






 
 






 


MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.436J/15.085J Fall 2018 

Lecture 9 

PRODUCT MEASURE AND FUBINI’S THEOREM 

Contents 

1. Product measure 

2. Fubini’s theorem 

In elementary math and calculus, we often interchange the order of summa-

tion and integration. The discussion here is concerned with conditions under 

which this is legitimate. 

1 PRODUCT MEASURE 

Consider two probabilistic experiments with probability spaces ( 1, F1, P1) and 

( 2, F2, P2), respectively. We are interested in forming a probabilistic model 

of a “joint experiment” in which the original two experiments are carried out 

independently. 

1.1 The sample space of the joint experiment 

If the first experiment has an outcome !1, and the second has an outcome !2, 

then the outcome of the joint experiment is the pair (!1, !2). This leads us to 

define a new sample space = 1 × 2. 

1.2 The ˙-algebra of the joint experiment 

Next, we need a ˙-algebra on . If A1 ∈ F1, we certainly want to be able to talk 

about the event {!1 ∈ A1} and its probability. In terms of the joint experiment, 

this would be the same as the event 

A1 × 1 = {(!1, !2) | !1 ∈ A1, !2 ∈ 2}. 
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Thus, we would like our ˙-algebra on to include all sets of the form A1 × 2, 

(with A1 ∈ F1) and by symmetry, all sets of the form 1 ×A2 (with (A2 ∈ F2). 
This leads us to the following definition. 

Definition 1. We define F1 × F2 as the smallest ˙-algebra of subsets of 

1 × 2 that contains all sets of the form A1 × 2 and 1 × A2, where 

A1 ∈ F1 and A2 ∈ F2. 

Note that the notation F1×F2 is misleading: this is not the Cartesian product 

of F1 and F2! 

Since ˙-fields are closed under intersection, we observe that if Ai ∈ Fi, then 

A1 × A2 = (A1 × 2) ∩ ( 1 ∩ A2) ∈ F1 × F2. It turns out (and is not hard 

to show) that F1 × F2 can also be defined as the smallest ˙-algebra containing 

all sets of the form A1 × A2, where Ai ∈ Fi. Alternatively, suppose F1 and 

F2 are generated by algebras F0,1, F0,2. That is Fi = ˙(F0,i), i = 1, 2. Then 

F1 ×F2 is also the smallest ˙-algebra containing all sets of the form A1 × A2, 

where Ai ∈ F0,i. 

In the sequel, we will talk about g : 1 × 2 → R – measurable functions 

with respect to F1 × F2. Recall, this means that for any Borel set B ⊂ R, 

the set {(!1, !2) | g(!1, !2) ∈ B} belongs to the ˙-algebra F1 × F2. As a 

practical matter, it is enough to verify that for any scalar c, the set {(!1, !2) | 
g(!1, !2) ≤ c} is measurable. Other than using this definition directly, how else 

can we verify that such a function g is measurable? The basic tools at hand are 

the following: 

(a) continuous functions from R2 to R are measurable; 

(b) indicator functions of measurable sets are measurable; 

(c) combining measurable functions in the usual ways (e.g., adding them, mul-

tiplying them, taking limits, etc.) results in measurable functions. 

The following proposition gives further information about F1 ×F2 and func-

tions measurable with respect to it. 

Proposition 1. Let E ∈ F1 ×F2 then for every !1 ∈ 1 the set 

E!1 , {!2 | (!1, !2) ∈ E} 

belongs to F2. Consequently, for every F1 × F2-measurable function f and 

every !1 the function 

f!1 (!2) , f(!1, !2) 
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is F2-measurable. 

Remark: E!1 and f!1 are called slicec of E and f at !1, respectively. 

Proof. Fix some !1 and define a collection of sets 

L = {E ∈ F1 ×F2 | E!1 ∈ F2}. 

When E = A1 × A2 the set E!1 is either empty or equal to A2. Thus L contains 

all the rectangles. On the other hand, for any sequence Ej we have 

[

(∪j Ej ) = (Ej ) !1 !1

j 

and 

(Ec)!1 = (E!1 )
c . 

