

np2

Figure 3.4.3 Simple circuit topologies;
n, p, and b are the numbers of nodes, loops, and branches, respectively.

It is easy to see from the figure that the number b of branches in a circuit is:

b=n+p-1 (3.4.5)
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As we add either nodes or branches to the illustrated circuit in any sequence and with any
placement, Equation (3.4.5) is always obeyed. If we add voltage or current sources to the circuit,
they too become branches.

The voltage and current for each branch are initially unknown and therefore any circuit has
2b unknowns. The number of equations is also b + (n — 1) + p = 2b, where the first b in this
expression corresponds to the equations relating voltage to current in each branch, n-1 is the
number of independent KCL equations, and p is the number of loops and KVL equations; (3.4.5)
says (n — 1) + p =b. Therefore, since the numbers of unknowns and linear equations match, we
may solve them. The equations are linear because Maxwell’s equations are linear for RLC
circuits.

Often circuits are so complex that it is convenient for purposes of analysis to replace large
sections of them with either a two-terminal Thevenin equivalent circuit or Norton equivalent
circuit. This can be done only when that circuit is incrementally linear with respect to voltages
imposed at its terminals. Thevenin equivalent circuits consist of a voltage source Vy(t) in series
with a passive linear circuit characterized by its frequency-dependent impedance Z(w) = R + jX,
while Norton equivalent circuits consist of a current source Ino(t) in parallel with an impedance
Z().

An important example of the utility of equivalent circuits is the problem of designing a
matched load Zi(®) = Ri(®) + jX(») that accepts the maximum amount of power available
from a linear source circuit, and reflects none. The solution is simply to design the load so its
impedance  Zi(®w) is the complex conjugate of the source impedance:
Zi(o) = Z*(w). For both Thevenin and Norton equivalent sources the reactance of the matched
load cancels that of the source [X;(®) = - X(®)] and the two resistive parts are set equal, R =R;.

One proof that a matched load maximizes power transfer consists of computing the time-
average power Py dissipated in the load as a function of its impedance, equating to zero its
derivative dPy/dw, and solving the resulting complex equation for Ry and X;. We exclude the
possibility of negative resistances here unless those of the load and source have the same sign;
otherwise the transferred power can be infinite if Ry = -R.

Example 3.4A

The bridge circuit of Figure 3.4.2(b) has five branches connecting four nodes in every possible
way except one. Assume both parallel branches have 0.1-ohm and 0.2-ohm resistors in series,
but in reverse order so that R; = R4 = 0.1, and R, = R3 = 0.2. What is the resistance R of the
bridge circuit between nodes a and d if Rs = 0?7 What is R if Rs = c0? What is R if Rs is 0.5
ohms?

Solution: When Rs = 0 then the node voltages v, = v, so R; and Rj are connected in parallel
and have the equivalent resistance R;3,. Kirchoff’s current law “KCL” (3.4.3) says
the current flowing into node “a” is I = (v, - Vb)(Rl'1 + Rg'l). If Vab = (Va - W), then
Va = IRy3, and Ry3 = (Rl'1 + Rg'l)'1 = (10+5)'1 = 0.067Q2 = Ry4y. These two circuits
are in series so their resistances add: R = Ry3, + Rysy = 0.133 ohms. When Rs = o0, R}
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and R, are in series with a total resistance Rjss of 0.1 + 0.2 = 0.3Q2 = R34,. These two
resistances, Rjys and Riys are in parallel, so R = (RIZS-I + R34S'1)'1 =0.15Q. When Rs
is finite, then simultaneous equations must be solved. For example, the currents
flowing into each of nodes a, b, and ¢ sum to zero, yielding three simultaneous
equations that can be solved for the vector V = [Vas Vb, Ve |5 we define vq = 0. Thus
(Va - Vo)/Ri + (Va - Vo)/Rs =T =vo(R; ' + Rs ™) - viR, ! -veRs™ = 15v, - 10wy, - 5ve. KCL
for nodes b and c similarly yield: -10v, + 17vy, - 2v, = 0, and -5v, -2v, + 17v, = 0. If
we define the current vector 1 = [I, 0, 0], then these three equations can be written as
a matrix equation:

15 -10 -5
a;:i,where G=|-10 17 -=2].
-5 2 17

Since the desired circuit resistance between nodes a and d is R = v,/I, we need only

— —-1-
solve for v, in terms of I, which follows from v=G I, provided the conductance

matrix G is not singular (here it is not). Thus R = 0.146Q), which is intermediate
between the first two solutions, as it should be.

