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Introduction

In this lecture we shall complete our treatment of the â positive operator-valued mea-
surement by connecting the POVM approach to the more familiar case of observables.
As a prelude to that work, however, we shall cast the observables with which we are
already acquainted—the number operator and the quadrature operators—into the
POVM mold. This is a worthwhile exercise because quantum information science
typically uses POVMs for its characterization of measurements, as many of these
measurements do not correspond to observables on the state space of the system
being measured. Thus it behooves us to become comfortable with POVMs. Once
we complete this POVM work, we’ll move on to contrasting the semiclassical and
quantum theories of ideal photodetection for single-mode fields.

Positive Operator-Valued Measurements

ˆIf O is an observable with discrete, distinct eigenvalues {on} and an associated com-
plete orthonormal set of eigenkets {|on〉}, then it has the eigenket-eigenvalue expan-
sion

Ô =
∑

on
n

|on〉〈on|. (1)

ˆAccording to Axiom 3, measurement of O when the system is in state |ψ〉 yields an
outcome that is one of the {on} with the probability that the outcome is on being
given by

Pr( outcome = on | state = |ψ〉 ) = |〈on|ψ〉|2. (2)

There is an equivalent POVM description of this measurement, as we now will provide.
Define the collection of operators {Π̂n} by

Π̂n = |on〉〈on|. (3)

Physically, the {Π̂n} are projectors , i.e., for any state |ψ〉 we have that

Π̂n|ψ〉 = (〈on|ψ〉)|on〉 (4)

ˆis the ket vector obtained by projecting |ψ〉 into the |on〉 direction. The {Πn} have
two properties that make them a positive operator-valued measurement:

• The {Π̂n} ˆ ˆare Hermitian operators, Π†n = Πn, as is self-evident from their
definition.

• ˆThe {Πn} resolve the identity, i.e.,

ˆ ˆI =
∑

Πn, (5)
n

which follows immediately from the {|on〉} being a complete orthonormal set of
kets for the system.
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ˆWe can now define the POVM {Πn}: the outcome of this measurement is n, the
projector index, and the probability for getting the outcome n when the system is in
the state |ψ〉 is

ˆPr( outcome = n | state = |ψ〉 ) = 〈ψ|Πn|ψ〉. (6)

Clearly, except for labeling the outcomes n instead of on, the POVM description is
fully equivalent to the observable description of this measurement. So, for example,

ˆmeasurement of the number operator, N =
∑

n n|n
ˆ

〉〈n|, is equivalent to the POVM

{Πn ≡ |n〉〈n|}.
A similar relationship between observables and POVMs prevails when the former

ˆhave a continuum of eigenvalues, as we will now show. Suppose that O is an observable
with distinct eigenvalues −∞ < o < ∞ and an associated complete orthonormal (in
the delta-function sense) set of eigenkets {|o〉}. This observable has the eigenket-
eigenvalue expansion

Ô =

∫ ∞
do o|o〉〈o|, (7)

−∞

ˆand, according to Axiom 3a, measurement of O yields an outcome that is a continuous
random variable o with probability density function

p(o) = |〈o|ψ〉|2, for −∞ < o <∞, (8)

when the system is in the state |ψ〉. The equivalent POVM formulation for this
measurement is provided by the collection of operators {Π̂(o)}, which are defined as
follows,

Π̂(o) ≡ |o〉〈o|, for −∞ < o <∞. (9)

The properties of these operators are like those we found for the discrete-eigenvalue
case.

• The {Π̂(o)} are projectors, i.e.,

Π̂(o)|ψ〉 = (〈o|ψ〉)|o〉, (10)

projects |ψ〉 along the |o〉 direction.1

• The {Π̂(o)} ˆ ˆare Hermitian operators, i.e., Π(o)† = Π(o), as is self-evident from
their definition.

• The {Π̂(o)} resolve the identity, viz.,

Î =

∫ ∞
ˆdoΠ(o), (11)

−∞

because {|o〉} is a complete orthonormal set of eigenkets.

