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Problem 6.1
Here we begin the analysis of quantum linear transformations by treating the single-
frequency quantum theory of the beam splitter.

(a) It is straightforward to verify the energy conservation property of the beam
splitter’s input-output relation. We have that,

â†OUTâOUT = (
√
ε â†IN +

√
1− ε b̂†IN)(

√
ε âIN +

√
ˆ1− ε bIN)

= εâ†INâIN + (1− ˆε)b† ˆ
INbIN +

√
ˆε(1− ε)(â† ˆ

INbIN + b†INâIN).

Similarly, we have that,

b̂† ˆ
OUTbOUT = (

√
− 1− ε â†IN +

√
ε b̂†IN)(−

√
1− ε âIN +

√
ˆε bIN)

= (1− ε)â† ˆ
INâIN + εb† ˆ

INbIN −
√

ˆε(1− ε)(â† ˆ
INbIN + b†INâIN).

Adding these two equations gives the desired result,

â† ˆ
OUTâOUT + b†OUTb̂OUT = â† ˆ

INâIN + b† ˆ
INbIN,

ˆwhich tells us that regardless of the joint state of the âIN and bIN modes, the total
photon number in the output modes is the same as the total photon number in
the input modes, viz., energy is conserved by this beam splitter.

(b) To prove that the beam splitter’s input-output relation preserves commutator
brackets is also relatively easy. We have that,

ˆ[âOUT, bOUT] = [(
√
ε âIN +

√
1− ε b̂IN), (−

√
1− ε âIN +

√
ˆε bIN)]

ˆ ˆ= ε[âIN, bIN]− (1− ε)[bIN, âIN] = 0,

ˆ ˆwhere we have used [âIN, bIN] = −[bIN, âIN] = 0. Likewise, we find that,

ˆ[âOUT, b
†
OUT] = [(

√
ε âIN +

√
1− ε b̂IN), (−

√
1− ε â†IN +

√
ˆε b†IN)]

= −
√
ε(1− ε)[âIN, â†IN] +

√
ˆε − ˆ(1 ε)[bIN, b
†
IN]

ˆ ˆ+ ε[âIN, bIN
† ]− (1− ε)[bIN, â†IN] = 0,
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ˆwhere we have used [âIN, b
†
IN] = −[â† ˆ ˆ ˆ

IN, bIN]† = 0, and [âIN, â
†
IN] = [bIN, b

†
IN] = 1.

Finally we compute

[âOUT, â
†
OUT] = [(

√
ε âIN +

√
1− ε b̂IN), (

√
ε â†IN +

√
ˆ1− ε b†IN)]

= ε[âIN, â
†
IN

ˆ] + (1− ˆε)[bIN, b
†
IN]

+
√
ε(1− ε) [âIN, b̂

†
IN] +

√
ˆε(1− ε) [bIN, â

†
IN] = 1,

and

ˆ ˆ[bOUT, b
†
OUT] = [(

√
− 1− ε âIN +

√
ε b̂IN), (−

√
1− ε â†IN +

√
ˆε b†IN)]

= (1− ε)[âIN, â†IN ˆ ˆ] + ε[bIN, b
†
IN]

−
√
ε(1− ε) [âIN, b̂

†
IN]−

√
ε − ˆ(1 ε) [bIN, â

†
IN] = 1.

Note that commutator-bracket preservation is important because it means that
no additional quantum noise is needed to ensure that the free-field Heisenberg

ˆuncertainty principle that applies to the input modes, âIN and bIN, also applies
ˆto the output modes, âIN and bIN.

(c) Characteristic functions make it easy to derive the state transformations that
are produced by quantum linear systems. We have that,

ζa
∗âOUT ζb

∗b̂OUT = ζa
∗(
√

− − − ε âIN +
√

1− ε b̂IN)− ζ∗b (−
√

1− ε âIN +
√

ˆε bIN)

= −ζa′
∗
âIN − ζb′

∗
b̂IN,

and

ζaâ
† ˆ
OUT + ζbb

†
OUT = ζa(

√
ε â†IN +

√
1− ε b̂†IN) + ζb(−

√
1− ε â†IN +

√
ˆε b†IN)

= ζa
′ â†IN + ζb

′ b̂†IN,

where
ζa
′ ≡ ζa

√
ε− ζb

√
1− ε and ζ ′b ≡ ζa

√
1− ε+ ζb

√
ε.

