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Introduction to Nanoelectronics 

Preface to the OpenCourseWare publication 

About eight years ago, when I was just starting at MIT, I had the opportunity to attend a 
workshop on nanoscale devices and molecular electronics. In particular, I remember a 
presentation by Supriyo Datta from Purdue. He was describing electronic devices from 
the „bottom up‟ – starting with quantum mechanical descriptions of atoms and molecules, 
and ending up with device-scale current-voltage characteristics. 

Although I did not understand the details at the time, it was clear to me that this approach 
promised a new approach to teaching electronic devices to undergraduates. Building 
from a few basic concepts in quantum mechanics, and a reliance on electric potentials 
rather than fields, I believe that the „bottom up‟ approach is simpler and more insightful 
than conventional approaches to teaching electronic transport. After five years of 
teaching the material, it is still remarkable to me that one can derive the current-voltage 
characteristics of a ballistic nanowire field effect transistor within a 45 minute lecture. 

This collection of class notes is my attempt to adapt the „bottom up‟ approach to an 
undergraduate electrical engineering curriculum. It can serve several roles. For most 
seniors, the class is intended to provide a thorough analysis of ballistic transistors within 
a broader summary of the most important device issues in computation. But for those 
intending to specialize in electronic devices, the class is designed as an introduction to 
dedicated courses on quantum mechanics, solid state physics, as well as more 
comprehensive treatments of quantum transport such as those by Supriyo Datta himself. I 
can recommend both his books1,2 , and the „nanohub‟ at Purdue University: 
http://nanohub.org/topics/ElectronicsFromTheBottomUp. 

The notes are designed to be self contained. In particular, this class is taught without 
requiring prior knowledge of quantum mechanics, although I do prefer that the students 
have prior knowledge of Fourier transforms. 

Finally, I decided to share these notes on MIT‟s OpenCourseWare with the expectation 
of collaboration. The „bottom up‟ approach is still relatively novel, and these notes 
remain largely unpolished, with substantial opportunities for improvement! For those 
needing to teach a similar topic, I hope that it provides a useful resource, and that in 
return you can share with me suggestions, corrections and improvements. 

Marc Baldo 
May 2010, Cambridge, MA 

1. Electronic Transport in Mesoscopic Systems, Supriyo Datta, Cambridge University Press, 1995 
2. Quantum Transport: Atom to Transistor, Supriyo Datta, Cambridge University Press, 2005 
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Introduction 

Introduction 

Modern technology is characterized by its emphasis on miniaturization. Perhaps the most 
striking example is electronics, where remarkable technological progress has come from 
reductions in the size of transistors, thereby increasing the number of transistors possible 
per chip. 

With more transistors per chip, designers are able to create more sophisticated integrated 
circuits. Over the last 35 years, engineers have increased the complexity of integrated 
circuits by more than five orders of magnitude. This remarkable achievement has 
transformed society. Even that most mechanical creature of modern technology, the 
automobile, now typically contains half its value in electronics.† 

The industry‟s history of steady increases in complexity was noted by Gordon Moore, a 
co-founder of Intel. The eponymous Moore‟s law states the complexity of an integrated 
circuit, with respect to minimum component cost, will double in about 18 months. Over 
time the „law‟ has held up pretty well; see Fig. 1. 
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Fig. 1. The number of transistors in Intel processors as a function of time. The trend 
shows a doubling approximately every two years rather than 18 months as originally 
predicted by Gordon Moore. 

Miniaturization has helped the digital electronics market alone to grow to well over 
$300 billion per year. The capital investments required of semiconductor manufacturers 
are substantial, however, and to help reduce risks, in 1992 the Semiconductor Industries 

† If this seems hard to believe, consider the number of systems controlled electronically in a modern car. 
The engine computer, the airbags, the anti-skid brakes, etc.. 
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Introduction to Nanoelectronics 

Association began the prediction of major trends in the industry – the International 
Technology Roadmap for Semiconductors – better known simply as „the roadmap‟. 

The roadmap is updated every few years and is often summarized by a semi-log plot of 
critical feature sizes in electronic components; see Fig. 2. 

Fig. 2. The semiconductor roadmap predicts that feature sizes will approach 10 nm 
within 10 years. Data is taken from the 2002 International Technology Roadmap for 
Semiconductors update. 

At the time of writing, the current generation of Intel central processing units (CPUs), the 
Pentium D, has a gate length of 65 nm. According to the roadmap, feature sizes in CPUs 
are expected to approach molecular scales (< 10 nm) within 10 years. 

But exponential trends cannot continue forever. 

Already, in CPUs there are glimmers of the fundamental barriers that are approaching at 
smaller length scales. It has become increasingly difficult to dissipate the heat generated 
by a CPU running at high speed. The more transistors we pack into a chip, the greater the 
power density that we must dissipate. At the time of writing, the power density of modern 
CPUs is approximately 150 W/cm2; see Fig. 3. For perspective, note that the power 
density at the surface of the sun is approximately 6000 W/cm2. The sun radiates this 
power by heating itself to 6000 K. But we must maintain our CPUs at approximately 
room temperature. The heat load of CPUs has pushed fan forced convection coolers to 
the limits of practicality. Beyond air cooling is water cooling, which at greater expense 
may be capable of removing several hundred Watts from a 1cm2 sized chip. Beyond 
water cooling, there is no known solution. 
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Fig. 3. Expected trends in CPU power dissipation according to the roadmap. 

Power dissipation is the most visible problem confronting the electronics industry today. 
But as electronic devices approach the molecular scale, our traditional understanding of 
electronic devices will also need revision. Classical models for device behavior must be 
abandoned. For example, in Fig. 4, we show that many electrons in modern transistors 
electrons travel „ballistically‟ – they do not collide with any component of the silicon 
channel. Such ballistic devices cannot be analyzed using conventional transistor models. 
To prepare for the next generation of electronic devices, this class teaches the theory of 
current, voltage and resistance from atoms up. 

10-9 10-8 10-7 10-6 10-5 10-4
10-4

10-2

100

102

104

106

108

Channel length [m]

Ballistic Semi-classical

S
ca

tte
rin

g 
ev

en
ts

Fig. 4. The expected 
number of electron 
scattering events in a 
silicon field effect 
transistor as a 
function of the 
channel length. The 
threshold of ballistic 
operation occurs for 
channel lengths of 
approximately 50nm. 
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Introduction to Nanoelectronics 

In Part 1, „The Quantum Particle‟, we will introduce the means to describe electrons in 
nanodevices. In early transistors, electrons can be treated purely as point particles. But in 
nanoelectronics the position, energy and momentum of an electron must be described 
probabilistically. We will also need to consider the wave-like properties of electrons, and 
we will include phase information in descriptions of the electron; see Fig. 5. The 
mathematics we will use is similar to what you have already seen in signal processing 
classes. In this class we will assume knowledge of Fourier transforms. 

x
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mpl
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 pl
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e

Fig. 5. A representation of an 
electron known as a wavepacket. 
The position of the electron is 
described in 1 dimension, and its 
probability density is a Gaussian. 
The complex plane contains the 
phase information. 

Part 1 will also introduce the basics of Quantum Mechanics. We will solve for the energy 
of an electron within an attractive box-shaped potential known as a „square well‟. In Part 
2, „The Quantum Particle in a Box‟, we apply the solution to this square well problem, 
and introduce the simplest model of an electron in a conductor – the so-called particle in 
a box model. The conductor is modeled as a homogeneous box. We will also introduce an 
important concept: the density of states and learn how to count electrons in conductors. 
We will perform this calculation for „quantum dots‟, which are point particles also known 
as 0-dimensional conductors, „quantum wires‟ which are ideal 1-dimensional conductors, 
„quantum wells‟ (2-dimensional conductors) and conventional 3-dimensional bulk 
materials.   

particle in a box 
approximation

Lz

0-d: Quantum Dot0-d: Quantum Dot1-d: Quantum Wire

barrier

quantum well

barrier

Ly

2-d: Quantum Well

Lx
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quantum well
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2-d: Quantum Well

Lx

Lz Ly

Lx

Fig. 6. The particle in a box approximation and conductors of different dimensionality. 
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Introduction 

In Part 3, „Two Terminal Quantum Dot Devices‟ we will consider current flow through 
the 0-dimensional conductors. The mathematics that we will use is very simple, but Part 3 
provides the foundation for all the description of nano transistors later in the class. 

S S

+- +-

VDS

source drain

molecule

HOMO

LUMO

EF

2

1
qVL

+-

molecule

qVH

VDS

Fig. 7. A two terminal 
device with a molecular 
conductor. Under bias 
in this molecule, 
electrons flow through 
the highest occupied 
molecular orbital or 
HOMO. 

Part 4, „Two Terminal Quantum Wire Devices‟, explains conduction through nanowires. 
We will introduce „ballistic‟ transport – where the electron does not collide with any 
component of the conductor. At short enough length scales all conduction is ballistic, and 
the understanding ballistic transport is the key objective of this class. We will 
demonstrate that for nanowires conductance is quantized. In fact, the resistance of a 
nanowire of vanishingly small cross section can be no less than 12.9 k. We will also 
explain why this resistance is independent of the length of the nanowire! Finally, we will 
explain the origin of Ohm‟s law and „classical‟ models of charge transport. 