1Due care must be taken here in interpreting this is as a projection. This is because a finite-energy
|ψ〉 ˆhas unit length, but Π(o)|ψ〉 will have infinite length unless 〈o|ψ〉 = 0.
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In light of the preceding properties, and in analogy with what we have stated for the
ˆcase of an observable with discrete eigenvalues, we say that the POVM {Π(o)} has as

its outcome a continuous random variable, o, whose probability density function is

p(o) = 〈ψ|Π̂(o)|ψ〉, for −∞ < o <∞, (12)

when the system is in state |ψ〉. It should be clear that the POVM description,
{ˆ } ˆΠ(o) , is fully equivalent, in this case, to that of the observable, O. Thus, for
example, measurement of the quadrature operator

â1 =

∫ ∞
dα1 α1|α1〉11〈α1|, (13)

−∞

is equivalent to that of the POVM

Π̂(α1) ≡ |α1〉11〈α1|, for −∞ < α1 <∞. (14)

Were we only to be concerned with measurements that are observables, then the
value of POVM representations would be relatively low, as they are merely reformula-
tions of what we have already characterized. The power of POVMs comes from their
being able to describe measurements that cannot be characterized as an observable
on the state space of the quantum system that is being measured. A prime example of
such behavior is the â POVM, introduced last time, whose key properties are reviewed
on Slide 2. To put this example into a more general setting, let’s define discrete and
continuous POVMs without the prior assumption that these measurements can also
be represented by observables on the state space of the quantum system that is being
measured.2

Discrete Outcome POVM
A POVM with a discrete outcome, {Π̂n}, is defined as follows.

• The {Π̂n} are Hermitian operators that are positive semi-definite and resolve
the identity,

ˆ † ˆ 〈 |ˆ | 〉 ≥ ˆ ˆΠn = Πn, ψ Πn ψ 0 for all |ψ〉, I =
∑

Πn. (15)
n

• When {Π̂n} is measured, the outcome n occurs with probability

ˆPr( outcome = n | state = |ψ〉 ) = 〈ψ|Πn|ψ〉, (16)

when the system is in the state |ψ〉.
2Saying “on the state space of the quantum system that is being measured” is important because,

as we will show later in this lecture, POVMs that are not observables on the system’s state space can
be represented as observables on an enlarged state space consisting of the original system adjoined
with a (quantum-mechanical) measurement apparatus.
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ˆIf the {Πn} are orthonormal projectors, so that

ˆ ˆ ˆΠnΠm = Πnδnm, (17)

then this POVM is equivalent to an observable, but otherwise it is not. However,
the POVM definition does not require that (17) hold. Indeed, it is easy to show that
the preceding definition is fully consistent with classical probability theory, viz., it
predicts probabilities that are non-negative and sum to one, with the former property

{ˆbeing guaranteed by the positive semi-definite nature of the Πn}, and the latter being
due to the identity resolution property,

∑
ˆPr( outcome = n | state = |ψ〉 ) = 〈 ˆψ Πn ψ = ψ I ψ = 1. (18)

n

|

(∑
n

)
| 〉 〈 | | 〉

Continuous Outcome POVM
A POVM with a continuous outcome, {Π̂(x)}, is defined as follows.

• The {Π̂(x)} are Hermitian operators that are positive semi-definite and resolve
the identity,

ˆ † ˆ 〈 |ˆΠ (x) = Π(x), ψ Π(x)|ψ〉 ≥ ˆ0 for all |ψ〉, I =

∫
ˆdxΠ(x). (19)

• When {Π̂(x)} is measured, the outcome x occurs with probability density func-
tion

p(x) = 〈 ˆψ|Π(x)|ψ〉, (20)

when the system is in the state |ψ〉.

If the {Π̂(x)} are orthonormal projectors, so that

ˆ ˆ ˆΠ(x)Π(y) = Π(x)δ(x− y), (21)

then this POVM is equivalent to an observable, but otherwise it is not. Once again,
the POVM description does not require that the projection property—here, (21)—
be satisfied. Note that the tenets of classical probability theory are obeyed by this
prescription: non-negativity of a probability density is ensured by the positive semi-
definite nature of the {Π̂(x)}, and total probability equaling one follows from the
identity resolution via∫

ˆ ˆdx p(x) = 〈ψ|
(∫

dxΠ(x)

)
|ψ〉 = 〈ψ|I|ψ〉 = 1. (22)
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It should now be completely apparent that the POVM we introduced last time—as
summarized on Slide 2—is

Π̂(α)
|α〉〈α|≡ , for α ∈ C, (23)
π

where the {|α〉} are the coherent states. That this POVM does not correspond to an
observable on the oscillator’s state space is seen from

( βˆ ˆΠ(α)Π( ) =
〈α

β
| 〉)|α〉〈β|
π2

=
e−|α|

2/2−|β|2/2+α∗β|α〉〈β|
(

π
6 ˆ= Π(α)δ α

2
− β), (24)

where δ(α− β) ≡ δ(α1 − β1)δ(α2 − β2).

