
1 Introduction 

Around campus, you’ll find many di�erent mechanical or electronic devices performing small 
tasks: 

• Thermostats monitor room temperatures and adjust them as needed.

• Motion detectors detect whether people are using a room, and turn lights o� when a room
is not in use (and back on when it is).

• Video cameras capture video of traÿc in classrooms or other common areas.

There are a variety of situations in which it would be useful for MIT Facilities sta� to be able to 
monitor these devices: 

• To collect data for long-term projects. For example, if Facilities can use a camera feed to
figure out how many people use a particular space over some period of days or months, they
can better allocate space and plan for new buildings.

• To intelligently adjust the temperature in rooms depending on whether they’re in use, which
can lead to significant cost savings for the Institute.

• To detect mechanical failures so that they can send someone to fix the problem in a timely
manner, rather than waiting until it gets reported by an employee.

MIT is looking to move some of these devices towards “smart” functionality: the smart devices 
will be able to transmit data back to a server that Facilities owns. Facilities will be able to use that 
data to improve the campus environment. 

Your primary job in this project will be to design a system that supports these smart devices, and 
thus enables MIT Facilities to monitor them, collect data, and respond to failures or events. Your 
system will be comprised of a network of nodes that communicate with the above smart devices, 
and transmit data back to a centralized server. 

In designing this system, you will find that there are many constraints. The smart devices, the 
communication network, and the capabilities of the server all place constraints on the amount of 
data that can be transmitted and processed at once. 

2 Existing Infrastructure 

2.1 Smart Devices 

Although there are many electronic and mechanical devices around MIT’s main campus, Facilities 
is only interested in upgrading three types of devices at this time: thermostats, motion detectors, 
and video cameras. Your system will need to transmit some type of data from each smart device 
back to a centralized server at Facilities, known as the FCS. Details on the communication between 
the smart devices and the FCS are in §2.2. 

Each smart device has a small Bluetooth radio built in. This radio allows the smart device to trans-
mit data up to 30 feet at up to 2Mbit/sec using the Bluetooth Low Energy (BLE) Communications 
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Command Action 
get_temp() Returns the current temperature. 
set_temp(t) Sets the desired temperature for this thermostat to t. 
update(binary) Initiates a software update. 

Table 1: Thermostat Software Abstractions 

Protocol (see §2.2.5). Your design will specify what data is transmitted by each smart device, and 
when. 

The sections below detail specific functionality provided by each type of smart device. In addi-
tion, assume that all smart devices are able to retrieve a 32-bit timestamp reflecting the current 
time. 

2.1.1 Thermostats 

Thermostats monitor room temperatures and adjust temperatures as needed. There are roughly 
15,000 thermostats on MIT’s main campus: on average, there is one per room, though some rooms 
have more than one thermostat in them. 

Each thermostat has a single desired temperature, stored as 32-bit floating-point value. The 
thermostat—which is connected to the larger HVAC system for the room—turns heating or cool-
ing devices on or o� as needed to achieve that desired temperature. Thus, thermostats have both 
a passive and active component: they passively monitor temperature in the room, and actively set 
the temperature by turning various components on or o�. For the purposes of this project, you do 
not need to worry about the thermostat’s connection to the HVAC system, or how the thermostat 
itself is powered (via battery or otherwise). 

Facilities uses temperature data from thermostats to detect problems: If the temperature is con-
sistently rising (or falling), there may be a problem with the thermostat itself or the HVAC system 
as a whole. On the FCS, the temperature reading for each thermostat should be no more than five 
minutes old. 

Thermostats can receive commands from Facilities that explicitly set their desired temperature, 
but do not have an interface for people in the space to set the temperature. 

To facilitate the above actions, the thermostat software provides the function calls described in 
Table 1. 

2.1.2 Motion Detectors 

Motion detectors use infrared radiation to detect whether people are using a room. Similar to the 
thermostats, there are 15,000 motion detectors on MIT’s main campus: roughly one per room, 
though some rooms will have multiple motion detectors. 