+-

V=(1-2)/q

E

kz

F-

F+

k2 k1

1

E

2

Fig. 8. From Part 4, this is a diagram explaining charge conduction through a nanowire. 
The left contact is injecting electrons. The resistance of the wire is calculated to be 
12.9 kindependent of the length of the wire. 
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Introduction to Nanoelectronics 

In Part 5, „Field Effect Transistors‟ we will develop the theory for this most important 
application. We will look at transistors of different dimensions and compare the 
performance of ballistic and conventional field effect transistors. We will demonstrate 
that conventional models of transistors fail at the nanoscale. 
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Fig. 9. Three modes of operation in a nanowire field effect transistor. In subthreshold 
only thermally excited electrons from the source can occupy states in the channel. In the 
linear regime, the number of available states for conduction in the channel increases 
with source-drain bias. In saturation, the number of available channel states is 
independent of the source-drain bias, but dependent on the gate bias. 

Part 6, „The Electronic Structure of Materials‟ returns to the problem of calculating the 
density of states and expands upon the simple particle-in-a-box model. We will consider 
the electronic properties of single molecules, and periodic materials. Archetypical 1- and 
2-dimensional materials will be calculated, including polyacetylene, graphene and carbon 
nanotubes. Finally, we will explain energy band formation and the origin of metals, 
insulators and semiconductors. 
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Fig. 10. This is the 
bandstructure of 
graphene. There are 
two surfaces that 
touch in 6 discrete 
point corresponding 
to 3 different 
electron transport 
directions within a 
sheet of graphene. 
Along these 
directions graphene 
behaves like a 
metal. Along the 
other conduction 
directions it behaves 
as an insulator. 
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Introduction 

The class concludes with Part 7, „Fundamental Limits in Computation‟. We will take a 
step back and consider the big picture of electronics. We will revisit the power 
dissipation problem, and discuss possible fundamental thermodynamic limits to 
computation. We will also introduce and briefly analyze concepts for dissipation-less 
„reversible‟ computing. 

A

B

C

A‟=A

B‟

C‟

A B C
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0

1 1 0
1 1 1

1 0 1

A‟ B‟ C‟
0 0 0
0 1 0
0 0 1
0 1 1
1 0 0

1 1 0
1 1 1

1 0 1

B‟

Fig. 11. The Fredkin gate is a reversible logic element which may be used as the 
building block for arbitrary logic circuits. The signal A may be used to swap signals B 
and C. Because the input and output of the gate contain the same number of bits, no 
information is lost, and hence the gate is, in principle, dissipation-less. After Feynman. 
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Introduction to Nanoelectronics 

Part 1. The Quantum Particle 

This class is concerned with the propagation of electrons in conductors. 

Here in Part 1, we will begin by introducing the tools from quantum mechanics that we 
will need to describe electrons. We will introduce probabilistic descriptions of the key 
physical properties: position, momentum, time and energy. In the next part we will 
consider electrons in the simplest possible model of a conductor – a box – i.e. we will 
ignore atoms and assume that the material is perfectly homogeneous. 

particle in a box 
approximation

Fig. 1.1. The „particle in a box‟ takes a complex structure like a molecule and 
approximates it by a homogeneous box. All details, such as atoms, are ignored. 

This model of electrons in conductors is known as „the particle in a box‟. It is 
surprisingly useful, and later in the class we will employ it to describe the behavior of 
modern transistors. 

But first we will need a way to describe electrons. It is often convenient to imagine 
electrons as little projectiles pushed around by an electric field. And in many cases, this 
classical model yields a fairly accurate description of electronic devices. 

But not always. In nanoscale devices especially, electrons are better described as waves. 

(b) small transistor view of an electron

Electric Field

atom

electron

(a) big transistor view of an electron

C
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Fig. 1.2. Two representations of electrons in a solid. In (a) the electrons are represented 
as hard little spheres, propelled by the electric field, and bouncing off atoms. In (b) we 
draw an approximate representation of the molecule 1,3-butadiene positioned between 
contacts. Now the electrons are represented by probability clouds. 
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Part 1. The Quantum Particle 

Waves in electronics 

Consider a beam of electrons propagating through a small hole - a very crude model for 
electrons moving from a contact into a nanoscale conductor. We might expect that the 
electrons would continue in straight lines after passing through the hole. But if the hole is 
small enough (the dimensions of a nanoscale transistor, for example), then the electrons 
are observed to diffract. This clearly demonstrates that we must consider the wave 
properties of electrons in nanoelectronic devices. 

S
in

gl
e 

sl
it

Fig. 1.3. A 
simulation of 
electron diffraction 
through a single 
slit. This 
experiment is 
analyzed in 
Problem 1. 

The diffraction pattern shown above is obtained by assuming each point inside the single 
slit is a source of expanding waves; see Problem 1. An easier example to analyze is the 
double slit experiment, in which we assume there are only two sources of expanding 
waves. Like the single slit example, the result of a double slit experiment is consistent 
with electrons behaving like waves. 

electrons

slits

electrons

slits

(a) Classical prediction (b) Experimental result

Fig. 1.4. Classically, we would predict that electrons passing through slits in a screen 
should continue in straight lines, forming an exact image of the slits on the rear screen. 
In practice, however, a series of lines is formed on the rear screen, suggesting that the 
electrons have been somehow deflected by the slits. 
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Introduction to Nanoelectronics 

Review of Classical Waves 

A wave is a periodic oscillation. It is convenient to describe waves using complex 
numbers. For example consider the function 

  0ik xx e  (1.1) 
where x is position, and k0 is a constant known as the wavenumber. This function is 
plotted in Fig. 1.5 on the complex plane as a function of position, x. The phase of the 
function 

0k x  (1.2) 
is the angle on the complex plane. 

x

Re

Im

Co
mpl

ex
 pl

an
e

Re

Im



Complex plane



Fig. 1.5. A standing wave with its phase plotted on the complex plane. 

The wavelength is defined as the distance between spatial repetitions of the oscillation. 
This corresponds to a phase change of 2

0
2k 




. From Eqns. (1.1) and (1.2) we get 

(1.3) 

This wave is independent of time, and is known as a standing wave. But we could define 
a function whose phase varies with time: 

  0i tt e  
 (1.4) 

Here t is time, and  is the angular frequency. We define the period, T, as the time 
between repetitions of the oscillation 

0
2
T


  . (1.5) 

Plane waves 

We can combine time and spatial phase oscillations to make a traveling wave. For 
example 

   0 0, i k x tx t e 



 (1.6) 
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Part 1. The Quantum Particle 

We define the intensity of the wave as 
2 *   (1.7) 

Where * is the complex conjugate of . Since the intensity of this wave is uniform 
everywhere 2 1  it is known as a plane wave. 

A plane wave has at least four dimensions (real amplitude, imaginary amplitude, x, and t) 
so it is not so easy to plot. Instead, in Fig. 1.6 we plot planes of a given phase. These 
planes move through space at the phase velocity, vp, of the wave. For example, consider 
the plane corresponding to  = 0. 

0 0 0k x t  (1.8) 
Now, 

0

0
p

dxv
dt k


  (1.9) 

x

Re

Im

vp = 0/k0

Fig. 1.6. In a plane wave planes of constant phase move through space at the phase 
velocity. 

The double slit experiment 

We now have the tools to model the double slit experiment described above. Far from the 
double slit, the electrons emanating from each slit look like plane waves; see Fig. 1.7, 
where s is the separation between the slits and L is the distance to the viewing screen. 

At the viewing screen we have 
     0 1 0 0 2 0, exp expx L t A i k r t A i k r t             (1.10) 
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Introduction to Nanoelectronics 

The intensity at the screen is 

               

   

   

*2
0 0 1 0 2 0 0 1 0 2

2 2 2 2
0 2 0 1 0 1 0 2

2
2 1

exp exp exp exp exp exp

exp exp

2 1 cos

A i t ik r ik r A i t ik r ik r

A A i k r k r A i k r k r A

A k r r

      

           

  

(1.11) 

where A is a constant determined by the intensity of the electron wave. Now from Fig. 
1.7: 

 

 

22 2
1

22 2
2

2

2

r L s y

r L s y

  

  
(1.12) 

Now, if y << s/2 we can neglect the y2 term: 
 

 

22 2
1

22 2
2

2

2

r L s sy

r L s sy

  

  
(1.13) 

electrons

slits

L

s

y

r1

r2

s/2

s/2

y

r2

r1

s/2-y

s/2+y

L

(a) (b)

(c)

Fig. 1.7. Far from the double slit, the electrons from each slit can be described by plane 
waves. Where the planes of constant phase collide, a bright line corresponding to a high 
intensity of electrons is observed. 
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Part 1. The Quantum Particle 

Then, 

 
 

 
 

22
1 22

22
2 22

12 1
2 2

12 1
2 2

syr L s
L s

syr L s
L s

 
   

  

 
   

  

(1.14) 

Next, if L >> s/2 

1

2

1
2
1
2

syr L
L
syr L
L

 

 

Thus, 2 1
syr r
L

  , and 

2 22 1 cos yA ks
L


  

    
  

(1.15) 

(1.16) 

At the screen, constructive interference between the plane waves from each slit yields a 
regular array of bright lines, corresponding to a high intensity of electrons. In between 
each pair of bright lines, is a dark band where the plane waves interfere destructively, i.e. 
the waves are  radians out of phase with one another. 

The spacing between the bright lines at the viewing screen is 

(1.17) 2 2ys
L







Ly
s




Rearranging, 

(1.18) 
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Introduction to Nanoelectronics 

Interpretation of the double slit experiment 

It is notable that the fringe pattern is independent of intensity. Thus, the interference 
effect should be observed even if just a single electron is fired at the slits at a time. For 
example, in Fig. 1.8 we show the buildup of the fringe pattern from consecutive 
electrons. The only conclusion is that the electron – which we are used to thinking of as a 
particle - also has wave properties. 