Thus L is closed under countable unions and complements. Hence L is a ˙-

algebra, which by minimality of F1 ×F2 must be equal to the latter. This shows 

these statement for sets. 

Next, a slice of a simple function 

N 
X

f = ai1Ei 

i=1 

at !1 is itself a simple (hence measurable) function on ( 2, F2). This fol-

lows from what was just shown for slices of sets. For the general f we have 

f = limr→∞ fr, where fr are simple functions. Since the slice of each fr is 

F2 measurable and the class of F2-measurable functions is closed under taking 

limits the result follows. 

1.3 The product measure 

We now define a measure, to be denoted by P1 × P2 (or just P, for short) on the 

measurable space ( 1 × 2, F1 ×F2). To capture the notion of independence, 

we require that 

P(A1 × A2) = P1(A1)P2(A2), ∀ A1 ∈ F1, A2 ∈ F2. (1) 
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Theorem 1. There exists a unique measure P on ( 1 × 2, F1 ×F2) that has 

property (1). Furthermore, for every E ∈ F1 × F2 measure P(E) satisfies 

Z

P(E) = P2(E!1 ) P1(d!1) (2) 

Z

= P1(E!2 ) P2(d!2). (3) 

Proof. Uniqueness follows from the fact that A1 × A2 is a generating p-

system for F1 × F2 (see Proposition 1 in Lecture 2). We only need to show 

existence. We start by showing that for every E ∈ F1 ×F2 the function 

fE(!1) , P2(E!1 ) 

is F1-measurable. Note that P2(E!1 ) is well-defined by Proposition 1. Define a 

collection 

L = {E : fE is F1-measurable}. 

When E = A1 × A2 the function fE(!1) = P2(A2)1A1 (!1), which is clearly 

measurable. Thus L contains all rectangles. Next, if E and F are disjoint then 

so are E!1 and F!1 . Consequently, 

fE∪F (!1) = fE(!1) + fF (!2) if E ∩ F = Ø . (4) 

This implies that L contains all finite unions of disjoint rectangles. The latter 

is an algebra of sets (since (A1 × A2)
c can be written as disjoint union of 3 

rectangles). Finally, if Ej ր E and Ej ∈ L then 

fEj ր fE (5) 

and therefore fE is F1-measurable. Same argument applies to Ej ց E. All 

in all L is a monotone class, containing an algebra that generates F1 × F2. So 

L = F1 ×F2. 

We now define for any E ∈ F1 ×F2 

Z

P(E) , fE(!1)P1(d!1) . (6) 

It is evident that this assignment satisfies (1). Finite additivity of P follows 

from (4). It remains to show ˙-additivity, which in turn is equivalent to continu-

ity. The latter follows from (5) and the MCT. 
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Thus, existence of P is established. Furthermore, definition (6) is just a 

restatement of (2). Regarding (3), construct another measure P ′ by exchanging 

roles of ( 1, F1, P1) and ( 2, F2, P2) in (6). So constructed P ′ automatically 

satisfies (3). Moreover, P ′ also verifies (1) and hence coincides with P on a p-

system of rectangles A×B. By Proposition 1 of Lecture 2 we have: P ′ = P. 

The above discussion extends to the case of any finite number of probability 

spaces ( i, Fi, Pi), i = 1, 2, . . . , k. In particular there exists a unique measure 

P on = 1 × · · · × k such that for every collection of sets Ai ∈ Fi, 

P(A1 × · · · × Ak) = P(A1) × · · · × P(Ak). 

The corresponding ˙-algebra on is the smallest ˙-algebra containing all sets 

of the form A1 × · · · × Ak where Ai ∈ Fi. Moreover, this extends to a count-

able collections of probability spaces ( i, Fi, Pi), i = 1, 2, . . . , but now the 

measure is only defined when a finite collection of the {Ai} are not k, i.e. 

i = 1, 2, . . . , k 

P(A1 × · · · × Ak × k+1 × k+2 × · · · ) = P(A1) × · · · × P(Ak). 

1.4 Beyond probability measures 

Everything in these notes extends to the case where instead of probability mea-

sures Pi, we are dealing with general measures µi, under the assumptions that 

the measures µi are ˙-finite. (A measure µ is called ˙-finite if the set can be 

partitioned into a countable union of sets, each of which has finite measure.) 