Each motion detector is directly connected to some component of the lighting system in a room, 
and can automate the process of turning lights on and o� depending on whether a room is in 
use. Each motion detector stores the last time that motion was detected in the room (as a 32-bit 
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Command 
get_time() Returns the last time that motion was detected in the room. 
turn_lights_off() Turns the lights o� 
turn_lights_on() Turns the lights on 
get_light_status() Returns a bit representing the status of the lights (1=on) 
update(binary) Initiates a software update. 

Action 

Table 2: Motion Detector Software Abstractions 

timestamp). For the purposes of this project, you do not need to worry about the motion detector’s 
connection to the lighting system, or how the motion detector itself is powered. 

Facilities would like to know how long it has been since the room was last in use. The FCS uses 
this data to set the temperature in rooms: if a room has not been in use for awhile, Facilities will 
send a command to the relevant thermostat(s) to lower the temperature (see §2.3). 

To facilitate the above actions, the motion-detector software provides the function calls described 
in Table 2. 

2.1.3 Video Cameras 

Video camera capture video of common areas on campus. These cameras capture five frames per 
second; each frame is 28 kbytes. Unlike thermostats and motion detectors, most classrooms do not 
have video cameras in them. The cameras are largely in hallways and common areas, and there 
are about 1,000 on MIT’s main campus. There is an average of 100 feet between any two cameras, 
though the variance is high because of the layout of various buildings (in particular, it’s certainly 
possible that two or more cameras could be quite close together). 

Facilities uses the data from the video-camera feeds for a variety of things: 

• To collect long-term data on the number of people who use di�erent areas of campus at 
di�erent times. Facilities uses this data for a variety of projects (e.g., optimizing pedestrian 
flow in various places). The algorithms that Facilities uses to do people-counting run on the 
FCS (see §2.3 for more details). 

• To capture potentially-illegal activity on certain areas of campus. After a crime has occurred, 
Facilities wants to be able to review the footage; to do this, they need to store one week worth 
of data from each of the cameras. 

In both cases, Facilities requires your system to provide them with at least one frame per second; 
however, having access to additional frames can o�er improvements (e.g., more accurate count-
ing). 

Under normal operation, video frames from the cameras should be available at the FCS within five 
hours. However, when in crisis mode, Facilities will need to receive data from certain cameras in 
real-time. See §3.2 for more details. 

The cameras themselves are more powerful than thermostats or motion detectors. They are capa-
ble of bu�ering 4 GB of frame data. By default, they will store all five frames per second that the 
camera records (this works out to about eight hours of video). However, the cameras can be set 
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Command 
start_filter(fps) Puts the camera in smart-filtering mode. It will store 

fps frames per second, instead of five frames per sec-
ond. 

stop_filter() 

get_frame(frame_id) 

Stops smart filtering. The camera goes back to storing 
five frames per second. 
Returns the frame with the specified ID. If this frame 
is not in the bu�er, returns NULL. 

get_latest_frame() Gets the latest frame from the bu�er. This command 
returns the frame as well as an associated 32-bit frame 
ID. 

is_equal(frame_id_1, frame_id_2) 

delete_frame(frame_id) 

update(binary) 

Returns True if the two frames depict e�ectively the 
same image. Returns False otherwise, including if one 
(or both) frames are not in the bu�er. 
Deletes the frame with the specified ID. If this frame 
is not in the bu�er, does nothing. 
Initiates a software update. 

Action 

Table 3: Camera Software Abstractions 

to automatically filter before bu�ering, and capture fewer than five frames per second, thereby 
storing frames from more than eight hours ago. 

Each frame has an ID stored as a 32-bit integer. The first frame ID is 0, and increases with each 
frame. When the last frame ID is reached (ID = 232 − 1), the frame IDs roll over and start again at 
zero. 

Cameras are capable of determining whether any two frames depict essentially the same image 
(this might happen at night, in common areas that are not in use), and deleting specific frames 
from their bu�er. 

You do not need to worry about how the cameras are powered. 

To facilitate the above actions, the camera software provides the function calls described in Ta-
ble 3. 

2.2 Building the Network 

2.2.1 Smart Devices and Gateways 

In addition to having a small transmission range, smart devices themselves cannot connect di-
rectly to the Internet, as shown below. 

