High performance in
. O 0
dynamic languages: Ju||a

6.172 guest lecture

Prof. Steven G. Johnson
MIT Applied Mathematics, MIT Physics

Dynamic languages for interactive math...

The two-language approach:

High-level dynamic language
for productivity,

+ low-level language (C,
Fortran, Cython, ...) for
performance-critical code.

= Huge jump in complexity,
loss of generality.

2

Just vectorize your code?

= rely on mature external libraries,
operating on large blocks of data,
for performance-critical code

Good advice! But...

e Someone has to write those libraries.

e Eventually that person will be you.
— some problems are impossible or
just very awkward to vectorize.

A new programming Ianguage?

on edeiman u I Ia
Jeff Bezanson Viral Shah [MIT]

julialang.org
Stefan Karpinski

_ . [begun 2009, “0.1” in 2013, ~40k commits,
[30+ developers with 100+ commits, “0.6” release in June 2017,

1000+ external packages, 4t JuliaCon in 2017] 1.0 release in August 2018]

As high-level and interactive as Matlab or Python+IPython,
as general-purpose as Python,
as productive for technical work as Matlab or Python+SciPy,
but as fast as C.

http://julialang.org

Generating Vandermonde matrices

' = nerate:
given x = [a, OLZ-, |, generate NumPy (numpy .vander): [follow links]

1 a1 o " il
1 ¥o C‘Lé {1-'.51_1
Vv=|1 az o3 of " Python code ...wraps C code
: ... wraps generated C code
_1 Om ﬁ"tzn g a';?l?-_l_ type-generic at high-level, but

low level limited to small set of types.
Writing fast code “in” Python or Matlab = mining the standard library
for pre-written functions (implemented in C or Fortran).

If the problem doesn’t “vectorize” into built-in functions,
if you have to write your own inner loops ... sucks for you.

https://github.com/numpy/numpy/blob/f4be1039d6fe3e4fdc157a22e8c071ac10651997/numpy/lib/twodim_base.py
https://github.com/numpy/numpy/blob/3b22d87050ab63db0dcd2d763644d924a69c5254/numpy/core/src/umath/ufunc_object.c
https://github.com/numpy/numpy/blob/3b22d87050ab63db0dcd2d763644d924a69c5254/numpy/core/src/umath/loops.c.src

Generating Vandermonde matrices

given x = [0y, O, ...

K 2
1 o1 of
2

1l o of
2

. 2

Lt 1 ¥ m G\rn_

Julia (type-generic code):

], generate:

function vander(x, n=length(x))

m = length(x)

V = Array(eltype(x), m, n)

for j = 1:m

V[j,1] = one(x[31)

end

for 1 2

for j
vV

.n

1:m
[],1
end
end
return V

end

1 =

x[31 * V[3,1-1]

NumPy (numpy.vander): [follow links]

Python code ...wraps C code
... wraps generated C code

type-generic at high-level, but
low level limited to small set of types.

10°

10°

10%}

10}

10'}

NumPy time / Julia time

10°

10t . -
10? 102 10° 10*
matrix size n

https://github.com/numpy/numpy/blob/f4be1039d6fe3e4fdc157a22e8c071ac10651997/numpy/lib/twodim_base.py
https://github.com/numpy/numpy/blob/3b22d87050ab63db0dcd2d763644d924a69c5254/numpy/core/src/umath/ufunc_object.c
https://github.com/numpy/numpy/blob/3b22d87050ab63db0dcd2d763644d924a69c5254/numpy/core/src/umath/loops.c.src

NumPy time / Julia time

Generating Vandermonde matrices

10° : — — — =
3 function vander(x, n=length(x))
| m = length(x)
10° ¥O: ?rzailgriltype(x), M, Mhote: works for any container
= .) . uxn H
V[3,1] = one(x[iD) of any type with | op.er.a_tlon
end ... performance # inflexibility
for 1 = 2:n
103; for j = 1:m E
: V[j,11 = x[31 * V[j,1i-1]
end
[end

10%} return V

matrix size n

104

Special Functions in Julia

Special functions s(x): classic case that cannot be vectorized well
... switch between various polynomials depending on x

Many of Julia’s special functions come from the usual C/Fortran libraries,
but some are written in pure Julia code.

Pure Julia erfinv(x) [= erf-}(x)]
3—4x faster than Matlab’s and 2—3x faster than SciPy’s (Fortran Cephes).

Pure Julia polygamma(m, z) [= (m+1)t" derivative of the In I function]
~ 2x faster than SciPy’s (C/Fortran) for real z
... and unlike SciPy’s, same code supports complex argument z

Ill

Julia code can actually be faster than typical “optimized”
C/Fortran code, by using techniques
[metaprogramming/codegen generation] that are
hard in a low-level language.

Why can Julia be fast?

First need to understand: Why is Python slow?

goto Jupyter/lJulia notebooks from 18.5096.

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

Forinformation about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

10

https://ocw.mit.edu/terms
ocw.mit.edu

	cover-slides.pdf
	cover_h.pdf
	Blank Page