3.5 Two-element circuits and RLC resonators

3.5.1 Two-element circuits and uncoupled RLC resonators

RLC resonators typically consist of a resistor R, inductor L, and capacitor C connected in series
or parallel, as illustrated in Figure 3.5.1. RLC resonators are of interest because they behave
much like other electromagnetic systems that store both electric and magnetic energy, which
slowly dissipates due to resistive losses. First we shall find and solve the differential equations
that characterize RLC resonators and their simpler sub-systems: RC, RL, and LC circuits. This
will lead to definitions of resonant frequency ®, and Q, which will then be related in Section
3.5.2 to the frequency response of RLC resonators that are coupled to circuits.

(a) (b)
c +o0

.k R R L _|C
i(t) v(t) @
=687

L -

Figure 3.5.1 Series and parallel RLC resonators.

The differential equations that govern the voltages across R’s, L’s, and C’s are, respectively:

vg =iR (3.5.1)
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vy =Ldi/dt (3.5.2)

ve =(C) i dt (3.5.3)

Kirchoff’s voltage law applied to the series RLC circuit of Figure 3.5.1(a) says that the sum of
the voltages (3.5.1), (3.5.2), and (3.5.3) is zero:

d?%i/dt? +(R/L)di/dt + ()/LC)i =0 (3.5.4)

where we have divided by L and differentiated to simplify the equation. Before solving it, it is
useful to solve simpler versions for RC, RL, and LC circuits, where we ignore one of the three
elements.

In the RC limit where L = 0 we add (3.5.1) and (3.5.3) to yield the differential equation:
di/dt +(}/RC)i=0 (3.5.5)

This says that i(t) can be any function with the property that the first derivative is the same as the
original signal, times a constant. This property is restricted to exponentials and their sums, such
as sines and cosines. Let's represent i(t) by I.e*, where:

i() =R, {I,e™] (3.5.6)

where the complex frequency s is:
s=o+jo (3.5.7)

We can substitute (3.5.6) into (3.5.5) to yield:

Re{[s+(JRC)J1ee™ | =0 (3.5.8)
Since e is not always zero, to satisfy (3.5.8) it follows that s = - 1/RC and:

i(t)= Ioe_(l/RC)t = Ioe_t/ K (RC current response) (3.5.9)

where t equals RC seconds and is the RC time constant. 1, is chosen to satisfy initial conditions,
which were not given here.

A simple example illustrates how initial conditions can be incorporated in the solution. We

simply need as many equations for t = 0 as there are unknown variables. In the present case we
need one equation to determine I,. Suppose the RC circuit [of Figure 3.5.1(a) with L = 0] was at
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rest at t = 0, but the capacitor was charged to V, volts. Then we know that the initial current I, at
t = 0 must be V,/R.

In the RL limit where C = oo we add (3.5.1) and (3.5.2) to yield di/dt + (R/L)1 = 0, which has
the same form of solution (3.5.6), so that s = -R/L and:

i(t)= Ioe_(R/ L)t _ Ioe_t/ t (RL current response)  (3.5.10)
where the RL time constant t is L/R seconds.
In the LC limit where R = 0 we add (3.5.2) and (3.5.3) to yield:
d?i/d® +(/LC)i =0 (3.5.11)

Its solution also has the form (3.5.6). Because i(t) is real and & is complex, it is easier to
assume sinusoidal solutions, where the phase ¢ and magnitude I, would be determined by initial
conditions. This form of the solution would be:

i(t)=1, cos(coot + d)) (LC current response)  (3.5.12)
where o, = 2nf, is found by substituting (3.5.12) into (3.5.11) to yield [m,> — (LC)']i(t) = 0, so:

®, = 1 [radians s'1] (LC resonant frequency) (3.5.13)

JLC

We could alternatively express this solution (3.5.12) as the sum of two exponentials using the
identity coswt = (edot 4 g )/2 :

RLC circuits exhibit both oscillatory resonance and exponential decay. If we substitute the
generic solution I,e