It then follows that,

χρOUT
∗

(ζ∗, ζ∗
ˆ ˆ

; ζ , ζ ) ≡ 〈e−ζa âOUT ζ∗b † +ζbbb OUT ζaâOUT
†
OUT

A a b a b
− e 〉

〈 − ′
∗ − ′ ∗ˆ ˆ

a
′

= e ζa âIN ζ bINeζ â
† +ζ bb IN b

′ †
IN〉

= χρINA (ζa
′ ∗, ζ

∗
b
′ ; ζa

′ , ζb
′),

where angle brackets denote quantum averaging, i.e., multiplication by the ap-
propriate density operator and taking the trace.
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(d) From Problem 5.3(a) we have that,

χρIN
∗ ∗ ζ′ α ζ 2 ζ β β ζ 2

aα ζ∗
IN ζa

′ ∗
IN a

′
b
′

IN
∗

b
′ ∗

IN b
′

A (ζa
′ , ζb

′ ; ζa
′ , ζb
′) = e − −| | e − −| | .

Substituting in for ζa
′ and ζb

′ we then get,

χρOUT
√

A (ζa
∗, ζb
∗; ζa, ζb) = e(ζa ε−ζb

√
1−ε)α∗IN−(ζ

∗
a

√
ε−ζ∗b

√
1−ε)αIN−|ζa

√
ε−ζb

√
1−ε|2

× e(ζa
√
1−ε+ζb

√
ε)β∗IN−(ζa

√
1−ε+ζb

√
ε)
∗
βIN−|ζa

√
1−ε+ζb

√
ε|2

= eζaα
∗ −ζa∗αOUT−|ζa|2eζ βOUT b IN

∗ −ζb∗βOUT−|ζb|2 ,

where

αOUT

√
≡ ε αIN +

√
1− ε βIN,

βOUT

√
≡ − 1− ε αIN +

√
ε βIN.

This anti-normally ordered characteristic function is, by the result of Prob-
lem 5.3(a), that of the two-mode coherent state |αOUT〉OUT|βOUT〉OUT, QED.

Problem 6.2
Here we shall develop a moment-generating function approach to the quantum statis-
tics of single-mode direct detection.

(a) We have that,

∞

MN(s) ≡
∑ ∑∞

esn Pr(N = n) = esn n
=0 n=0

〈 |ρ̂|n〉, for s real, (1)
n

and
∞

Q (λ) ≡
∑

(1− λ)nN

n=0

〈n|ρ̂|n〉, for λ real. (2)

Thus, we see that

QN(λ) = MN(s)|s=ln(1 λ) and MN(s) = QN(λ)− |λ=1−es .

(b) Straightforward differentiation gives us,

dk[(1− λ)n]
={dλk

(−1)kn(n− 1)(n− 2) · · · (n− k + 1)(1− λ)n−k, for n ≥ k = 1, 2, 3, . . .,
0, for k > n = 0, 1, 2, . . .
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Substituting this result into Eq. (2) and setting λ = 0 we obtain,

dkQN(λ)
=

dλk

∣∣∣∣
λ=0∑∞

(−1)kn(n− 1)(n− 2) · · · (n− k + 1)〈n|ρ̂|n〉 for k = 1, 2, 3 . . . (3)
n=k

Now, k-repeated applications of the annilhilation operator to the number ket
|n〉 yields

âk|n〉 =

{ √
n(n− 1)(n− 2) · · · (n− k + 1)|n− k〉, for n ≥ k = 1, 2, 3, . . .,

0, for k > n = 0, 1, 2, . . .,

and its adjoint relation is

〈n|â†k =

{ √
n(n− 1)(n− 2) · · · (n− k + 1)〈n− k|, for n ≥ k = 1, 2, 3, . . .,

0, for k > n = 0, 1, 2, . . ..

Substituting these results into Eq. (3) we get,

dkQN(λ)
∣∣∣ ∞∣ =

∑
(−1)k〈n|ρ̂|n〉〈n|â†kâk

dλk λ=0 n=k

|n〉

∞

=
∑

(−1)k〈n|ρ̂â†kâk|n〉 = (−1)ktr(ρ̂â†kâk)
n=k

= (−1)k〈â†kâk〉,

where the second equality follows from

â†kâk|n〉 = n(n− 1)(n− 2) · · · (n− k + 1)|n〉, for n ≥ k, (4)

the third equality follows from the completness of the number kets, and the last
equality follows from Problem 3.2(c).

(c) Here we assume that the field is in the mth number state, |m〉. From Eq. (4)
we immediately see that,

m â†kâk
· · (m

m =

{
m(m− 1)(m− 2) · − k + 1), for m ≥ k〈 | | 〉
0, for k > m.

Using the Taylor series,

∞
1

QN(λ) =
∑
k=0

k!