Complete Statistics of the â POVM

ˆOur next task will be to explore the statistics of the â POVM, i.e., Π(α), from a trans-
form (characteristic function) domain perspective. The outcome of this measurement
is a pair of real numbers, α1 and α2, whose joint probability density is

2

p(α) = 〈ψ|Π̂(α)| 〉 =
|〈α|ψ

ψ
〉|
, for α ≡ α1 + jα2

π
∈ C. (25)

when the system’s state is |ψ〉. The classical joint characteristic function associated
with this joint pdf is then

M (jv , jv ) ≡
∫

d2α ejv1α1+jv2α2
α1,α2 1 2 p(α). (26)

Consider the anti-normally ordered characteristic function associated with the state
|ψ〉, i.e.,

χA(ζ∗, ζ) ≡ 〈 ∗
ψ|e−ζ âeζâ

†|ψ〉. (27)

Inserting an identity operator that is resolved into coherent states, we find that

α
χ ζ∗â d2

A(ζ∗, ζ) = 〈ψ|e−
(∫

†
α

π
| 〉〈α|

)
eζâ |ψ〉 (28)

= 〈ψ|
(∫

d2α
)

2

|α〉e−ζ∗α+ζα α ψ∗〈α| |ψ〉 ∗ ∗
=

π

∫
d2α e−ζ α+ζα |〈 | 〉| , (29)

π

where the second equality follows because α is an eigenket of e−ζ
∗â with eigenvalue

e−ζ
∗α

| 〉
, as can be verified by Taylor series expansions of the operator and classical

exponentials. From −ζ∗α + ζα∗ = 2jζ2α1 − 2jζ1α2, we then see that

Mα1,α2(jv1, jv2) = χA(ζ∗, ζ)|ζ=jv/2, where v ≡ v1 + jv2, (30)
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so that—unlike what we found last time for the Wigner characteristic function—the
anti-normally ordered characteristic function always can be taken (with appropriate
argument scaling) to be the joint characteristic function of two real-valued, classical
random variables.

Let’s use the preceding result to obtain the â POVM statistics when the oscillator
is in the squeezed state |β;µ, ν〉, with, for simplicity, µ and ν real. For this state we
have that

∗ 〈 | −ζ∗ ˆ ˆ(µb−νb† ˆ ˆ
χ (ζ , ζ) = β;µ, ν e )eζ(µb

†−νb)
A |β;µ, ν〉, (31)

ˆwhere b ≡ µâ + νâ† defines |β;µ, ν〉 ˆvia the eigenket-eigenvalue relation b|β;µ, ν〉 =
β|β;µ, ν〉. Repeated use of the Baker-Campbell-Hausdorff theorem then leads to

χA(ζ∗
∗ ˆ† ∗ ˆ ∗2 ˆ† ˆ

, ζ) = 〈β;µ, ν|eζ νb e−ζ µbe−ζ µν/2eζµb e−ζνbe−ζ
2µν/2|β;µ, ν〉 (32)

= 〈β;µ, ν|e(ζµ+ζ∗ ˆν)b†e−
ˆ(ζ∗µ+ζν)b|β;µ, ν〉e−|ζ|2µ2−Re(ζ2)µν . (33)

ˆ
Using the fact that |β;µ, ν〉 is an eigenket of eξb, with eigenvalue eξβ, for ξ a complex
number, gives us

χ (ζ∗, ζ) = e(ζµ+ζ
∗ν)β∗−(ζ∗µ+ζν)β−|ζ|2µ2

A
−Re(ζ2)µν . (34)

Introducing ζ = jv/2 leads to the final form,

2 2 2 2

M (jv , jv ) = χ (ζ∗, ζ)| = ejv1(µ−ν)β1−v1σ1/2 jv2(µ+ν)β2 v2σ2/2
α1,α2 1 2 A ζ=jv/2 e − , (35)

where β1 and β2 are the real and imaginary parts of β, and

2 µ2 µν
σ1

−≡
2

=
(µ− ν)2 + 1

4
and σ2

2 ≡
µ2 + µν

2
=

(µ+ ν)2 + 1
, (36)