10 electrons 200 electrons

6000 electrons 40000 electrons

140000 electrons

Fig. 1.8. The cumulative electron distribution after passage through a double slit. Just a 
single electron is present in the apparatus at any time. From A. Tanamura, et al. Am. J. 
Physics 57, 117 (1989). 
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Part 1. The Quantum Particle 

The Wavefunction 

The wave-like properties of electrons are an example of the „wave-particle duality‟. 
Indeed, in the early 20th century, quantum mechanics revealed that a combination of wave 
and particle properties is a general property of everything at the size scale of an electron. 

Without addressing the broader implications of this unusual observation, we will simply 
note that our purposes require a suitable mathematical description for the electron that 
can describe both its particle and wave-like properties. Following the conventions of 
quantum mechanics, we will define a function known as the wavefunction, (x,t), to 
describe the electron. It is typically a complex function and it has the important property 
that its magnitude squared is the probability density of the electron at a given position 
and time. 

       
2

, , * , ,P x t x t x t x t    (1.19) 
If the wavefunction is to describe a single electron, then the sum of its probability density 
over all space must be 1. 

 , 1P x t dx




 (1.20) 

In this case we say that the wavefunction is normalized such that the probability density 
sums to unity. 

Frequency domain and k-space descriptions of waves 

Consider the wavefunction 
  0i tt ae  

 (1.21) 
which describes a wave with amplitude a, intensity a2, and phase oscillating in time at 
angular frequency 0. This wave carries two pieces of information, its amplitude and 
angular frequency.† Describing the wave in terms of a and 0 is known as the frequency 
domain description. In Fig. 1.9, we plot the wavefunction in both the time and frequency 
domains. 

In the frequency domain, the wavefunction is described by a delta function at 0. Tools 
for the exact conversion between time and frequency domains will be presented in the 
next section. Note that, by convention we use a capitalized function (A instead of ) to 
represent the wavefunction in the frequency domain. Note also that the convention in 
quantum mechanics is to use a negative sign in the phase when representing the angular 

i(kx-t)frequency +0. This is convenient for describing plane waves of the form e . But it 
is exactly opposite to the usual convention in signal analysis (i.e. 6.003). In general, when 
you see i instead of j for the square root of -1, use this convention in the time and 
frequency domains. 

† Note the information in any constant phase offset, , as in  0exp i t i    can be contained in the 

amplitude prefactor, i.e.  0expa i t  , where  expa i . 
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Introduction to Nanoelectronics 

t

Im

Re
Co
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e



Im

Re

Co
mpl

ex
 pl

an
e

0

  0i tt e  
    02A     

Time Frequency

Fig. 1.9. Representations of the angular frequency 0 in time and frequency domains. 

Similarly, consider the wavefunction 
  0ik xx ae  (1.22) 

which describes a wave with amplitude a, intensity a2, and phase oscillating in space 
with spatial frequency or wavenumber, k0. Again, this wave carries two pieces of 
information, its amplitude and wavenumber. We can describe this wave in terms of its 
spatial frequencies in k-space, the equivalent of the frequency domain for spatially 
oscillating waves. In Fig. 1.10, we plot the wavefunction in real space and k-space. 

k

Im

Re

k0x

Im

Re   0ik xx e     02A k k k 

Real space k-space

Fig. 1.10. Representations of wavenumber k0 in real space and k-space. 

Next, let‟s consider the wavefunction 
  0i tA ae   (1.23) 

which describes a wave with amplitude a, intensity a2, and phase oscillating in the 
frequency domain with period 2 /t0. This wave carries two pieces of information, its 
amplitude and the time t0. In Fig. 1.11, we plot the wavefunction in both the time and 
frequency domains. 
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Part 1. The Quantum Particle 



Im

Re

t

Im

Re

t0

  0i tA e  

Time Frequency

Fig. 1.11. Representations of time t0 in time and frequency domains. 

Finally, consider the wavefunction 
  0ikxA k ae

 (1.24) 
which describes a wave with amplitude a, intensity a2, and phase oscillating in k-space 
with period 2/x0. This waves carries two pieces of information, its amplitude and the 
position x0. In Fig. 1.12, we plot the wavefunction in both real space and k-space. 

x

Im
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Co
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e

x0 x

Im

Re
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mpl

ex
 pl

an
e

x0 k

Im

Re

Co
mpl

ex
 pl

an
e

k

Im

Re

Co
mpl

ex
 pl

an
e

Real space k-space

   0x x x     0ikxA k e


Fig. 1.12. Representations of position x0 in real space and k-space. 

Note that, by convention we use a capitalized function (A instead of ) to represent the 
wavefunction in the k-space domain. 

Observe in Fig. 1.9-Fig. 1.12 that a precise definition of both the position in time and the 
angular frequency of a wave is impossible. A wavefunction with angular frequency of 
precisely 0 is uniformly distributed over all time. Similarly, a wavefunction associated 
with a precise time t0 contains all angular frequencies. 

In real and k-space we also cannot precisely define both the wavenumber and the 
position. A wavefunction with a wavenumber of precisely k0 is uniformly distributed over 
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Introduction to Nanoelectronics 

all space. Similarly, a wavefunction localized at a precise position x0 contains all 
wavenumbers. 

Linear combinations of waves 

Next, we consider the combinations of different complex exponential functions. For 
example, in Fig. 1.13 we plot a wavefunction that could describe an electron that 
equiprobable at position x1 and position x2. The k-space representation is simply the 
superposition of two complex exponential functions corresponding to x1 and x2. † 

        1 2
1 1 2 2 1 2

ikx ikxx c x x c x x A c e c e     
       (1.25) 

x

Im

Re

Co
mpl

ex
 pl

an
e

x1

k

Im

Re

Co
mpl

ex
 pl

an
e

Real space

k-space

     1 1 2 2x c x x c x x     

1
1

ikxc e

x2

k

Im

Re

Co
mpl

ex
 pl

an
e

2
2

ikxc e

+

c1

c2

Fig. 1.13. The k-space wavefunction corresponding to two positions x1 and x2 is simply 
the superposition of the k-space representations of (x-x1) and (x-x2). 

We can also generalize to an arbitrary distribution of positions, (x). If (x) describes an 
electron, for example, the probability that the electron is located at position x is (x)2. 
Thus, in k-space the electron is described by the sum of complex exponentials e-ikx each 
oscillating in k-space and weighted by amplitude (x). 

    ikxA k x e dx






  (1.26) 

You may recognize this from 6.003 as a Fourier transform. Similarly, the inverse 
transform is 

† Note that this wave function is not actually normalizable. 
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Part 1. The Quantum Particle 

   
1

2
ikxx A k e dk







  . (1.27) 

To convert between time and angular frequency, use 

(1.28) 

and 

    i tA t e dt 




 

   
1

2
i tt A e d  









  . (1.29) 

Note that the factors of 1/2 are present each time you integrate with respect to k or . 
Note also that when converting between complex exponentials and delta functions, the 
following identity is useful: 

   2 expu iux dx




  . (1.30) 

Wave packets and uncertainty 

We now have two ways to describe an electron. We could describe it as a plane wave, 
with precisely defined wavenumber and angular frequency: 

. (1.31) 
But as we have seen, the intensity/probability density of the plane wave is uniform over 
all space (and all time). Thus, the position of the electron is perfectly uncertain – it is 
probability distribution is uniform everywhere in the entire universe. Consequently, a 
plane wave is not usually a good description for an electron. 

(1.32) 
existing at a precisely defined position and time. But the probability density of the point 
particle is uniform over all of k-space and the frequency domain. We will see in the next 
section that this means the energy and momentum of the electron is perfectly uncertain, 
i.e. arbitrarily large electron energies and momenta are possible. 

The only alternative is to accept an imprecise description of the electron in both real 
space and k-space, time and the frequency domain. A localized oscillation in both 
representations is called a wave packet. A common wavepacket shape is the Gaussian. 

(1.33) 

On the other hand, we could describe the electron as an idealized point particle 
   0 0, ,x t x x t t   

For example, instead of the delta function, we could describe the electron‟s position as 

 
2

1exp
4 x

xx a


  
    
   

. 

This function was chosen such that the probability distribution of the electron is 
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Introduction to Nanoelectronics 

x/x

 
2

2

2

1 1exp
22 xx

xx


  
    
   

0 1 2 3-1-2-3

1

0.5

0

ψ
(x

)2
.√

2


x2
ψ

(x
)2

.√
2


x2

k/k

   
2 228 exp 2x xA k k   

 

0 1 2 3-1-2-3

1

0.5

0

A
(k

)2
/√

8


x2

Real space k-space

k=1/2x

Fig. 1.14. A normalized Gaussian. The Gaussian has the same shape in real space and 
k-space. Note that a Gaussian approximates a delta function in the limit x → 0. 