(
dkQN(λ)

λ
dλk

∣∣∣∣
λ=0

)
k

4



we then get,
m

QN(λ) =
∑ m

(−λ)k
(

.
k

k=0

)
From part (a) we now have,

m
m

MN(s) = Q (λ)| s
N λ=1 es =

∑
(e − 1)k−

k=0

(
k

)
= esm,

where the last equality follows from the binomial theorem,∑m
pkqm−k

(
m
)

= (p+ q)m,
k

k=0

with p ≡ es − 1 and q ≡ 1. We see that our result for MN(s) thus derived
is correct, because when the field is in the state |m〉 we have 〈n|ρ̂|n〉 = δnm,
whence MN(s) = esm from Eq. (1).

(d) Now we are given that the field is in the coherent state |α〉. In this case it
is trivial to find the factorial moments, because repeated application of the
coherent-state eigenvector/eigenvalue relation gives,

âk|α〉 = αk|α〉,

and the adjoint of this equation is,

〈α|â†k = α∗k〈α|.

Taking the inner product of these equations gives

〈â†kâk〉 = |α|2k.

Once again employing the Taylor series for QN(λ), we find that

∞ k

QN(λ =
∑ (−λ)

)
k=0

λ

k
|α −

!
|2k = e |α|2 .

From part (a) we now have,

MN(s) = QN(λ)|λ=1 es = exp[|α|2(es − 1)]. (5)−

We know that
n

Pr( = n) =
|α|2

N
2

e−|α| , for n = 0, 1, 2, . . .,
n!

when the number operator is measured on the coherent-state field |α〉. The
moment-generating function of this Poisson distribution is easily found to be
given by the second equality in Eq. (5): QED.
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Problem 6.3
Here we shall examine a quantum photodetection model for single-mode direct de-
tection with sub-unity quantum efficiency.

(a) This is a straightforward calculation. Using the definition of â′ we have that

〈 ′â †k ′
â k〉 = 〈(√ηâ† +

√
1− ηâ†η)k(

√
ηâ+

√
1− ηâη)k〉.

The signal field mode, â, is in an arbitrary state, but the mode âη is in its
vacuum state for which âm m

η |0〉η = 0 and η〈0|â†η = 0 for all m ≥ 1. Thus,
because the factorial moment is a normally-ordered form, we find that the only
term that survives the averaging is the term that contains no â†η or âη terms,
viz.,

〈 ′â †k ′
â k〉 = ηk〈â†kâk〉.

(b) Using the Taylor series for QN ′(λ), as in Problem 6.2, we obtain
∞ k

QN ′(λ) =
∑ (−λ)

k=0

ηk ˆ
!

〈a†kâk〉 = QN(ηλ),
k

for QN(λ) as defined in Eq. (2), where the last equality makes use of the Taylor
series for QN(λ).

(c) This part is trivial. Using the results of Problem 6.2(a) and 6.3(b) we have
that,

MN ′(s) = QN ′(λ)|λ=1−es = QN(ηλ)|λ=1−es .

Another result from Problem 6.2(a) yields,

QN ′(1− es) = MN ′(s),

whence
M s s

N ′(s) = QN [η(1− e )] = MN{ln[1− η(1− e )]}, (6)

by yet another application of Problem 6.2(a).

(d) We are trying to prove that Eq. (6) is equivalent to,

∞

MN ′(s) =
∑ ∞

k
esn

[∑( )
ηn(1− η)k−n〈k|ρ̂|k〉

]
. (7)

n
n=0 k=n

We’ll prove this assertion by assuming that Eq. (7) is correct and showing that
Eq. (6) follows therefrom. Interchanging the orders of summation in Eq. (7) we
have that,

∞

MN ′(s) =
∑
k=0

[∑k
n=0

(
k
n

)
esnηn(1− η)k−n

]
〈k|ρ̂|k〉

∞

=
∑

[1
k=0

− η(1− es)]k〈k|ρ̂|k〉 = MN{ln[1− η(1− es)]},
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where the second equality follows from the binomial theorem and the last equal-
ity follows from Problem 6.2(a): QED.

(e) Because
∞

MN ′(s) =
∑

esn Pr(N ′ = n),
n=0

by definition, the result of (d) immediately gives us that

∞
k

Pr(N ′ = n) =
∑( )

ηn(1− η)k−n〈k|ρ̂|k〉. (8)
n

k=n

Equation (8) has the following interpretation. An ideal (η = 1) photon counter
when illuminated by the field in state ρ̂ will register k counts with probability,

Pr(N = k) = 〈k|ρ̂|k〉.

