
MIT OpenCourseWare
http://ocw.mit.edu

6.189 Multicore Programming Primer, January (IAP) 2007

Please use the following citation format:

Rodric Rabbah, 6.189 Multicore Programming Primer, January (IAP)
2007. (Massachusetts Institute of Technology: MIT OpenCourseWare).
http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative
Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit:
http://ocw.mit.edu/terms

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms

6.189 IAP 2007

Lecture 9

Debugging Parallel Programs

1 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Debugging Parallel Programs is Hard-er

● Parallel programs are subject to the usual bugs

● Plus: new timing and synchronization errors

● And: parallel bugs often disappear when you add
code to try to identify the bug

2 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Visual Debugging of Parallel Programs

● A global view of the multiprocessor architecture
• Processors and communication links

● See which communication links are used
• Perhaps even change the data in transmission

● Utilization of each processor
• Can identify blocked processors, deadlock

● “step” through functionality?
• Lack of a global clock

● Likely won’t help with data races

3 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

TotalView

D 4 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Debugging Parallel Programs

● Commercial debuggers
• TotalView, …

● The printf approach

● gdb, MPI gdb, ppu/spu gdb, …

● Research debuggers
• StreamIt Debugger, …

5 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

StreamIt Debugger

6 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Cell Debugger in Eclipse IDE

7 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Pattern-based Approach to Debugging

● “Defect Patterns”: common kinds of bugs in parallel
programs
• Useful tips to prevent them
• Recipes for effective resolution

● Inspired by empirical studies at University of
Maryland
• http://fc-md.umd.edu/softwareday//presentations/Session0/Keynote.pdf

● At the end of this course, will try to identify some
common Cell defect patterns based on your
feedback and projects

8 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

http://fc-md.umd.edu/softwareday//presentations/Session0/Keynote.pdf

Defect Pattern: Erroneous Use of
Language Features

●	 Examples
•	 Inconsistent parameter types for get/send and put/receive
•	 Required function calls
•	 Inappropriate choice of functions

●	 Symptoms
•	 Compile-type error (easy to fix)
•	 Some defects may surface only under specific conditions

– Number of processors, value of input, alignment issues

●	 Cause
•	 Lack of experience with the syntax and semantics of new

language features

●	 Prevention
•	 Check unfamiliar language features carefully

9	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Does Cell have too many functions?

● Yes! But you may not need all of them

● Understand a few basic features
spe_create_thread
spe_wait

spe_write_in_mbox
spe_stat_in_mbox

spe_read_out_mbox
spe_stat_out_mbox

spe_write_signal

spe_get_ls
spe_get_ps_area

spe_mfc_get
spe_mfc_put
spe_mfc_read_tag_status

spe_create_group
spe_get_event

mfc_get
mfc_put
mfc_stat_cmd_queue
mfc_write_tag_mask
mfc_read_tag_status_all/any/immediate

spu_read_in_mbox
spu_stat_in_mbox

spu_write_out_mbox, spu_write_out_intr_mbox
spu_stat_out_mbox, spu_stat_out_intr_mbox

spu_read_signal1/2
spu_stat_signal1/2

spu_write_event_mask
spu_read_event_status
spu_stat_event_status
spu_write_event_ack

spu_read_decrementer
spu_write_decrementer

10 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Defect Pattern: Space Decomposition

●	 Incorrect mapping between the problem space and the

program memory space

●	 Symptoms
•	 Segmentation fault (if array index is out of range)
•	 Incorrect or slightly incorrect output

●	 Cause
•	 Mapping in parallel version can be different from that in serial

version
–	 Array origin is different in every processor
–	 Additional memory space for communication can complicate the

mapping logic

●	 Prevention
• Validate memory allocation carefully when parallelizing code

11	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Example Problem

A sequence of N cells
2 1 6 8 7 1 0 2 4 5 1 … 3

● N cells, each of which holds an integer [0..9]
• cell[0]=2, cell[1]=1, …, cell[N-1]=3