 
2

2 2 1exp
2 x

xx a


  
    
   

(1.34) 

where x is the standard deviation. x measures the width of the Gaussian and is often 
thought of as the uncertainty in the position of the electron. The constant, a, is 
determined by normalizing the probability density over all space, i.e., integrating Eq. 
(1.34) over x, we get 

 
1 422 xa 


 (1.35) 

Strictly, the uncertainty of a given quantity is defined by 

 
22

22 2

x x

x x x x

  

  

(1.36) 

where x signifies the average or expectation value of x. Because x is a constant Eq. 
(1.36) may be simplified: 

22 2

22

2x x x x

x x

   

 
(1.37) 

We will leave it as an exercise to show that for the Gaussian probability density: 
 

22 2 2
xx x dx    (1.38) 
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Part 1. The Quantum Particle 

Thus, the Gaussian is a convenient choice to describe a wavepacket because it has a 
readily defined uncertainty. 
In k-space, the electron is also described by a Gaussian (this is another of the convenient 
properties of this function). Application of the Fourier transform in Eq. (1.26) and some 
algebra gives 

(1.39) 
The probability distribution in k-space is 

   
1 42 2 28 expx xA k k    

   
1 22 2 2 28 exp 2x xA k k     (1.40) 

Thus, the uncertainty in k-space is 
2

2

1 2
2 x

k




 (1.41) 

The product of the uncertainties in real and k-space is 
1
2x k   . (1.42) 

The product x k x k    . Thus, 
1
2x k   . (1.43) 

Examples of wavepackets 

A typical Gaussian wavepacket is shown in Fig. 1.15 in both its real space and k-space 
representations. Initially the probability distribution is centered at x = 0 and k = 0. If we 
shift the wavepacket in k-space to an average value <k> = k0, this is equivalent to 
multiplying by a phase factor exp[ik0x] in real space. Similarly, shifting the center of the 
wavepacket in real space to <x> = x0 is equivalent to multiplying the k-space 
representation by a phase factor exp[-ikx0]. 

× exp[-ikx0]

× exp[ik0x]

× exp[it0]

× exp[-i0t]

shift by x0

shift by t0

shift by k0

shift by 0

Real coordinates
(x,t)

Inverse coordinates
(k,)

Table 1.1. A summary of shift transformations in real and inverse coordinates. 
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Fig. 1.15. Three Gaussian wavepackets. In (a) the average position and wavenumber of 
the packet is x=0 and k=0, respectively. In (b) the average position has been shifted to 
<x>=x0. In (c) the average wavenumber has been shifted to <k>=k0. 

Expectation values of position 

Given that P(x) is the probability density of the electron at position x, we can determine 
the average, or expectation value of x from 

 

 

xP x dx
x

P x dx














(1.44) 

Of course if the wavefunction is normalized then the denominator is 1. 

We could also write this in terms of the wavefunction 
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Part 1. The Quantum Particle 

(1.45) 
 

 

2

2

x x dx
x

x dx


















Where once again if the wavefunction is normalized then the denominator is 1. 

Since      
2

*x x x   , 

   

   

*

*

x x x dx
x

x x dx

 

 














(1.46) 

Bra and Ket Notation 

Also known as Dirac notation, Bra and Ket notation is a convenient shorthand for the 
integrals above. 

The wavefunction is represented by a Ket: 
 x  (1.47) 

The complex conjugate is represented by a Bra: 
 * x  (1.48) 

Together, the bracket   (hence Bra and Ket) symbolizes an integration over all 
space: 

   * x x dx   




 (1.49) 

Thus, in short form the expectation value of 
x

x
 

 


x is 

(1.50) 

Parseval’s Theroem 

It is often convenient to normalize a wavepacket in k space. To do so, we can apply 
Parseval‟s theorem. 

Let‟s consider the bracket of two functions, f(x) and g(x) with Fourier transform pairs 
F(k) and G(k), respectively.. 

   
*f g f x g x dx





  (1.51) 

Now, replacing the functions by their Fourier transforms yields 

28 



       

*
* 1 1

2 2
ik x ikxf x g x dx F k e dk G k e dk dx

 

   
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(1.52) 

Rearranging the order of integration gives 

   

     

*

*

1 1
2 2

1 1
2 2

ik x ikx

i k k x

F k e dk G k e dk dx

F k G k e dxdk dk

 

 

  

 

  

  
 

  

   
    

   

 

  

  

(1.53) 

From Eq. (1.30) the integration over the complex exponential yields a delta function 

           
* *1 1 1

2 2 2
i k k xF k G k e dxdk dk F k G k k k dk dk

  

    
 

    

          (1.54) 

Thus, 

       
* *1

2
f x g x dx F k G k dk



 

 

  (1.55) 

It follows that if a wavefunction is normalized in real space, it is also normalized in k-
space, i.e., 

where 
A A  

   
*1

2
A A A k A k dk







 

(1.56) 

(1.57) 

Expectation values of k and  

The expectation value of k is obtained by integrating the wavefunction over all k. This 
must be performed in k-space. 

   

   

1 *
2
1 *

2

A k kA k dk
A k A

k
A A

A k A k dk













 




(1.58) 

From the Inverse Fourier transform in k-space 

note that 

   
1

2
ikxx A k e dk







 

   
1

2
ikxdi x kA k e dk

dx








  

(1.59) 

(1.60) 

Thus, we have the following Fourier transform pair: 

   
di x k A k
dx
  (1.61) 
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Part 1. The Quantum Particle 

It follows that† 

diA k A dxk
A A

 

 



  (1.62) 

Similarly, from the Inverse Fourier transform in the frequency domain 

   
1

2
i tt A e d  









  (1.63) 

We can derive the Fourier transform pair: 

   
di t A
dt
   (1.64) 

It follows that 
diA A dt

A A

 


 
 

ˆ dk i
dx

 

. (1.65) 

We define two operators 

(1.66) 

and 

. (1.67) ˆ di
dt

 

Operators only act on functions to the right. To signify this difference we mark them with 
a caret. 

We could also define the (somewhat trivial) position operator 
(1.68) 

The Commutator 

One must be careful to observe the correct order of operators. For example, 

. 

ˆ ˆˆ ˆx k k x

ˆ ˆˆ ˆx x 

(1.69) 
but 

(1.70) 

In quantum mechanics we define the commutator: 
 ˆ ˆ ˆ ˆ ˆ ˆ,q r q r r q  (1.71) 

We find that the operators x̂

x̂

and ̂

k̂
ˆˆ, d dx k ix i x

dx dx
    
 

commute because  ˆˆ, 0x   . 

Considering the operators and : 

(1.72) 

† We have applied Parseval‟s theorem; see the Problem Sets. 

x̂ x . 
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Introduction to Nanoelectronics 

To simplify this further we need to operate on some function, f(x): 

   ˆˆ, df dx k f x ix i xf
dx dx
df dx dfix if ix
dx dx dx

if

    
 

   



(1.73) 

Thus, the operators x̂ and k̂ do not commute, i.e. 
ˆˆ,x k i  

 
(1.74) 

Although we used Fourier transforms, Eq. (1.43) can also be derived from 
k̂

the relation 
(1.74) for the non-commuting operators operators x̂ and . It follows that all operators 
that do not commute are subject to a similar limit on the product of their uncertainties. 
We shall see in the next section that this limit is known as „the uncertainty principle‟. 
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Part 1. The Quantum Particle 

Momentum and Energy 

Two key experiments revolutionized science at the turn of the 20th century. Both 
experiments involve the interaction of light and electrons. We have already seen that 
electrons are best described by wavepackets. Similarly, light is carried by a wavepacket 
called a photon. The first phenomenon, the photoelectric effect, was explained by 
assuming that a photon‟s energy is proportional to its frequency. The second 
phenomenon, the Compton effect, was explained by proposing that photons carry 
momentum. That light should possess particle properties such as momentum was 
completely unexpected prior to the advent of quantum mechanics. 

(i) The Photoelectric Effect 

It is not easy to pull electrons out of a solid. They are bound by their attraction to positive 
nuclei. But if we give an electron in a solid enough energy, we can overcome the binding 
energy and liberate an electron. The minimum energy required is known as the work 
function, W. 

e-




E
le

ct
ro

n
K

in
et

ic
 E

ne
rg

y

W
Fig. 1.16. The photoelectric effect: above a critical frequency, light can liberate electrons 
from a solid. 

By bombarding metal surfaces with light, it was observed that electrons could be 
liberated only if the frequency of the light exceeded a critical value. Above the minimum 
frequency, electrons were liberated with greater kinetic energy. 

Einstein explained the photoelectric effect by postulating that, in a photon, the energy 
was proportional to the frequency: 

(1.75) 
Where h = 6.62×10-34 Js is Planck‟s constant, 

E 

and is shorthand for 2h  . Note the 
units for Planck‟s constant – energy × time. This is useful to remember when checking 
that your quantum calculations make sense. 

Thus, the kinetic energy of the emitted electrons is given by 
electron kinetic energy W  . (1.76) 

This technique is still used to probe the energy structure of materials 
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Introduction to Nanoelectronics 

Note that we will typically express the energy of electrons in „electron Volts (eV)‟. The 
SI unit for energy, the Joule, is typically much too large for convenient discussion of 
electron energies. A more convenient unit is the energy required to move a single 
electron through a potential difference of 1V. Thus, 1 eV = q J, where q is the charge on 
an electron (q ~ 1.602×10-19 C). 

(ii) The Compton Effect 

If a photon collides with an electron, the wavelength and trajectory of the photon is 
observed to change. After the collision the scattered photon is red shifted, i.e. its 
frequency is reduced and its wavelength extended. The trajectory and wavelength of the 
photon can be calculated by assuming that the photon carries momentum: 

(1.77) 
where the wavenumber k is related to frequency by 

(1.78) 

where c is the speed of light. 

p k , 

2k
c

 


  , 

e-

ˆ ˆx yk k p x y

x

y

ˆxkp x

ˆykp y

2 2
1 x yc k k  

2 yck 

Incident photon

Scattered photon

Fig. 1.17. The wavelength shift of light after collision with an electron is consistent with a 
transfer of momentum from a photon to the electron. The loss of photon energy is 
reflected in a red shift of its frequency. 