4

with the second equalities in the σ2
k expressions following from µ2 − ν2 = 1. Equa-

tion (35) shows that, when the oscillator is in the squeezed state |β;µ, ν〉 with µ and
ν real, the real and imaginary parts of the â POVM are statistically independent
Gaussian random variables with mean values

〈α1〉 = (µ− ν)β1 and 〈α2〉 = (µ+ ν)β2, (37)

and variances
〈∆α2

1〉 = σ2
1 and 〈∆α2

2〉 = σ2
2. (38)

Thus the â POVM gives information about the mean values of both quadratures,
because 〈αk〉 = 〈âk〉 for k = 1, 2, and, as we have shown earlier, it does so without
violating the Heisenberg uncertainty principle. Indeed, the only new thing that we
have learned here is that the â POVM statistics for the squeezed state—at least the
one with µ, ν real—are Gaussian, and hence completely characterized by first and
second moments.
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Reconciling the â POVM with Observables

Positive operator-valued measurements entered into quantum information science in
the 1960’s, when the question of classical information transmission over quantum
channels received its first thorough theoretical studies. Whether for digital or ana-
log information transmission, deriving an optimum quantum receiver required that
an optimization be performed over all possible quantum measurements. Restricting
the set of possible measurements to observables on the state space of the quantum
system whose state was modulated by the transmitter turned out to be too restric-
tive. Better performance could be obtained, in important cases, by using a positive
operator-valued measurement on that system that was not an observable. Yet, as we
will now show explicitly for the case of the â POVM, it is possible to construct an
observables scheme that is equivalent—in the sense that it gives the same measure-
ment statistics—as a POVM that cannot be represented by observables on the state
space of the original quantum system. The key to this demonstration is to adjoin an
ancilla quantum system and measure observables on the joint structure comprising
the original quantum system and the ancilla.

On Problem Set 3 you have done the heavy lifting for this demonstration, by
developing the notion of tensor product spaces. So, let us directly build on that
background now. Consider two quantum harmonic oscillators, the system (S) and the
ancilla (A), with state spacesHS andHA, respectively. The annihilation operators for
these oscillators will be denoted âS and âA, and their coherent states will be denoted
|αS〉S and |αA〉A. If we measure the âS POVM when the S system is in state |ψ〉S,
then we know that the outcome will be a complex-valued random variable αS with
probability density function p(αS) = |S〈αS|ψ〉S|2/π. Now, consider the operator

ŷ ≡ âS ⊗ ˆ ˆIA + IS ⊗ â†A, (39)

ˆ ˆwhere IA and IS are the identity operators on HA and HS. We know, from Problem
Set 3, that ŷ is an operator on the tensor product state space H ≡ HS ⊗HA of the
two oscillators. Because

† † ⊗ ˆ ˆŷ = âS IA + IS ⊗ âA, (40)

we see that ŷ is not Hermitian. Note, however, that ŷ does commute with its adjoint,
viz.,

[ŷ, ŷ† ˆ] = [âS ⊗ ˆIA + IS ⊗ â†A, â
†
S ⊗ ˆ ˆIA + IS ⊗ âA] (41)

ˆ= [â ⊗ ˆ ˆ ˆ
S IA, â

†
S ⊗ IA] + [IS ⊗ â†A, IS ⊗ âA] = 1− 1 = 0. (42)

It follows that the real and imaginary parts of ŷ,3

ŷ1 ≡ ˆâS1 ⊗ ˆIA + IS ⊗ ˆ ˆâA1 and ŷ2 ≡ âS2 ⊗ IA − IS ⊗ âA2 , (43)

3 ˆTo derive these results use is made of the distributive property for tensor products, âS ⊗ IA +
(âS ⊗ ˆ ˆ ˆ ˆIA)† = âS ⊗ IA + â†S ⊗ IA = (âS + â†S)⊗ IA.
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are commuting observables that can be measured simultaneously. The supplementary
reading for this lecture provides a reference in which the eigenkets of ŷ are derived.
We shall not take that route to quantifying the statistics of the simultaneous ŷ1 and
ŷ2 measurements. For our needs, it is simpler to employ a characteristic function
derivation.