A detector with quantum efficiency η < 1 will randomly miss a count—that
the ideal detector would have made—with probability 1− η, i.e., the quantum-
efficiency-η detector’s counts are those of a unity-quantum-efficiency detector
subjected to a Bernoulli deletion process. In other words, the conditional prob-
ability that n counts will be registered by the quantum-efficiency-η device, given
that k counts are registered by a unity-quantum-efficiency device, is,

k
Pr(N ′ = n | N = k ) =

( )
ηn(1− η)k−n, for 0 ≤ n

n
≤ k.

Problem 6.4
Here we shall continue our investigation of quantum linear transformations by treating
the single-frequency quantum theory of the degenerate parametric amplifier (DPA).

(a) Commutator preservation is easily demonstrated. We have that,

[âOUT, âOUT] = [(µâIN + νâ†IN), (µ∗â†IN + ν∗âIN)]

= |µ|2[âIN, â†IN] + |ν|2[â†IN, âIN] = |µ|2 − |ν|2 = 1,

where we have used [âIN, â
†
IN] = −[â†IN, âIN] = 1.

(b) There is really no work to be done here. From Problem 5.3(a) we have that,

χρINW (ζ∗, ζ) = eζα
∗
IN−ζ

∗αIN−|ζ|2/2.
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(c) Here we proceed along the lines used in Problem 6.1(c). We have that,

χρOUT
∗ † ∗

(ζ∗, ζ) = 〈e−ζ âOUT+ζâ 〉 = 〈e−ζ (µâOUT IN+νâ† )+ζ(µIN
∗âIN
† +ν∗âIN)

W 〉

〈 −ζ′
∗âIN+ζ′ †= e â 〉 = χρININ

W (ζ ′
∗
, ζ ′),

where ζ ′ ≡ −ζ∗ν + ζµ∗, and angle brackets denote quantum averaging, i.e.,
multiplication by the appropriate density operator and taking the trace.

(d) Let aOUT1 and aOUT2 denote the classical outcomes of the âOUT1 and âOUT2

measurements. The classical characteristic functions of these measurement out-
comes can be found as follows:

M (jv) ≡ E(ejvaOUT ) = 〈ejvâOUT 〉 = 〈e(jv/2)âOUT+(jv/2)â†
1 1 OUTaOUT1

〉

= χρOUT ρIN
W (−jv/2, jv/2) = χW (−(jv/2)(µ+ ν), (jv/2)(µ+ ν))

and,

M (jv) ≡ E(ejvaOUT ) = 〈ejvâOUT 〉 = 〈e(v/2)âOUT 2)
2 2

OUT

−(v/ â†OUTa
2

〉

= χρOUT

W (−v/2,−v/2) = χρINW (−(v/2)(µ− ν),−(v/2)(µ− ν)),

where we have used the fact that µ and ν are real valued. Now, using the
Wigner characteristic function of the input-mode coherent state we get our
final characteristic-function results:

M (jv) = e(jv/2)(µ+ν)αIN+(jv/2)(µ+ν)α∗IN
aOUT

−(v2/8)(µ+ν)2
1

= ejv(µ+ν)αIN −(v2/8)(µ+ν)21

M (jv) = e(v/2)(µ−ν)αIN−(v/2)(µ
aOUT

−ν)α∗ /IN−(v
2 8)(µ−ν)2

2

= ejv(µ−ν)αIN2
−(v2/8)(µ−ν)2 ,

where αIN1 and αIN2 are the real and imaginary parts of αIN, respectively. By
inspection, we see that these are the characteristic functions of classical Gaus-
sian random variables. In particular, aOUT1 is Gaussian distributed with mean
value (µ + ν)αIN1 and variance (µ + ν)2/4, and aOUT2 is Gaussian distributed
with mean value (µ − ν)αIN2 and variance (µ − ν)2/4. Note that the mean
values are in accord with what we would find directly by taking the quadrature
components of the quantum average of the DPA’s input-output relation, viz.,

〈âOUT〉 = µ〈âIN〉+ ν〈â†IN〉 = µ〈âIN〉+ ν〈âIN〉∗ = µαIN + ναIN
∗ .
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Also note that the variances satisfy the Heisenberg uncertainty principle with
equality,

2 2

〈∆â2 (〉〈∆â2 µ+ ν) (µ
OUT OUT2

〉 =
− ν)

1 16
=

(µ2 − ν2)2

16
=

1
,

16

where we have used the fact that µ and ν are real valued. This is as it should
be, because we showed in class that the Bogoliubov transformation with µ and
ν real produces squeezed states.
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