Thus, to get data from a smart device to the FCS, you’ll need some additional components. 

Gateways are devices that can connect to the Internet, and so can communicate directly with the 
FCS. Gateways can also communicate with the smart devices using the Bluetooth Low Energy 
(BLE) Communications Protocol (§2.2.5); in this way, gateways act as a bridge between compo-
nents that speak Bluetooth and the rest of the Internet. A smart device in range of a gateway 
could communicate with the FCS through that gateway, as shown below. 
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In addition to acting as a bridge between Bluetooth components and the rest of the Internet, gate-
ways can send transmit data via Bluetooth with a range of 100 feet and have 32 GB of persistent 
storage. If a gateway has to transmit through a wall or floor, its range will decrease by about ten 
feet for each impediment (e.g., if the signal needs to pass through a single wall, it will have a 
transmission range of 90 feet). 

Because they do so much, gateways cost a lot: five hundred dollars per gateway. Gateways have 
an average lifetime of one to five years. When they fail, the replacement process is somewhat 
involved; it takes an hour to swap the old gateway for a new, working one, and to configure the 
new one to work correctly. 

Your design will specify where to place these gateways such that data can get from each smart 
device to the FCS. One possible solution is to place at least one gateway within range of every 
single smart device; smart devices would send data to their nearest gateway, which would then 
send data to FCS (as shown in the previous figure). 

This design comes with a high monetary cost, among other things. 

2.2.2 Repeaters 

As an alternative to placing a gateway within range of every smart device, Facilities is allowing 
you utilize repeaters. The repeaters have Bluetooth radios, and so can communicate with smart 
devices as well as gateways. Repeaters allow you to e�ectively extend the range of smart devices, 
as shown below. 

There are two di�erent types of repeaters available to you: 

• BLE repeaters are ultra-low-powered devices. They have no persistent storage and 4 MB 
of RAM. These repeaters can transmit data within a range of 30 feet; if their range is inter-

6 



rupted by a wall or a floor, that range will decrease to 20 feet. BLE repeaters are extremely 
cheap (ten dollars per repeater) and draw very little power from their built-in battery. For 
the purposes of this project, you can assume that the batteries never need to be replaced. 

• BLE+ repeaters also communicate using only the BLE Communications Protocol. However, 
they are slightly more powerful than BLE repeaters: they have 64 MB of persistent storage, 
and have a transmission range of 100 feet; as such, they also cost a bit more (fifty dollars per 
repeater), and draw more power.. Like gateways, if BLE+ repeaters transmit through a wall 
or floor, their range will decrease by about ten feet for each impediment. 

BLE+ repeaters have a battery life of around six months to one year. When their battery 
runs out, someone at Facilities needs to replace the battery. The battery replacement is fast: 
once a Facilities sta� member is there, it only takes five minutes to replace the battery. 

2.2.3 Node Discovery 

Before any communication can happen, components of your system will need to “discover” each 
other. 

Smart devices advertise their existence periodically using beacons, which broadcast their 48-bit 
identifier. Your system should specify how this ID is constructed. When Facilities installs a smart 
device, however, there is a small probability that they will set the ID incorrectly. Your system 
should be able to recover in this case. You can assume that, even if an ID is set incorrectly, all 
IDs will still be unique (unless you have designed an ID scheme that intentionally duplicates 
IDs). 

To ensure a suÿcient battery life, the smart devices are configured to broadcast these beacons 
once per second. A BLE repeater, BLE+ repeater, or gateway can discover any smart device within 
range by listening for these beacons. 

On the other end of the network, the FCS has an IP address that is fixed and known to all of the 
gateways in the system. Similarly, each gateway has a unique IP address that is fixed and known 
to the FCS. 

If your design requires smart devices to communicate with gateways via additional repeaters, 
you will need to specify a node-discovery process. Like the smart devices, you can assume that 
BLE repeaters and BLE+ repeaters have fixed, 48-bit identifier; your system should specify how 
those are set as well. This identifier is known to the repeater itself, but not to any other part 
of the system unless your design specifies otherwise. The repeaters and gateways are capable of 
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broadcasting information in the same way that the smart devices are, i.e., you could set them up 
to send out beacons. But you are also free to choose other ways to handle this process. 