Suppose that the state of the two oscillators is the product state |ψ〉 = |ψ〉S⊗|0〉A,
where |ψ〉S is an arbitrary unit-length ket in HS and |0〉A is the vacuum state in
HA. Let y1 and y2 be the real-valued, random-variable outcomes obtained from the
simultaneous measurement of ŷ1 and ŷ2 when the two oscillators are in this product
state. We have that the joint characteristic function for these random variables is

M (jv , jv ) = 〈ejv1y1+jv2y2〉 = 〈ejv1ŷ1+jv2ŷ2y1,y2 1 2 〉 (44)

= 〈e(jv1+v2)ŷ/2e(jv1−v2)ŷ†/2〉 (45)

= 〈 ˆ ˆ ˆ ˆ
e(jv1+v2)âS⊗IA/2e(jv1−v2)â

†⊗IA/2e(jv1+v2)IS⊗â
† /2e(jv1−v2)IS A S⊗âA/2〉 (46)

†
= [ 〈 ∗ † ∗

ψ|e−ζ âSeζâ |ψ〉 〈0|e−ζ â eζâS A A
S SA |0〉A]|ζ=jv/2 (47)

= χAS(ζ∗, ζ)|ζ=jv/2, (48)

where
χ (ζ∗, ζ) = 〈ψ|e−ζ∗âSeζâ

†
SAS S |ψ〉S (49)

is the anti-normally ordered characteristic function of the signal oscillator’s quantum
state. Comparing Eqs. (30) and (48) shows that the â POVM has the same mea-
surement statistics as the simultaneous measurement of ŷ1 and ŷ2 when the ancilla
oscillator is in its vacuum state. When we study single-mode optical heterodyne
detection—which realizes the â POVM—we will be able to identify a physical locus
for the ancilla oscillator. There is, however, one more thing worth doing while we are
comparing the â POVM with its commuting observables equivalent, and that is to
see where the extra noise in the 〈∆α2

1〉 and 〈∆α2
2〉 comes from.

Because the α1 and α2 outcomes from the â POVM have the same statistics as the
simultaneous measurement of ŷ1 and ŷ2 when the ancilla oscillator is in its vacuum
state, we see that

〈∆α2
k〉 = 〈∆ŷ2k〉 = 〈∆â2 2 2

Sk
〉+ 〈∆âAk〉 = 〈∆âSk〉+ 1/4, for k = 1, 2, (50)

where the second equality follows from the signal and ancilla being in a product state,
and the last equality follows from the ancilla being in the vacuum state. Thus, the
extra noise that appeared in Table 4 of Lecture 7 is due to the zero-point fluctuations
of the ancilla.
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Single-Mode Photodetection

We are now done with our development of the quantum harmonic oscillator. It is time
to turn that knowledge into results for single-mode photodetection, and to contrast
the quantum theory of photodetection with the semiclassical (shot-noise) theory of
photodetection. Before doing so, we pause for a quick phenomenological discussion
of photodetection, as it will make clear what idealizations underlie the quantum and
semiclassical models that we will be presenting.

A Real Photodetector

Slide 8 shows a theorist’s cartoon of a real photodetector. The two large blocks on
this slide are the photodetector and the post-detection preamplifier. The smaller
blocks within the two large blocks are phenomenological, i.e., they do not represent
discrete components out of which the larger entities are constructed. Nevertheless,
it is instructive to walk our way through this photodetection system by means of
these phenomenological blocks. Incoming light—whether we model it in classical or
quantum terms—illuminates an optical filter that models the wavelength dependence
of the photodetector’s sensitivity. The light emerging from this filter then strikes
the core of the photodetector, i.e., the block that converts light into a light-induced
current, which we call the photocurrent. Photodetectors have some current flow in
the absence of illumination, and this dark current adds to the photocurrent within
the detector. High-sensitivity photodetectors—such as avalanche photodiodes and
photomultiplier tubes—have internal mechanisms that amplify (multiply) the initial
photocurrent (and the dark current), and we have shown that on Slide 8 as a current
multiplication block.4 This current multiplication in general has some randomness
associated with it, imposing an excess noise on top of any noise already inherent in the
photocurrent and dark current. The electrical filter that is next encountered models
the electrical bandwidth of the photodetector’s output circuit, and the thermal noise
generator models the noise associated with the dissipative elements in the detector.
Because the output current from a photodetector may not be strong enough to re-
gard all subsequent processing as noiseless, we have included the preamplifier block
in Slide 8. Its filter, noise generator, and gain blocks model the bandwidth character-
istics, noise figure, and gain of a real preamplifier. Ordinarily, the output from such
a preamplifier is strong enough that any further signal processing can be regarded as
noise free.