These two relations: E  and p k are strictly true only for plane waves with 
precisely defined values of ω and k. Otherwise we must employ operators for momentum 
and energy. Based on the operators we defined earlier for k and , we define operators 
for momentum 

ˆ dp i
dx

  (1.79) 
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Part 1. The Quantum Particle 

and energy 
ˆ dE i

dt
 (1.80) 

Recall that 
p̂

each operator acts on the function to its right; and that p̂ is not necessarily 
equal to . 

The Uncertainty Principle 

Now that we see that k is simply related to momentum, and  is simply related to energy, 
we can revisit the uncertainty relation of Eq. (1.43) 

1
2x k   , (1.81) 

which after multiplication by ħ becomes 

(1.82) 

This is the celebrated Heisenberg uncertainty relation. It states that we can never know 
both position and momentum exactly. 

For example, we have seen from our Fourier transform pairs that to know position 
exactly means that in k-space the wavefunction is (k) = exp[-ikx0]. Since (k)2 = 1 
all values of k, and hence all values of momentum are equiprobable. Thus, momentum is 
perfectly undefined if position is perfectly defined. 

Uncertainty in Energy and Time 

(1.83) 

However, time is treated differently to position, momentum and energy. There is no 
operator for time. Rather it is best thought of as a parameter. But the expression of Eq. 
(1.83) still holds when Dt is interpreted as a lifetime. 

Application of the Uncertainty Principle 

The uncertainty principle is not usually significant in every day life. For example, if the 
uncertainty in momentum of a 200g billiard ball traveling at a velocity of 1m/s is 1%, we 
can in principle know its position to Dx = (ħ /2)/(0.2/100) = 3 × 10-32 m. 

.
2

p xD D  . 

For the time/frequency domain, we take Fourier transforms and write 

.
2

E tD D  . 

m ~ 200g
v ~ 1m/s if Dp = 1%,

then Dx = 3 10-32 m

Fig. 1.18. The uncertainty principle is not very relevant to everyday objects. 
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Introduction to Nanoelectronics 

In nanoelectronics, however, the uncertainty principle can play a role. 

For example, consider a very thin wire through which electrons pass one at a time. The 
current in the wire is related to the transit time of each electron by 

e-

+-

VDS

Fig. 1.19. A nanowire that passes one electron 
qI




at a time. 

, (1.84) 

where q is the charge of a single electron. 

To obtain a current of I = 0.1 mA in the wire the transit time of each electron must be 

1.6q fs
I

   , (1.85) 

The transit time is the time that electron exists within the wire. Some electrons may travel 
through the wire faster, and some slower, but we can approximate the uncertainty in the 
electron‟s lifetime, Dt =  = 1.6 fs.† 

From Eq. (1.83) we find that DE = 0.2 eV. Thus, the uncertainty in the energy of the 
electron is equivalent to a random potential of approximately 0.2 V.§ As we shall see, 
such effects fundamentally limit the switching characteristics of nano transistors. 

Schrödinger’s Wave Equation 

The energy of our electron can be broken into two parts, kinetic and potential. We could 
write this as 

total energy kinetic energy potential energy  (1.86) 
Now kinetic energy is related to momentum by 

2
21

2 2
pkinetic energy mv
m

  (1.87) 

Thus, using our operators, we could write 

     
2ˆˆ ˆ, , ,

2
pE x t x t V x t
m

    (1.88) 

† Another way to think about this is to consider the addition of an electron to the nanowire. If current is to 
flow, that electron must be able to move from the wire to the contact. The rate at which it can do this (i.e. 
its lifetime on the wire) limits the transit time of an electron and hence the current that can flow in the wire. 
§ Recall that modern transistors operate at voltages ~ 1V. So this uncertainty is substantial. 
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Part 1. The Quantum Particle 

Where V̂ is the potential energy operator. 
 ˆ ,V V x t . (1.89) 

We can rewrite Eq. (1.88) in even simpler form by defining the so called Hamiltonian 
operator 

2ˆˆ ˆ
2
pH V
m

  . 

Now, 
ˆ ˆE H  . 

Or we could rewrite the expression as 

       
2 2

2, , , ,
2

d di x t x t V x t x t
dt m dx
    

(1.90) 

(1.91) 

. (1.92) 

All these equations are statements of Schrödinger‟s wave equation. We can employ 
whatever form is most convenient. 

A Summary of Operators 

Note there is no operator for time. 

k̂
di
dx

Wavenumber

̂
di
dt

Angular Frequency

p̂ di
dx

Momentum

x̂Position x Ê
di
dt

Energy

T̂
2ˆ

2
p
m

Kinetic Energy

V̂Potential Energy V

Ĥ
2ˆ ˆ

2
p V
m
Hamiltonian

Table 1.2. All the operators used in this class. 

The Time Independent Schrödinger Equation 

When the potential energy is constant in time we can simplify the wave equation. We 
assume that the spatial and time dependencies of the solution can be separated, i.e. 

     ,x t x t   (1.93) 
Substituting this into Eq. (1.92) gives 

             
2 2

22
d di x t t x V x x t
dt m dx

        (1.94) 

Dividing both sides by    x t  yields 

36 



   

 
 

   

     
       

     
 

   

 

   

 
  

   

 

   

     
 

 
 

 
 

  
 

    
 

    

   

   

   

 
   

 

   

 
   

 

 

Introduction to Nanoelectronics 

 
 

 
   

2 2

2

1 1
2

d di t x V x
t dt m x dx

 
 

   . (1.95) 

Now the left side of the equation is a function only of time while the right side is a 
function only of position. These are equal for all values of time and position if each side 
equals a constant. That constant turns out to be the energy, E, and we get two coupled 
equations 

(1.96)    
dE t i t
dt

 

and 

       
2 2

22
dE x x V x x

m dx
     . (1.97) 

The solution to Eq. (1.96) is 

(1.98) 

Thus, the complete solution is 

(1.99) 

simplified Eq. (1.97). 

There is much more to be said about this equation, but first let‟s do some examples. 

   0 exp Et i t 
 

  
 

   , exp Ex t x i t
 

   
 

By separating the wavefunction into time and spatial functions, we need only solve the 

Free Particles 

In free space, the potential, V, is constant everywhere. For simplicity we will set V = 0. 

Next we solve Eq. (1.97) with V 

   
2 2

22
d x E x

m dx
  

= 0. 

(1.100) 

Rearranging slightly gives the second order differential equation in slightly clearer form 
2

2 2

2d mE
dx


  (1.101) 

A general solution is 
     0 expx ikx  (1.102) 

where 

2

2mEk  (1.103) 

Inserting the time dependence (see Eq. (1.99)) gives 
     , 0 expx t i kx t      (1.104) 

where 
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Part 1. The Quantum Particle 

(1.105) 
2

2
E k

m
  

Thus, as expected the solution in free space is a plane wave. 

. 

The Square Well 

Next we consider a single electron within a square potential well as shown in Fig. 1.20. 
As mentioned in the discussion of the photoelectric effect, electrons within solids are 
bound by attractive nuclear forces. 

By modeling the binding energy within a solid as a square well, we entirely ignore fine 
scale structure within the solid. Hence the square well, or particle in a box, as it is often 
known, is one of the crudest approximations for an electron within a solid. The simplicity 
of the square well approximation, however, makes it one of the most useful problems in 
all of quantum mechanics. 

L/2-L/2

V0

V = 0
0
x

Fig. 1.20. The square well. Within the solid the potential is defined to be zero. In free 
space, outside the solid, the repulsive potential is V0. 

Since the potential changes abruptly, we treat each region of constant potential 
separately. Subsequently, we must connect up the solutions in the different regions. 
Tackling the problem this way is known as a piecewise solution. 

Now, the Schrödinger Equation is a statement of the conservation of energy 
     total energy E kinetic energy KE potential energy V  (1.106) 

In classical mechanics, one can never have a negative kinetic energy. Thus, classical 
mechanics requires that E > V. This is known as the classically allowed region. 

But in our quantum analysis, we will find solutions for E < V. This is known as the 
classically forbidden regime. 

(i) The classically allowed region 

(1.107) 

Rearranging Eq. (1.97) gives the second order differential equation: 
 2

2 2

2m E Vd
dx





 
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Introduction to Nanoelectronics 

In this region, E > V, solutions are of the form 
  ikx ikxx Ae Be  

  sin cosx A kx B kx  

(1.108) 
or 

(1.109) 
where 

(1.110) 

In the classically allowed region we have oscillating solutions. 

 
2

2m E V
k




(ii) The classically forbidden region 

(1.111) 
i.e. they are either growing or decaying exponentials where 

  x xx Ae Be   

In this region, E < V, and solutions are of the form 

 
2

2m V E



 . (1.112) 

Matching piecewise solutions 

The Schrödinger Equation is a second order differential equation. From Eq. (1.107) we 
observe the second derivative of the wavefunction is finite unless either E or V is infinite. 

Infinite energies are not physical, hence if the potential is finite we can conclude that d
dx


and  x are continuous everywhere. 

That is, at the boundary (x = x0) between piecewise solutions, we require that 
   0 0x x   (1.113) 

and 

   0 0
d dx x
dx dx
   (1.114) 

Bound solutions 

Electrons with energies within the well (0 < E < V0) are bound. The wavefunctions of the 
bound electrons are localized within the well and so they must be normalizable. Thus, the 
wavefunction of a bound electron in the classically forbidden region (outside the well) 
must decay exponentially with distance from the well. 

A possible solution for the bound electrons is then 
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Part 1. The Quantum Particle 

     

                       for 2
cos sin  for 2 2

                      for 2

x

x

Ce x L
x A kx B kx L x L

De x L









  


    




(1.115) 

where 

 0
2

2m V E





2

2mEk  , 

(1.116) 

and 

(1.117) 

and A, B, C and D are constants. 