● In each step, cells are updated using values of neighboring cells
• cellnext[x] = (cell[x-1] + cell[x+1]) mod 10
• cellnext[0]=(3+1), cellnext[1]=(2+6), …

• Assume the last cell is connected to the first cell
● Repeat for steps times

12 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Sequential Implementation

●	 Approach to implementation
•	 Use an integer array buffer[] for current cell values
•	 Use a second array nextbuffer[] to store the values

for next step
•	 Swap the buffers

13	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Sequential C Code

/* Initialize cells */

int x, n, *tmp;

int *buffer = (int*)malloc(N * sizeof(int));

int *nextbuffer = (int*)malloc(N * sizeof(int));

FILE *fp = fopen("input.dat", "r");

if (fp == NULL) { exit(-1); }

for (x = 0; x < N; x++) { fscanf(fp, "%d", &buffer[x]); }

fclose(fp);

/* Main loop */

for (n = 0; n < steps; n++) {

for (x = 0; x < N; x++) {
nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;

}
tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;

}

/* Final output */

...

free(nextbuffer); free(buffer);

14 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Approach to a Parallel Version

● Each processor keeps 1/size cells

• size = number of processors

…2 1 6 8 7 1 0 2 4 5 1 3

…2 1

…	

…

P2P0 …

P1	 P(size-1)

●	 Each processor needs to:
•	 update the locally-stored cells
•	 exchange boundary cell values between neighboring

processes

15	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Decomposition Where are the bugs?

nlocal = N / size;

buffer = (int*)malloc((nlocal+2) * sizeof(int));

nextbuffer = (int*)malloc((nlocal+2) * sizeof(int));

/* Main loop */

for (n = 0; n < steps; n++) {

for (x = 0; x < nlocal; x++) {
nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;

}
/* Exchange boundary cells with neighbors */
...

tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

buffer[]

…

0 (nlocal+1)

16 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Decomposition Where are the bugs?

nlocal = N / size; N may not be divisible by size
buffer = (int*)malloc((nlocal+2) * sizeof(int));
nextbuffer = (int*)malloc((nlocal+2) * sizeof(int));

/* Main loop */
for (n = 0; n < steps; n++) {

for (x = 0; x < nlocal; x++) { (x = 1; x < nlocal+1; x++)
nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;

}
/* Exchange boundary cells with neighbors */
...

tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;
}

buffer[]

…

0 (nlocal+1)

17 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Defect Pattern: Synchronization

●	 Improper coordination between processes
•	 Well-known defect type in parallel programming
•	 Deadlocks, race conditions

●	 Symptoms
•	 Program hangs
•	 Incorrect/non-deterministic output

●	 Causes
•	 Some defects can be very subtle
•	 Use of asynchronous (non-blocking) communication can lead

to more synchronization defects

●	 Preventions
• Make sure that all communication is correctly coordinated

18	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Communication Where are the bugs?

/* Main loop */
for (n = 0; n < steps; n++) {

for (x = 1; x < nlocal+1; x++) {
nextbuffer[x] = (buffer[(x-1+N)%N]+buffer[(x+1)%N]) % 10;

}
/* Exchange boundary cells with neighbors */
receive (&nextbuffer[0], (rank+size-1)%size);

send (&nextbuffer[nlocal], (rank+1)%size);

receive (&nextbuffer[nlocal+1], (rank+1)%size);

send (&nextbuffer[1], (rank+size-1)%size);

tmp = buffer; buffer = nextbuffer; nextbuffer = tmp;

}

…

…
0 (nlocal+1)

● Deadlock …

19 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Modes of Communication

● Recall there are different types of sends and
receives
•	 Synchronous
•	 Asynchronous
•	 Blocking
•	 Non-blocking

●	 Tips for orchestrating communication
•	 Alternate the order of sends and receives
•	 Use asynchronous and non-blocking messages

where possible

20	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Defect Pattern: Side-effect of
Parallelization