An Ideal Photodetector

Because we are interested in the fundamental limits of photodetection—be they rep-
resented in semiclassical or quantum terms—we will strip away all the inessential

4We have shown the photocurrent and dark current as undergoing the same multiplication pro-
cess. In real detectors, these two currents may encounter different multiplication factors.
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elements of the real photodetection system shown on Slide 8, and restrict our at-
tention to the ideal photodetector shown on Slide 9. Be warned, however, that in
experimental work we cannot always ignore the phenomena cited in our discussion
of Slide 8. Nevertheless, it does turn out that there are photodetection systems that
can approach the ideal behavior under some circumstances.

Our ideal photodetector is a perfect version of the photocurrent generator block
from Slide 8. In particular, our ideal photodetector has these properties.

• Its optical sensitivity covers all frequencies.

• Its conversion of light into current is perfectly efficient.

• It does not have any dark current.

• It does not have any current multiplication.

• It has infinite electrical bandwidth.

• Its subsequent preamplifier has infinite bandwidth and no noise, so it need not
be considered as it does not degrade the photodetection performance.

As a result, the photocurrent takes the form of a random train of area-q impulses,
where q is the electron charge,5 and a counting circuit driven by this photocurrent
will produce, as its output, a staircase function of unit-height steps which increments
when each impulse occurs, i.e.,

1
N(t) = u

q

∫ t

du i( ), for 0
0

≤ t ≤ T , (51)

as shown on Slide 9.

Single-Mode Fields: Classical and Quantum

Suppose that our ideal photodetector has an active region—the photosensitive re-
gion over which light is converted into current—(x, y) ∈ A in some constant-z plane.
Also suppose that we make our photodetection measurement over the time interval
0 ≤ t ≤ T . Later this semester we will consider semiclassical and quantum photode-
tection when the illuminating field can have arbitrary spatio-temporal behavior. For
today, however, we will restrict our attention to single-mode fields.

Classical Single-Mode Field:
For semiclassical photodetection, we will take the single-mode field on the z-plane
containing A to be

ae−jωt
Ez(x, y, t) = √

AT
, for (x, y) ∈ A and 0 ≤ t ≤ T , (52)

5This random train of impulses is known as shot noise, because individual current “shots” are
discernible and randomly located in time.
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on the detector’s photosensitive region. Here, a is dimensionless—it is the field equiv-
alent of the classical harmonic oscillator initial time phasor—√ and A is the area of the
the region A. It follows that Ez(x, y, t) has the units photons/m2s. Physically,
Ez(x, y, t), is the positive-frequency part6 of a monochromatic (frequency ω), +z-
going, plane-wave pulse impinging on the photodetector.7

Quantum Single-Mode Field:
For quantum photodetection, the single-mode classical field from the previous sub-
section becomes a quantum field operator with only one excited—one non-vacuum
state—mode:

aeˆ −jωt
Êz(x, y, t) = √

AT︸ ︷︷ ︸
excited mode

+ other terms︸ ︷︷ ,

unexcited mo
︸ for (x, y) ∈ A and 0 ≤ t ≤ T . (53)

des

Here, the complex phasor a from the classical field has become a photon annihilation
ˆoperator â. Thus, the field operator Ez(x, y, t) has the units

√
photons/m2s. The

ˆ“other terms” are operator-valued modes that are needed to ensure that Ez(x, y, t)
has the proper commutator with its adjoint, as required for a free-space propagat-
ing wave with the units as given. In classical physics, saying that a field mode is
unexcited means that its value is zero. This is why there are no “other terms” in
our representation of the single-mode classical field. In quantum physics, however,
saying that a field mode is unexcited means that it is in its vacuum state. Although
the vacuum state contains no photons, it does possess zero-point fluctuations. So,
depending on what measurement is made on that quantum field, the unexcited modes
may contribute noise to the observations.