The limit that 0V  (the infinite square well) 

At the walls where the potential is infinite, we see from Eq. (1.116) that the solutions 
decay immediately to 

0 

zero since  → ∞. Thus, in the classically forbidden region of the 
infinite square well . 

The wavefunction is continuous, so it must approach zero at the walls. A possible 
solution with zeros at the left boundary is 

    sin 2x A k x L   (1.118) 
where k is chosen such that ψ = 0 at the right boundary also: 

kL n (1.119) 

To normalize the wavefunction and determine A, we integrate: 

   
2

2 2 2

2

cos 2
L

L

x dx A n x L n dx  


 

   (1.120) 

From which we determine that 
(1.121) 2A L

The energy is calculated from Eq. (1.117) 
2 2 2 2 2

22 2
k nE
m mL


  . (1.122) 

The first few energies and wavefunctions of electrons in the well are plotted in Fig. 1.21. 

Two characteristics of the solutions deserve comment: 

1. The bound states in the well are quantized – only certain energy levels are allowed. 

2. The energy levels scale inversely with L2. As the box gets smaller each energy level 
and the gaps between the allowed energy levels get larger. 
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Introduction to Nanoelectronics 

L/2-L/2
E = 0

0
x

2 2

22mL


En
er

gy

L/2-L/2 0
x

ψ
(x

)

(a) Energy solutions (b) Wavefunction solutions

Fig. 1.21. The lowest four states for a single electron in an infinite square well. Note that 
we have plotted ψ(x) not ψ(x)2. 

The Finite Square Well 

When the confining potential is finite, we can no longer assume that the wavefunction is 
zero at the boundaries of the well. For a finite confining potential, the wavefunction 
penetrates into the barrier: the lower the confining potential, the greater the penetration. 

From Eq. (1.115) the general solution for the wavefunction within the well was 
, (1.123) 

but from the solutions for the infinite well, we can see that, within the well, the 
wavefunction looks like 

or 
   cosx A kx 

   sinx A kx 

(1.124) 

(1.125) 
The simplification is possible because the well potential is symmetric around x = 0. Thus, 
the probability density ψ(x)2 should also be symmetric,† and indeed both ψ(x) = sin(kx) 
and ψ(x) = cos(kx) have symmetric probability distributions even though ψ(x) = sin(kx) is 
an antisymmetric wavefunction. 

We‟ll consider the symmetric (cos(kx)) and antisymmetric (sin(kx)) wavefunction 
solutions separately. 

† After all, if the potential is the same in both left and right halves of the well, there is no reason for the 
electron to be more probable in one side of the well. 
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Part 1. The Quantum Particle 

(i) Symmetric wavefunction 

We can assume a solution of the form: 

   

                       for 2
cos                     for 2 2

                      for 2

x

x

e x L
x A kx L x L

e x L









  


   




(1.126) 

where 

2

2mEk 

 0
2

2m V E





(1.127) 

and 

(1.128) 

Note the solution as written is not normalized. We can normalize it later. 

The next step is to evaluate the constant A by matching the piecewise solutions at the 
edge of the well. We need only consider one edge, because we have already fixed the 
symmetry of the solution. 

At the right edge, equating the amplitude of the wavefunction gives 
(1.129)      2 cos 2 exp 2L A kL L   

Equating the slope of the wavefunction gives 
(1.130) 

Dividing Eq. (1.130) by Eq. (1.129) to eliminate A gives 
. (1.131) 

But  and k are both functions of energy 

     ' 2 sin 2 exp 2L kA kL L      

 tan 2kL k

0tan
2 L

V EE
E E

  
  

 
(1.132) 

where we have defined the infinite square well ground state energy 
2 2

22LE
mL


 . (1.133) 

As in the infinite square well case, we find that only certain, discrete, values of energy 
give a solution. Once again, the energies of electron states in the well are quantized. To 
obtain the energies we need to solve Eq. (1.132). Unfortunately, this is a transcendental 
equation, and must be solved numerically or graphically. We plot the solutions in Fig. 
1.22. 
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Introduction to Nanoelectronics 

(ii) Antisymmetric wavefunction 

Antisymmetric solutions are found in a similar manner to the symmetric solutions. We 
first assume an antisymmetric solution of the form: 

(1.134) 

Then, we evaluate the constant A by matching the piecewise solutions at the edge of the 
well. Again, we need only consider one edge, because we have already fixed the 
symmetry of the solution. 

At the right edge, equating the amplitude of the wavefunction gives 
     2 sin 2 exp 2L A kL L     (1.135) 

Equating the slope of the wavefunction gives 
     ' 2 cos 2 exp 2L kA kL L     (1.136) 

Dividing Eq. (1.130) by Eq. (1.129) to eliminate A gives 
 cot 2kL k  . (1.137) 

Expanding  and k in terms of energy 

0cot
2 L

V EE
E E

  
   

 
. (1.138) 

In Fig. 1.22, we solve for the energy. Note that there is always at least one bound solution 
no matter how shallow the well. In Fig. 1.23 we plot the solutions for a confining 
potential V0 = 5.EL. 
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Fig. 1.22. A graphical solution for the energy in the finite quantum well. The green and 
blue curves are the LHS of Eqns. (1.132) and (1.138), respectively. The red curves are 
the RHS for different values of the confining potential V0. Solutions correspond to the 
intersections between the red lines and the green or blue curves. 
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Part 1. The Quantum Particle 

En
er

gy
/E

L

0

1

2

3

4

5

6

-L/2 L/20
x

E=4.68EL

E=2.32EL

E=0.60EL

ψ(
x)

-L/2 L/20
x

(a) Energy solutions (b) Wavefunction solutions

Fig. 1.23. The three bound states for electrons in a well with confining potential 
V0 = 5.EL. Note that the higher the energy, the lower the effective confining potential, 
and the greater the penetration into the barriers. 

Potential barriers and Tunneling 

Next we consider electrons incident on a potential barrier, as shown in Fig. 1.24. 

En
er

gy

L0
x

V0

Fig. 1.24. A potential barrier. 

We will assume that the particle is incident on the barrier from the left. It has some 
probability of being reflected by the barrier. But it also has some probability of being 
transmitted even though its energy may be less than the barrier height. Transmission 
through a barrier is known as tunneling. There is no equivalent process in classical 
physics – the electron would need sufficient energy to jump over the barrier. 

Once again, we solve the time-independent Schrödinger Equation. To the left and right of 
the barrier, the electron is in a classically allowed region. We model the electron in these 
regions by a plane wave; see Eq. (1.108) and the associated discussion. On the other 
hand, within the barrier, if the energy, E, of the electron is below the barrier potential, V0, 
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Introduction to Nanoelectronics 

the barrier is a classically forbidden region. The solution in this region is described by 
expanding and decaying exponentials; see Eq. (1.111) and the associated discussion. 

Analyzing the potential piece by piece, we assume a solution of the form 

 

            for 0
                 for 0

                      for

ikx ikx

x x

ikx

e re x
x ae be x L

te x L

 





  


   




(1.139) 

where once again 

2

2mEk  (1.140) 

and 

 0
2

2m V E



 (1.141) 

The intensity of the incoming plane wave is unity. Hence the amplitude of the reflected 
wave, r, is the reflection coefficient and the amplitude of the transmitted wave, t, is the 
transmission coefficient. (The reflectivity and transmissivity is r2 and t2, respectively). 

Next we match the piecewise solutions at the left edge of the barrier. Equating the 
amplitude of the wavefunction gives 

 0 1 r a b     (1.142) 
Equating the slope of the wavefunction gives 

 ' 0 ik ikr a b      . (1.143) 

At the right edge of the barrier, we have 

and 
  L L ikLL ae be te    

 ' L L ikLL a e b e ikte      

(1.144) 

. (1.145) 

Thus, we have four simultaneous equations. But these are a pain to solve analytically. In 
Fig. 1.25 we plot solutions for energy much less than the barrier, and energy close to the 
barrier. It is observed that the tunneling probability is greatly enhanced when the incident 
electron has energy close to the barrier height. Note that the wavefunction decay within 
the barrier is much shallower when the energy of the electron is large. Note also that the 
reflection from the barrier interferes with the incident electron creating an interference 
pattern. 

When the electron energy is much less than the barrier height we can model the 
wavefunction within the barrier as simply a decaying exponential. The transmission 
probability is then approximately 

 exp 2T L  . (1.146) 
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Part 1. The Quantum Particle 

En
er
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L00
x

V0

E = 0.98V0

En
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gy

L00
x

V0

E = V0/5

E

E

Fig. 1.25. Plots of the wavefunction for an electron incident from the left. (a) When the 
electron energy is substantially below the barrier height, tunneling is negligible. (b) For 
an electron energy 98% of the barrier height, however, note the non-zero transmission 
probability to the right of the barrier. 
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Introduction to Nanoelectronics 

Problems 

1. Suppose we fire electrons through a single slit with width d. At the viewing screen 
behind the aperture, the electrons will form a pattern. Derive and sketch the expression 
for the intensity at the viewing screen. State all necessary assumptions. 

Fig. 1.26. The geometry of a single slit diffraction experiment. 

How does this pattern differ from the pattern with two slits discussed in class? 

2. Compare the different patterns at the viewing screen with d = 20Å and L = 100nm for 
fired electrons with wavelengths of 10Å, 100Å, and 1000Å.  Explain. 

3. Show that a shift in the position of a wavepacket by 0x is equivalent to multiplying 
the k-space representation by 0exp[ ]ikx . Also, show that a shift in the k-space 
representation by 0k is equivalent to multiplying the position of the wavepacket by 

0exp[ ]ik x . Show that similar relations hold for shifts in time and frequency. 