●	 Ordinary serial constructs may have unexpected side-effects
when they used concurrently

●	 Symptoms
•	 Various correctness and performance problems

●	 Causes
•	 Sequential part of code is overlooked
•	 Typical parallel programs contain only a few parallel

primitives, and the rest of the code is a sequential program
running many times

●	 Prevention
•	 Don’t just focus on the parallel code
•	 Check that the serial code is working on one processor, but

remember that the defect may surface only in a parallel
context

21	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Data I/O in SPMD Program Where are the bugs?

/* Initialize cells with input file */
fp = fopen("input.dat", "r");
if (fp == NULL) { exit(-1); }
nskip = ...
for (x = 0; x < nskip; x++) { fscanf(fp, "%d", &dummy);}
for (x = 0; x < nlocal; x++) { fscanf(fp, "%d", &buffer[x+1]);}
fclose(fp);

/* Main loop */
...

22 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Data I/O in SPMD Program Where are the bugs?

/* Initialize cells with input file */
fp = fopen("input.dat", "r");
if (fp == NULL) { exit(-1); }
nskip = ...
for (x = 0; x < nskip; x++) { fscanf(fp, "%d", &dummy);}
for (x = 0; x < nlocal; x++) { fscanf(fp, "%d", &buffer[x+1]);}
fclose(fp);

/* Main loop */
...

● File system may cause performance bottleneck if all

processors access the same file simultaneously

● Schedule I/O carefully

23 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Data I/O in SPMD Program Where are the bugs?

/* Initialize cells with input file */
if (rank == MASTER) {
fp = fopen("input.dat", "r");
if (fp == NULL) { exit(-1); }
for (x = 0; x < nlocal; x++) { fscanf(fp, "%d", &buffer[x+1]);}
for (p = 1; p < size; p++) {

/* Read initial data for process p and send it */
}
fclose(fp);
}
else {

/* Receive initial data*/
}

● Often only one processor (master) needs to do the I/O

24 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Generating Initial Data Where are the bugs?

/* What if we initialize cells with random values... */
srand(time(NULL));
for (x = 0; x < nlocal; x++) {

buffer[x+1] = rand() % 10;
}

/* Main loop */
...

25 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Generating Initial Data Where are the bugs?

/* What if we initialize cells with random values... */
srand(time(NULL)); srand(time(NULL) + rank);
for (x = 0; x < nlocal; x++) {

buffer[x+1] = rand() % 10;
}

/* Main loop */
...

●	 All processors might use the same pseudo-random seed
(and hence sequence), spoiling independence

●	 Hidden serialization in rand() causes performance
bottleneck

26	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Defect Pattern: Performance Scalability

● Symptoms
• Sub-linear scalability
• Performance much less than expected
• Most time spent waiting

● Causes
• Unbalanced amount of computation
• Load balancing may depend on input data

● Prevention
• Make sure all processors are “working” in parallel
• Profiling tools might help

27 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Summary

● Some common bugs in parallel programming
• Erroneous use of language features
• Space decomposition
• Side-effect of parallelization
• Synchronization
• Performance scalability

● There are other kinds of bugs as well: data race

28 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Comment on Data Race Detection

●	 Trace analysis can help
•	 Execute program
•	 Generate trace of all memory accesses and

synchronization operations

•	 Build a graph of orderings (solid arrows below) and

conflicting memory references (dashed lines below)
•	 Detect races (when two nodes connected by dashed

lines are not ordered by solid arrows)

●	 Intel Thread Checker is an example
• More tools available for automatic race detection

29	 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

Trend in Debugging Technology

● Trace-based
● Checkpointing
● Replay

● One day… you’ll have the equivalent of TiVo for
debugging your programs

30 6.189 IAP 2007 MIT Dr. Rodric Rabbah © Copyrights by IBM Corp. and by other(s) 2007