Direct Detection

Slide 11 shows the semiclassical and quantum models for direct detection of a single-
mode field.8 Both descriptions show that photodetectors are intrinsically square-law
devices. In particular, if we integrate the photocurrent from t = 0 to t = T , and

6Even though there is a factor of e−jωt here, it is conventional to refer to this field as being the
positive-frequency field. The real-valued field is then Re[Ez(x, y, t)]. In what follows, we will work
almost exclusively with positive-frequency fields in the semiclassical theory of photodetection, and
the corresponding positive-frequency field operators in the quantum theory of photodetection.

7We have chosen to use scalar field notation, because almost all of our photodetection work this
semester does not require us to consider the vector properties of the field. For consistency with the
vector theory, we could say that this single-mode field is linearly polarized in, say, the x direction.
In this regard the subscript z in Ez(x, y, t) indicates that the scalar field is being evaluated in the
constant-z plane containing the photodetector’s sensitive region A; it is not indicating a polarization
axis.

8Direct detection means that the field to be measured impinges on the photodetector without
being combined with any additional field.

12



divide by the electron charge q, we get a counting variable—the photon count—N ,
given by

1
N = u

q

∫ T

du i( ), (54)
0

cf. Slide 9.
According to semiclassical photodetection theory, the conditional probability mass

function for N , given a = α, is

Pr(N = n | a = α ) =
|α|2ne−|α|2

, for n = 0, 1, 2, . . . , (55)
n!

i.e., given knowledge of a, semiclassical theory says that N is Poisson distributed with
mean |a|2. Thus the variance of N equals its mean value, and the only way to have
a variance of zero is to have a = 0, i.e., no illumination, in which case N = 0 with
probability one.

In contrast, according to the quantum theory of photodetection, the conditional
probability mass function for N given that the â mode is in the state |ψ〉 is

Pr(N = n | state = |ψ〉 ) = |〈n|ψ〉|2, for n = 0, 1, 2, . . . , (56)

where |n〉 is the n-photon number state. This shows that ideal direct detection
ˆof the single-mode quantum field realizes the number operator measurement, N =

â†â. From what we have already done, we know that putting the â mode into the
coherent state |α〉 will yield a Poisson distribution for N with mean |α|2 in quantum
photodetection theory, exactly matching the statistics predicted for a classical field
with a = 〈â〉 = α. On the other hand, if the â mode is in the number state |k〉 with
k > 0, then quantum photodetection theory predicts

Pr(N = n | state = |k〉 ) = δnk, (57)

so that 〈N〉 = k > 0 and 〈∆N2〉 = 0, something that is impossible in semiclassical
theory.

If a quantum state is such that all its possible quantum photodetection mea-
surements (direct detection, homodyne detection, and heterodyne detection) have
statistics that are identical to those obtained from the corresponding semiclassical
(shot noise) model, then that state is said to be “classical.” A purely quantum, or
“non-classical” state is one for which at least one of the quantum photodetection
measurements has statistics that cannot be explained by semiclassical theory. So far,
we know that the number state is non-classical, and that the coherent state appears
classical at least insofar as direct detection is concerned.

13



Homodyne Detection

Slide 12 shows the block diagram for balanced homodyne detection of a single-mode
field. In semiclassical photodetection, the incoming positive-frequency signal field is

a t
Se
−jω

ES(x, y, t) = √ , (58)
AT

and the incoming positive-frequency local-oscillator field is

aLOe
−jωt

ELO(x, y, t) = √ . (59)
AT

The signal field is quite weak compared to that of the local oscillator, |√ aS| � |aLO|,
and the latter is assumed to be of the form aLO = NLO e

jθ. The 50/50 beam splitter
is such that the positive-frequency fields reaching the two photodetectors are

a e−jωt
E (x, y, t) =

±
± √

AT
, where a± ≡

aS ± aLO√ . (60)
2

The output of the balanced homodyne system is then

qN+
αθ =

− qN−
K

, (61)

where K = 2q
√
NLO and N are the output counts from the two photodetectors.±

Shot noises from physically different detectors are statistically independent random
variables, so we have that N+ and N are statistically independent Poisson random−
variables with mean values |a+|2 and |a 2

−| , respectively. It is then a simple matter
to find the classical characteristic function of αθ in the limit of a very strong local
oscillator field, i.e., when NLO →∞. We have that

Mαθ(jv) = 〈ejv(qN+−qN−)/K〉 = 〈ejvqN+/K〉〈e−jvqN−/K〉 (62)