2.2.4 Routing 

In order for your system to work, it will need to be able to route data from the smart devices to 
the FCS and from the FCS back to various smart devices. Your system design should specify how 
data gets to the correct place. Note, for instance, that Facilities does not, by default, have a way 
to route data directly to any smart device. In some cases, Facilities will also need to know that its 
data was received by the appropriate smart devices. 

It’s possible that some data will traverse multiple hops in your network (e.g., smart device → 
repeater#1 → repeater#2 → gateway). Assume that each hop will introduce a latency of 100ms. 
If your topology requires any component to disconnect from one component and reconnect to 
another mid-transmission, assume that the same latency will apply. (There may also be additional 
a�ects, depending on your system design.) 

With what we’ve given you so far, it would be possible to set up an arbitrarily complicated “mesh 
network”, where nodes attempt to connect to many other nodes, and where nodes can rapidly 
change the nodes to which they’re connected. This will quickly bring up a few challenges: 

• Routing in a mesh network is a complex problem in and of itself. 

• Data will accumulate as it travels through the mesh. For instance, if two smart devices are 
each transmitting .5Mbit/sec of data to the same repeater, that repeater now has 1Mbit/sec 
of data to transmit somewhere else. This will likely lead to all sorts of “max flow” problems. 

• The more hops a piece of data has to travel, the more latency it will incur. 

It is not our intent to have you focus on complex mesh-networking problems in this project. We 
have not trained you to handle them; moreover, the complexity of mesh network will be a very 
diÿcult thing to justify for this project. There are a variety of good designs for this system that do 
not require such complexity. 

That said, we are not limiting your routing algorithm or your network topology. If absolutely you 
cannot resist the pull of a large mesh network, go for it. But be prepared to justify the complexity 
to your audience. It would be wise to remember that good design is iterative: start with a simple 
design that works, and build up from there. 

2.2.5 BLE (Wireless) Communications Protocol 

Any data that goes between smart devices and repeaters, smart devices and gateways, or between 
one repeater and another, follows the BLE communications protocol.1 For one component to send 
to another, the receiving component must first initiate a connection to the sender. Once a connec-
tion is established, the sender will be able to send packets to the receiver. The maximum packet 
size is 20 Bytes of data, plus a header; the maximum header size is 64 bits. How much data the 
sender can send depends on how many other connections are running through the receiver. 

1The protocol that we’ve given you for this project is based on an actual BLE protocol, but is not exactly the same. 
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At most 8 connections can be active at a time on a BLE repeater, at most 16 connections can be 
active at a time on a BLE+ repeater, and at most 64 connections can be active at a time on a 
gateway. Beacons from smart devices do not count towards this connection limit.2 If there are n 
connections active on a repeater (or gateway), each connection will get at most 1/nth of the total 
bandwidth that that repeater (or gateway) is capable of. BLE repeaters are capable of 2Mbit/sec; 
BLE+ repeaters are capable of 4Mbit/sec; and gateways are capable of 16Mbit/sec. 

The BLE Communications Protocol does not, by default, guarantee perfect reliability. The net-
work drops about .0001% of all packets. 

2.2.6 Wired Communications Protocol 

The gateways can communicate with the FCS over wires, via a standard TCP protocol. For the 
purposes of this project, you can assume that TCP provides perfect reliability. Each gateway can 
communicate with the FCS at a rate of up to 1GB/sec, with data packets up to size 1500 bytes. 
The minimum round-trip-time between the gateways and the FCS is negligible, but that latency 
may increase depending on your system design (e.g., if queues grow). 

In both the wired and wireless cases, it is your job to specify the format of the messages that 
traverse the network. 

2.3 The FCS 

Facilities has a single centralized machine—the FCS—to store its data, with 100 TB of storage. 
You can assume that the FCS has the specs of a standard modern server. The IP address of the FCS 
is fixed and known by all gateways in your system. 