4. Find 2( )F  where ( )F  is the Fourier Transform of an exponential decay: 

( ) [ ( )]atF e u t 

where u(t) is the unit step function. 

5. Show that if 
22 2( )x x xD  

x D 
then 
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Part 1. The Quantum Particle 

where 
 

2
0

2

1( ) exp
4

x x
x



 
  

  

6. Show the following: 

(a) 

diA k A dxk
A A

 

 



 

(b) 

diA A dt
A A

 


 
 

7. A free particle is confined to move along the x-axis. At time t=0 the wave function is 
given by 

 
0

1
2 2

ik x L Le x
L


 

( , 0)x t  

0 otherwise

(a) What is the most probable value of momentum? 

(b) What are the least probable values of momentum? 

(c) Make a rough sketch of the wave function in k-space, A(k, t=0). 

8. The commutator of two operators Â and B̂ is defined as 

ˆ ˆ ˆˆ ˆ ˆ,A B AB BA   
 

Evaluate the following commutators: 
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Introduction to Nanoelectronics 

(a) 2ˆ ˆ,x x   (b) 2ˆ ˆ,p p   (c) 2 2ˆ ˆ,x p   (d)  ˆˆ ˆ ˆ,xp px

9. Consider the wavefunction 

Show that 

2

2

1( ) exp (1 )
2

xx iC


 
   

 

21 1
2x k C   

2

2
2

k

d
dx

 


 



 )(Hint: Show that 

10. For the finite square well shown below, calculate the reflection and transmission 
coefficients (E > 0). 

  V x

x

0V

0
a a

Fig. 1.27. A finite potential well. 

11. Consider an electron in the ground state of an infinite square well of width L. What is 
the expectation value of its velocity? What is the expectation value of its kinetic energy? 
Is there a conflict between your results? 
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Part 1. The Quantum Particle 

12. Derive the reflection and transmission coefficients for the potential    V x A x , 
where A>0. 

  V x

x
0

 A x

Fig. 1.28. A delta function potential. 

One method to solve is by taking the Schrödinger equation with    V x A x

 
     

22

22
x

A x x E x
m x


  


  



and integrating both sides from  to  for  very small to get the constraint 
 

   
22

2 0 2 0 0
2

x
dx A E

m x






  






 



 2

2 0
x x

d d mA
dx dx 

 


 

  

13. Consider two quantum wells each with width w separated by distance d. 

 V x

G
aA

lA
s

G
aA

lA
s

G
aA

s

G
aA

s

G
aA

lA
s

w

d
 V x

G
aA

lA
s

G
aA

lA
s

G
aA

s

G
aA

s

G
aA

lA
s

w

d

Fig. 1.29. The structure of the quantum wells. 

(a) From your understanding of wavefunctions for a particle in a box, plot the 
approximate probability density for each of the two lowest energy modes for this 
system when the two quantum wells are isolated from each other. 

(b) Plot the two lowest energy modes when the two quantum wells are brought close 
to each other such that d<<w? 
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Introduction to Nanoelectronics 

(c) Next we wish to take a thin slice of another material and insert it in the structure 
above (where d<<w) to kill one of the two modes of part (b) but leave the other 
unaffected. How would you choose the material (compared to the materials 
already present in the structure), and where should this new material be placed? 
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Part 2. The Quantum Particle in a Box 

Part 2. The Quantum Particle in a Box 

The goal of this class is to calculate the behavior of electronic materials and devices. In 
Part 1, we have developed techniques for calculating the energy levels of electron states. 
In this part, we will learn the principles of electron statistics and fill the states with 
electrons. Then in the following sections, we will apply a voltage to set the electrons in 
motion, and examine non-equilibrium properties like current flow, and the operation of 
electronic switches.   

TILT

3. Apply bias
2. Fill states with electrons1. Calculate energies 

of electron states

Fig. 2.1. The next two parts in diagram form. 

How many electrons? Fermi-Dirac Statistics 

In the previous section, we determined the allowed energy levels of a particle in a 
quantum well. Each energy level and its associated wavefunction is known as a „state‟. 
The Pauli exclusion principle forbids multiple identical electrons from occupying the 
same state simultaneously. Thus, one might expect that each state in the conductor can 
possess only a single electron. But electrons also possess spin, a purely quantum 
mechanical characteristic. For any given orientation, the spin of an electron may be 
measured to be +1/2 or -1/2. We refer to these electrons as spin up or spin down. 

Spin up electrons are different to spin down electrons. Thus the exclusion principle 
allows two electrons per state: one spin up and one spin down. 

Next, if we were to add electrons to an otherwise „empty‟ material, and then left the 
electrons alone, they would ultimately occupy their equilibrium distribution. 

As you might imagine, at equilibrium, the lowest energy states are filled first, and then 
the next lowest, and so on. At T = 0K, state filling proceeds this way until there are no 
electrons left. Thus, at T = 0K, the distribution of electrons is given by 

   ,f E u E   , (2.1) 
where u is the unit step function. Equation (2.1) shows that all states are filled below a 
characteristic energy, , known as the chemical potential. When used to describe 
electrons, the chemical potential is also often known as the Fermi Energy, EF = . Here, 
we will follow a convention that uses  to symbolize the chemical potential of a contact, 
and EF to describe the chemical potential of a conductor. 
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Introduction to Nanoelectronics 

Equilibrium requires that the electrons have the same temperature as the material that 
holds them. At higher temperatures, additional thermal energy can excite some of the 
electrons above the chemical potential, blurring the distribution at the Fermi Energy; see 
Fig. 2.2. 

For arbitrary temperature, the electrons are described by the Fermi Dirac distribution:  

 
 

1,
1 exp

f E
E kT





   

(2.2) 

Note that Eq. (2.2) reduces to Eq. (2.1) at the T = 0K limit. At the Fermi Energy, 
E = EF = , the states are half full. 
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Fig. 2.2. The occupation probability for electrons at two different temperatures. The 
chemical potential in this example is  = 0. 

It is convenient to relate the Fermi Energy to the number of electrons. But to do so, we 
need to know the energy distribution of the allowed states. This is usually summarized by 
a function known as the density of states (DOS), which we represent by g(E). There will 
be much more about the DOS later in this section. It is defined as the number of states in 
a conductor per unit energy. It is used to calculate the number of electrons in a material. 

   ,n g E f E dE




  (2.3) 

HOMO

LUMO

.

.

EF

.

.

E
ne

rg
y Fig. 2.3. At left, we show a possible energy structure for a molecule at 

T = 0K. You can think of a molecule as a little dot that confines 
electrons in every direction. Thus, like the 1 dimensional quantum well 
studied previously, the energy levels, or states, in a molecule are 
discrete. For a molecule each state is often described as a molecular 
orbital. Below the Fermi energy, each molecular orbital, contains two 
electrons, one spin up and one spin down. We represent these 
electrons with upward and downward pointing arrows. The highest 
occupied molecular orbital is frequently abbreviated as the HOMO. 
The lowest unoccupied molecular orbital is the LUMO. 
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Part 2. The Quantum Particle in a Box 

Current 

The electron distribution within a material determines its conductivity. As an example, 
let‟s consider some moving electrons in a Gaussian wavepacket. The wavepacket in turn 
can be described by the weighted superposition of plane waves. Now, we know from the 
previous section that, if the wavepacket is not centered on k = 0 in k-space, then it will 
move and current will flow. 

There is another way to look at this. Note that there are plane wave components with both 
+kz and –kz wavenumbers. Thus, even when the electron is stationary, components of the 
wavepacket are traveling in both directions. But if each component moving in the +kz 
direction is balanced by an component moving in the –kz direction, there is no net current. 

kz
k0

 
2

A k

kz
0

 
2

A k (b)(a)

Fig. 2.4. (a) A wavepacket with no net velocity. Note that each plane wave component 
with a + kz wavenumber is compensated by a plane wave component with a – kz 
wavenumber. (b) A wavepacket with a net velocity in the positive z direction is 
asymmetric about kz = 0. 

We‟ll show in this section that we can apply a similar analysis to electrons within a 
conductor. For example, electrons in a wire occupy states with different wavenumbers, 
known as k-states. Each of these states can be modeled by a plane wave and there are 
states that propagate in both directions. 

Recall that for a plane wave 
2 2

2
zkE

m
 (2.4) 

This relation between energy and wavenumber is known as a dispersion relation. For 
plane waves it is a parabolic curve. Below the curve there are no electron states. Thus, the 
electrons reside within a certain band of energies.† 

† Strictly a band needs an upper as well as a lower limit to the allowed energy, whereas the simple plane 
wave model yields only a lower limit. Later we‟ll also find upper limits in more accurate models of 
materials. Note also that 0-d materials such as molecules or quantum dots do not have bands because the 
electrons are confined in all directions and cannot be modeled by a plane wave in any direction. 
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Introduction to Nanoelectronics 

E

kz

electron 
states

Fig. 2.5. Electrons in a wire occupy states with different energies and wavenumbers. 

Under equilibrium conditions, the wire is filled with electrons up to the Fermi energy, EF. 
The electrons fill both +kz and –kz states, and propagate equally in both directions. No 
current flows. We say that these electrons are compensated. 

E

kz

kz

F-

k0

F+

(b)

 
2

A k

E

kz

kz

EF

0

(a)

 
2

A k

Fig. 2.6. (a) Under equilibrium conditions, electrons fill up the lowest energy k-states 
first. Since equal numbers of +kz and –kz states are filled there is no net current. (b) 
When +kz and –kz states are filled to different levels, there is a net current. 