The most relevant example of a ˙-finite measure is the Lebesgue measure 

on the real line. Indeed, the real line can be broken into a countable sequence of 

intervals (n, n + 1], each of which has finite Lebesgue measure. 

1.5 The product measure on R2 

The two-dimensional plane R2 is the Cartesian product of R with itself. We 

endow each copy of R with the Borel ˙-field B and one-dimensional Lebesgue 

measure. The resulting ˙-field B × B is called the Borel ˙-field on R2 . The 

resulting product measure on R2 is called two-dimensional Lebesgue measure, 

to be denoted here by �2. The measure �2 corresponds to the natural notion of 

area. For example, 

�2([a, b] × [c, d]) = �([a, b]) · �([c, d]) = (b − a) · (d − c). 

More generally, for any “nice” set of the form encountered in calculus, e.g., sets 

of the form A = {(x, y) | f(x, y) ≤ c}, where f is a continuous function, 

�2(A) coincides with the usual notion of the area of A. 
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Remark for those of you who know a little bit of topology – otherwise ignore 

it. We could define the Borel ˙-field on R2 as the ˙-field generated by the 

collection of open subsets of R2 . (This is the standard way of defining Borel 

sets in topological spaces.) It turns out that this definition results in the same 

˙-field as the method of Section 1.2. 

FUBINI’S THEOREM 

Fubini’s theorem is a powerful tool that provides conditions for interchanging 

the order of integration in a double integral. Given that sums are essentially 

special cases of integrals (with respect to discrete measures), it also gives con-

ditions for interchanging the order of summations, or the order of a summation 

and an integration. In this respect, it subsumes results such as Corollary 1 at the 

end of the notes for Lecture 12. 

Fubini’s theorem holds under two different sets of conditions: (a) nonnega-

tive functions g (compare with the MCT); (b) functions g whose absolute value 

has a finite integral (compare with the DCT). We state the two versions sepa-

rately, because of some subtle differences. 

The two statements below are taken verbatim from the text by Adams & 

Guillemin, with minor changes to conform to our notation. 

Theorem 2. Let g : 1 × 2 → R be a nonnegative measurable function. 

Let P = P1 × P2 be a product measure. Then, 

R

(a) g(!1, !2) dP2 is a measurable function of !1. 
2

R

(b) g(!1, !2) dP1 is a measurable function of !2. 
1

(c) We have 

Z Z Z Z

h i h i

g(!1, !2) dP2 dP1 = g(!1, !2) dP1 dP2 

1 2 2 1 
Z 

= g(!1, !2) dP. 
1× 2 

Note that some of the integrals above may be infinite, but this is not a prob-

lem; since everything is nonnegative, expressions of the form ∞ − ∞ do not 

arise. 
Pn 

Proof. For simple functions g = , Ei ∈ F1 × F2 statement i=1 
ai1Ei 
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(a) follows from measurability of !1 7→ P2(E!1 ) established in the proof of 

Theorem 1. For a general g consider a sequence of simple functions 

gr(!1, !2) ր g(!1, !2) ∀!1, !2 

as r → ∞. Then we have shown that 
Z

fr(!1) = gr(!1, !2) dP2 

2

are F1 measurable and monotonically increasing fr ր f . By the MCT 

Z

f(!1) , lim gr(!1, !2) dP2 (7) 
r→∞ 

2
Z

= lim gr(!1, !2) dP2 (8) 
r→∞ 

2
Z

= g(!1, !2) dP2. (9) 
2

Since f is a limit of measurable fr’s – f must be measurable. By (9) the integral 

over 2 is also F1 measurable. This establishes (a) and (b) by symmetry. Finally 

(c), for a simple function g is just (2)-(3), while for a general function g we just 
R 

need to integrate (7) interchanging and lim by the MCT at will. 

Recall now that a function is said to be integrable if it is measurable and the 

integral of its absolute value is finite. 
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Theorem 3. Let g : 1 × 2 → R be a measurable function such that 

Z

|g(!1, !2)| dP < ∞, (10) 
1× 2 

where P = P1 × P2. 