Any packets sent to the FCS will arrive in a bu�er that is treated as a FIFO queue to be processed 
by the server’s processing unit. Facilities uses the FCS to store data, as well as to perform some 
computations on the data; the processing unit—which you will design—takes care of sending data 
to storage as well as to code that performs those computations. 

The processing unit is comprised of a pool of threads that run concurrently. Your system will 
specify some of the details of these threads. 

2.3.1 The Main Thread 

The primary thread of the processor is responsible for monitoring the queue of incoming packets 
and performing the following actions: 

• Storing all video frames it receives—unless there is a compelling reason for it to discard 
some—along with a timestamp and the number of people in the frame. The system call 
process_frame(frame) will return that number. 

• Deciding whether to adjust a thermostat in response to motion (or lack-of-motion) in a room. 
If a location has not been in use for the past two hours, the relevant thermostat(s) should be 

2In terms of how this would work in practice: the beacons would be sent on a di�erent frequency than the 
connection-oriented protocol. 
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set to ten degrees cooler than their current desired temperatures. If a location is newly in 
use, the relevant thermostat(s) should be set back to their desired temperatures. 

This thread is not responsible for calling the code that looks for historical anomalies in temper-
ature readings; that code is run as a separate background process. However, to work well, the 
anomaly-detection code needs to be able to access the last two weeks of temperature readings for 
a particular room. It should be able to retrieve a time-ordered list of these readings. 

Your system should describe how the main thread of the processing unit completes these ac-
tions. You are welcome to have the main thread spawn child threads, via a system call such as 
fork(). 

2.3.2 Crisis and Update Threads 

Additional threads in the processing unit’s thread pool deal with crisis mode and software up-
dates. 

When a Facilities sta� member enables crisis mode on a particular room, a thread waiting on that 
event will be resumed, and call the function enable crisis(camera ID) for each camera in the 
room. When a Facilities sta� member disables crisis mode on a room, a thread waiting on that 
event will be resumed, and call the function disable crisis(camera ID) for each camera in the 
room. Your system should specify the details of those two functions. 

Similarly, when a Facilities sta� member requests to perform a software update on all devices of 
type device type, a thread waiting on that event will be resumed, and call the function 
update(device type, software binary). Your system should specify the details of this func-
tion. This function should not return until it can guarantee that the update has been received by 
all smart devices. 

2.3.3 Data Storage 

You can assume that Facilities has already stored a mapping of each smart device’s ID to a location 
at MIT. Locations are given as a building number and room (even hallways have “room” 
numbers). If you would like to extend this mapping, to store additional or di 
erent location information, you may; just describe how that process is done. 

How the rest of the data is stored on the FCS is largely up to you. In some cases, you may store 
data as a series of files; in those cases, you should specify the filesystem structure. You do not need 
to specify details of the file format unless you’re doing something creative (e.g., it’s fine to say you 
store something “as a .txt file” rather than giving us the specifications of the .txt file format). 

In some other cases, you may find a database more appropriate. In those cases, you can assume 
that you have access to a modern DBMS, but you should detail your database schema and relevant 
interactions with the database. 

Regardless of how you store your data, you will need to support the goals that have been outlined 
in this project (e.g., that Facilities needs access to one week of historical data from cameras, that 
they need two weeks of data from thermostats, etc.). 
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3 Requirements 

3.1 Components of Your Design 

Using the infrastructure specified in the previous section, your design should specify the imple-
mentation and functionality of the following components: 

• The network topology. You have, at your disposal, repeaters as well as gateways. Your design 
should describe a basic scheme for connecting these devices. Is every smart device in range 
of a gateway? Of multiple gateways? Is every repeater? Are some repeaters not in range of 
gateways? On average, how many smart devices is each repeater responsible for? Etc. Note 
that you also have the ability to create a naming scheme for the smart device (and repeater) 
IDs. 

• The communication protocol. At a minimum, you should specify message formats, the 
circumstances under which messages are sent (periodically? in reaction to some event?), 
and any network mechanisms that you need to add to meet the requirements of the sys-
tem. In particular, the network between the smart devices and the gateways is unreliable; 
you should specify any mechanisms you use to provide reliability, if you feel that they are 
needed. 