= exp[|a+|2(ejvq/K − 1)] exp[|a |2(e−jvq/K − 1)]. (63)−

As NLO →∞ we have K →∞, so that

e±jvq/K − 1 ≈ ±jvq/K − v2q2/2K2 (64)

to second order. Also, we have that

|a±|2
NLO

=
± 2Re(aS

√
NLO e

−jθ) + |aS|2

2
≈ NLO ± 2Re(aS

√
NLO e

−jθ)
, (65)

2

as NLO →∞. Substituting these two approximations into our expression for Mαθ(jv)
then yields

Mαθ(jv) = ejvRe(aSe
−jθ)−v2/8, (66)
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which implies that αθ is a Gaussian random variable with mean Re(aSe
−jθ) and

variance 1/4. When θ = 0, the mean of the semiclassical homodyne outcome is
aS1 = Re(aS). Likewise, when θ = π/2, the mean of the semiclassical homodyne
outcome is aS2 = Im(aS). Evidently, ideal semiclassical homodyne detection yields
a signal-field quadrature—whose phase shift is determined by the relative phase,
θ, between the signal and the local oscillator—embedded in an additive zero-mean,
variance 1/4 noise. Because the local oscillator is so strong, this noise is the shot
noise that it creates.

The quantum theory of homodyne detection is quite different. Now the positive-
frequency signal and local oscillator field operators are

â t
ˆ Se

−jω
ES(x, y, t) = √

AT︸ ︷︷ ︸
excited mode

+ other terms︸ ︷︷ ,

unexcited mo
︸ (67)

des

and
âˆ LOe

−jωt
ELO(x, y, t) = √

AT︸ ︷︷ + other terms

excited mo
︸
de

︸ ︷︷ , (68)

unexcited modes

respectively. The signal field is assumed to be quite weak

︸
compared to the local

oscillator, i.e., 〈â†S b
coheren

√ âS〉 � 〈â†LOâLO〉, and the local oscillator is assumed to e in the
t state | NLO e

jθ〉. The 50/50 beam splitter combines the signal and local
oscillator fields so that the positive-frequency field operators that illuminate the two
detectors are

â e−jωt
Ê (x, y, t) =

±
± √

AT︸ ︷︷ + other terms

excited mo
︸

de

︸ ︷︷ â
,

unexcited mo
︸ where â± ≡ S ± âLO

des

√ . (69)
2

From quantum photodetection theory we know that

N+
αθ =

−N−
2
√
NLO

←→ â†+â+ − â
†
−â−

2
√ , (70)
NLO

where ←→ indicates that the statistics of the classical random variable on the left-
hand side coincides with those of the quantum measurement (observable) on√the right-
hand side. Then, writing â in terms of â± S and âLO, and using 〈â†S âS〉/2√ NLO → 0
as NLO →∞ to justify dropping the term â†S âS/2 NLO, we get

N+
αθ =

−N−
2
√
NLO

←→ Re(âS â
†
LO)√ , as NLO

NLO

→∞. (71)

Finally, because the local oscillator is in the coherent state
√
| NLO e

jθ〉, we can say
that â†LO/

√
NLO → e−jθ as NLO →∞. Thus we get our the quantum photodetection
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description of balanced homodyne detection in the infinite local oscillator limit:

α ←→ Re(â e−jθθ S ), (72)

i.e., the setup shown on Slide 12 measures a field quadrature whose phase shift is
determined by the relative phase between the excited signal mode and that of the
local-oscillator’s coherent state. When θ = 0, the quantum homodyne outcome is that
of the âS1 = Re(âS) observable. Likewise, when θ = π/2, the quantum homodyne
outcome is that of the âS2 = Im(âS) observable. If the âS mode is in the coherent
state |aS〉, then the statistics predicted by quantum photodetection theory coincide
with those of the semiclassical theory. But, if the âS mode is in the squeezed state
|β;µ, ν〉, with |ν| > 0, then there will be a θ value for which quantum photodetection
theory predicts a Gaussian probability density with a variance that is less than 1/4,
something that is impossible in the semiclassical theory. Squeezed states, therefore
are non-classical.

The Road Ahead

Next time we will continue our development of single-mode photodetection by study-
ing balanced heterodyne detection. Here we will find measurement statistics—in the
quantum case—that correspond to those of the â POVM. Moreover, we will find a
physical locus for the ancilla mode that injects the extra noise in the commuting
observables—on a larger state space—explanation of the â POVM.
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