(a) For almost all !1 ∈ 1, g(!1, !2) is an integrable function of !2. 

(b) For almost all !2 ∈ 2, g(!1, !2) is an integrable function of !1. 

R

(c) There exists an integrable function h : 1 → R such that g(!1, !2) dP2 = 
2

h(!1), a.s. (i.e., except for a set of !1 of zero P1-measure for which 
R 

g(!1, !2) dP2 is undefined or infinite). 
2

R

(d) There exists an integrable function h : 2 → R such that g(!1, !2) dP1 = 
1

h(!2), a.s. (i.e., except for a set of !2 of zero P2-measure for which 
R 

g(!1, !2) dP1 is undefined or infinite). 
1

(e) We have 

Z Z Z Z

h i h i

g(!1, !2) dP2 dP1 = g(!1, !2) dP1 dP2 

1 2 2 1 
Z 

= g(!1, !2) dP. 
1× 2 

Remarks: 

1. Both Theorems remain valid when dealing with ˙-finite measures, such 

as the Lebesgue measure on R2 . This provides us with conditions for the 

familiar calculus formula 
Z Z Z Z

g(x, y) dx dy = g(x, y) dy dx. 

2. In order to apply Theorem 3, we need a practical method for checking 

the integrability condition (10). Here, Theorem 2 comes to the rescue. 

Indeed, by Theorem 2, we have 
Z Z Z

|g(!1, !2)| dP = |g(!1, !2)| dP2 dP1, 
1× 2 1 2 

so all we need is to work with the right hand side, and integrate one vari-

able at a time, possibly also using some bounds on the way. 
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Proof. By now converting from a non-negative case to integrable case 

should be familiar. Theorem 3 is no exception: Given a function g, decom-

pose it into its positive and negative parts, apply Theorem 2 to each part, and in 

the process make sure that you do not encounter expressions of the form ∞−∞. 

We omit the details. 

3 SOME CAUTIONARY EXAMPLES 

We give a few examples where Fubini’s theorem does not apply. 

3.1 Nonnegativity and integrability 

Suppose that both of our sample spaces are the nonnegative integers: 1 = 

2 = {1, 2, . . .}. The ˙-fields F1 and F2 consist of all subsets of 1 and 2, 

respectively. Then, ˙(F1 × F2) is composed of all subsets of {1, 2, . . .}2 . Let 

both P1 and P2 be the counting measure, i.e. P(A) = |A|. This means that 
Z Z

X X 
g dP1 = f(a), h dP2 = h(b), 

A B a∈A b∈B 

and 
Z

X

f d(P1 × P2) = f(c). 
C c∈C 

Consider the function f defined by f(m, m) = 1, f(m, m + 1) = −1, and 

f = 0 elsewhere. It is easier to visualize f with a picture: 

1 −1 0 0 · · · 
0 1 −1 0 · · · 
0 0 1 −1 · · ·
0 0 0 1 · · · 
. . . . . . . . . . . . . . . 

So, 
Z Z

XX 
f dP2 dP1 = f(n, m) = 0 

1 2 n m 
Z Z

XX 
6= 1 = f(n, m) = f dP1 dP2. 

2 1 m n 

In this example, the conditions of Fubini’s theorem fail to hold: the function f 

is neither nonnegative nor integrable. 
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3.2 ˙-finiteness 

Let 1 = (0, 1), let F1 be the Borel sets, and let P1 be the Lebesgue measure. 

Let 2 = (0, 1) let F2 be the set of all subsets of (0, 1), and let P2 be the 

counting measure. In particular, for every infinite (countable or uncountable) 

subset of (0, 1), P2(A) = ∞. 

Let f(x, y) = 1 if x = y, and f(x, y) = 0 otherwise. Then, 

Z Z Z

f(x, y) dP2(y) dP1(x) = 1 dP1(y) = 1, 
1 2 1 

but 
Z Z Z

f(x, y) dP1(x) dP2(y) = 0 dP2(y) = 0. 
2 1 2 

In this example, the conditions of Fubini’s theorem fail to hold: the measure on 

(0, 1) is not ˙-finite. 
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