As part of this specification, you should detail how the smart device retrieves the data that 
it sends (what function does it use to retrieve it?), whether it performs any computations 
before sending, and what it does in reaction to any data that it may receive. 

• The processing unit on the FCS. You should describe the implementation of this software in 
detail. Does the main thread spawn any child threads? What do they do? Do any threads 
need to hold locks on any piece of data? If so, how/when do they acquire those locks? Etc. 

• The data storage mechanism on the FCS. How is data stored? Is it possible for your system 
to collect duplicate pieces of data? If so, how is that handled? Does your system guarantee 
the reception of every piece of data? 

• What happens during certain failures. For example, both BLE+ repeaters and gateways 
can fail. What does your system do in those cases? Is it easy for Facilities to know that a 
component has failed? 

The existing infrastructure already imposes some requirements on your system: you cannot ex-
ceed the storage or processing power of any component, nor the maximum speed of the networks 
involved. 

You must also meet Facilities’ requirements for data storage, as well as allow Facilities to send 
commands and push software updates to smart devices. 

Moreover, your system must work at scale. The intended scale of the system is the main MIT 
campus. However, if your system performs well, other larger universities may be interested in 
adapting it. 
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3.2 Use-cases 

As you design your system, you should consider its performance under the following use cases 
(as well as under normal operation). You will be required to address these use cases in your final 
report. 

• Inconsistent Readings: Two motion detectors in the same room give inconsistent readings: 
one reports that the room is in-use, the other does not. What does your system do in this 
case? 

• Crisis Mode: In general, data from the video cameras does not have to arrive at the FCS 
immediately. However, during a campus crisis, Facilities will need data from certain cameras 
immediately (within five seconds is acceptable, but the faster the better). 

The software running on the FCS that supports this operation allows Facilities to specify 
a room number on campus; video feeds from the cameras in that location should be sent 
to Facilities immediately. As the crisis occurs, it’s possible that Facilities will update their 
location-of-interest (for example, if they are tracking an intruder down a hallway). 

A crisis situation does not obviate the need to eventually store data from all cameras. Even 
though some data may need to be prioritized and delivered immediately, data from all cam-
eras should still be available to Facilities within five hours. 

• Server Maintenance: Suppose the Facilities server is taken down for maintenance. When 
it comes back online, will your system still be able to deliver all relevant data? When it is 
o�ine, can your system replicate any of its functionality? In particular, can your system still 
intelligently set the temperature in rooms? 

• Software update: Facilities has to push an important security update out to all video cam-
eras. How quickly can your system make this happen? How can you guarantee that every 
video camera gets the update? 

In addition to those specific scenarios, you should also think about what will happen to your 
system over time. Currently, Facilities is only upgrading devices in the main campus buildings. 
Suppose MIT wants to adapt your system to the rest of campus, or to new buildings that the In-
stitute purchases. Could your system scale to meet this need? What about if a di�erent university 
adopted your system? Similarly, suppose Facilities decided to upgrade a particular smart device, 
or support a new type of smart device. Could your system handle that? 

3.3 Trade-o�s 

As you design, you will encounter many places where you have to trade o� one aspect of your 
design for another. We’ve highlighted some below, although these are not the only tradeo�s. 

• Cost vs. complexity: Facilities has not restricted your budget for this project; however, they 
would prefer to spend less money. How much does your design cost? Could you get similar 
functionality for less money? 

• Data timeliness vs. congestion: In some scenarios, you may not be able to send all of 
the data you’re collecting to the FCS at once, either because of the limit on the maximum 
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number of connections per repeater, or because the wireless network cannot handle that 
much traÿc. 

• Reliability vs. Performance: BLE repeaters e�ectively never fail, since their batteries never 
need replacing. BLE+ repeaters can fail occasionally, but are more powerful. Gateways can 
also fail, and are extremely powerful. How do you balance these issues? 

• Reliability vs. Overhead: The wireless network is unreliable, dropping .0001% of all pack-
ets. Should you run an end-to-end reliability protocol, such as TCP, across this network? 
Should you create your own reliability mechanisms, which might be lighter-weight than 
TCP? Are there any times when you don’t need perfect reliability? 
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