For a net current to flow there must be difference in the number of electrons moving in 
each direction. Thus, electrons traveling in one direction cannot be in equilibrium with 
electrons traveling in the other. We define two quasi Fermi levels: F+ is the energy level 
when the states with kz > 0 are half full, F- is the corresponding energy level for states 
with kz < 0. We can see that current flow is associated with a difference in the quasi 
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Part 2. The Quantum Particle in a Box 

Fermi levels, and the presence of electron states between the quasi Fermi levels. If there 
are no electrons between F+ and F-, then the material is an insulator and cannot conduct 

E

kz

EF

E

kz

EF

E

kz

EF

E

kz

EF

(b) Insulator: empty band(a) Metal: partly filled band

charge. 
Fig. 2.7. Examples of a metal (a), and an insulator (b). 

To summarize: current is carried by uncompensated electrons. 

Metals and Insulators 

F+Metals are good conductors; a small difference between and F- yields a large 
difference between the number of electrons in +kz and –kz states. This is possible if the 
bands are partially filled at equilibrium. 

If there are no electrons between F+ and F-, then the material is an insulator and cannot 
conduct charge. This occurs if the bands are completely empty or completely full at 
equilibrium. We have not yet encountered a band that can be completely filled. These 
will come later in the class. 

Thus, to calculate the current in a material, we must determine the number of electrons in 
states that lie between the quasi Fermi levels. It is often convenient to approximate Eq. 
(2.2) when calculating the number of electrons in a material. There are two limiting 
cases: 

(i) degenerate limit: F CE E kT . 

As shown in Fig. 2.8 (a), here the bottom of the band, EC, is much less than the Fermi 
energy, EF, and the distribution function is modeled by a unit step: 

   Ff E u E E  (2.5) 

56 



   

 
 

 
  

 
     

 
   

           
          

        
           

       
 

 

Introduction to Nanoelectronics 

(ii) non-degenerate limit: C FE E kT . 

As shown in Fig. 2.8 (b), here C FE E and the distribution function reduces to the 
Boltzmann distribution: 

   exp Ff E E E kT     (2.6) 

E

kz

EC

EF

E

kz

EC EF

EFEC E

f

EFEC E

f

EF EC E

f

(a) Degenerate limit: f = u(EF-E)

(b) Non-degenerate limit: f = exp[-(E-EF)/kT]

Fig. 2.8. Two limiting cases when calculating the number of electrons in a material. (a) If 
EF is within a band, then thermal blurring of the electron distribution is not significant, 
and we can simply integrate up to EF. This is the so-called degenerate case. (b) On the 
other hand, if the filled states are due solely to thermal excitation above EF, the filling 
fraction falls off exponentially. This is the non-degenerate limit. 
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Part 2. The Quantum Particle in a Box 

The Density of States 

To determine whether a material is a metal or an insulator, and to calculate the magnitude 
of the current under applied bias, we need the density of states (DOS), which as you 
recall is a measure of the number of states in a conductor per unit energy. In this part, we 
will calculate the DOS for a variety of different conductors. 

E
ne

rg
y

Density of States (DOS)

E
ne

rg
y

Density of States (DOS)

(a) Partly filled = metal (b) Completely filled or empty
= insulator or semiconductor

electrons

Fig. 2.9. Partly filled states give metallic behavior, while completely filled or empty states 
correspond to insulators or semiconductors. 

To calculate the density of states we will employ two assumptions: (i) we will model the 
conductor as a homogeneous box, and (ii) we will assume periodic boundary conditions. 

The particle in a box 

Modeling our electronic material as a box allows us to ignore atoms and assume that the 
material is perfectly homogeneous. We will consider boxes in different dimensions: 
either three dimensions (typical bulk materials), 2-d (quantum wells), 1-d (quantum 
wires), or 0-dimensions (this is a quantum dot). The label „quantum‟ here refers to the 
confinement of electrons. When we say that an electron is „confined‟ in a low 
dimensional material we mean that critical dimensions of the material are on the order of 
the wavelength of an electron. We‟ve seen that when particles are confined, their energy 
levels become discrete. 

particle in a box 
approximation

Fig. 2.10. The „particle in a box‟ takes a complex structure like a molecule and 
approximates it by a homogeneous box. All details, such as atoms, are ignored. 
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Introduction to Nanoelectronics 

In quantum dots, electrons are confined in all three dimensions, in quantum wires, 
electrons are confined in only two dimensions and so on. So when we say that a given 
structure is 2-d, we mean that the electron is unconfined in 2 dimensions. In the 
unconfined directions, we will assume that the electron described by a plane wave. 

Lz

(c) 0-d: Quantum Dot(c) 0-d: Quantum Dot(b) 1-d: Quantum Wire

barrier

quantum well

barrier

Ly

(a) 2-d: Quantum Well

Lx

Lz

barrier

quantum well

barrier

Ly

(a) 2-d: Quantum Well

Lx

Lz Ly

Lx

Fig. 2.11. (a) In quantum wells, electrons are confined only in one dimension. Quantum 
wells are usually implemented by burying the confining material within a barrier material. 
(b) Quantum wires confine electrons in two dimensions. The electron is not confined 
along the wire. (c) In a quantum dot, an electron is confined in three dimensions. 

The Schrödinger Equation in Higher Dimensions 

Analyzing quantum wells and bulk materials requires that we solve the Schrödinger 
Equation in 2-d and 3-d. The equation in 1-d 

     
2 2

22
d V x x E x

m dx
 

 
   
 

(2.7) 

is extended to higher dimensions as follows: 

(i) The Kinetic Energy operator 

In 1-d 
2ˆˆ

2
xpT
m

 (2.8) 

Now, the magnitude of the momentum in 3-d can be written 
2 2 2 2

x y zp p p  p (2.9) 
Where px, py and pz are the components of momentum on the x, y and z axes, respectively. 
It follows that in 3-d 

22 2 2 2 2 2

2 2 2

ˆˆ ˆˆ
2 2 2 2

yx z
pp p d d dT

m m m m dx dy dz
 

       
 

(2.10) 

(ii) Separable Potential – Quantum Well 

A quantum well is shown in Fig. 2.11 (a). We will assume that the potential can be 
separated into x, y, and z dependent terms 

       , , x y zV x y z V x V y V z   (2.11) 
For example, a quantum well potential is given by 
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Part 2. The Quantum Particle in a Box 

(2.12) 
 

 

     0 0

0

0
x

y

z

V x

V y

V z V u z L V u z





   

where in the infinite square well approximation V0→∞, and u is the unit step function. 

For potentials of this form the Schrödinger Equation can be separated: 

(2.13) 

The wavefunction can also be separated 
       , , x y zx y z x y z    (2.14) 

From Eqs. (1.118) and (1.119), the solutions to the infinite quantum well potential are 

         
2, , sin .exp .expx y z x y

zx y z x y z n ik x ik y
L L


   

 
      

 
(2.15) 

with 
2 22 2 2 2 2

22 2 2
yx

x y z

kk nE E E E
m m mL


      (2.16) 

This dispersion relation is shown in Fig. 2.12 for the lowest three modes of the quantum 
well. 

E

kx
ky

E

kx
ky

barrier

barrier

quantum well

3rd mode

2nd mode

1st mode
z

y

x

Fig. 2.12. A quantum well confines electrons in 1 dimension. 
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Introduction to Nanoelectronics 

(ii) Separable Potential – Quantum Wire 

A quantum wire with rectangular cross-section is shown in Fig. 2.11(b). Again, we will 
assume that the potential is infinite at the boundaries of the wire: 

         0 0 0 0, , x yV x y z V u x V u x L V u y V u y L        , (2.17) 

where V0 . The associated wavefunction is confined in the x-y plane and composed 
of plane waves in the z direction, thus we chose the trial wavefunction 

   , , , zik zx y z x y e  (2.18) 
Inserting Eq. (2.18) into the Schrödinger equation gives (for 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly): 

       
2 22 2 2 2

2 2, , , ,
2 2 2

zkd dx y x y x y E x y
m dx m dy m

       (2.19) 

Since the potential goes to infinity at the edges of the wire, 
       0 0 0x yx x L y y L           . Thus, the solution is 

, (2.20) 
where 

, 1,2,..., , 1,2,...yx
x x y y

x y

nnk n k n
L L


    (2.21) 
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Fig. 2.13. The first four modes of the quantum wire. Since in this example, Lx > Ly the 
nx = 2, ny = 1 mode has lower energy than the nx = 1, ny = 2 mode. 
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Part 2. The Quantum Particle in a Box 

Thus, the constraint in the x- and y-directions defines the discrete energy levels 
222 2

, 2 2 , , 1,2,...
2x y

yx
n n x y

x y

nnE n n
m L L
  

    
 

(2.22) 

The total energy is 
22 2 22 2

, 2 2 , , 1,2,...
2 2x y

yx z
n n x y

x y

nn kE n n
m L L m
  

     
 

(2.23) 

This dispersion relation is plotted in Fig. 2.14 for the lowest three modes. 

L

1-d: Quantum Wire E

kz

1st mode

2nd mode

3rd mode.
.
.

.

.

.

x
z

y

Ly

Lx

Fig. 2.14. A quantum wire confines electrons in 2 dimensions. 

The 0-d DOS: single molecules and quantum dots confined in 3-d 

The 0-d DOS is a special case because the particle is confined in all directions. 

Like a particle in a well with discrete energy levels, we might assume that the density of 
states in a 0-d might be a series of delta functions at the allowed energy levels. This is 
indeed true for an isolated 0-d particle. 

The lifetime of a charge in an orbital of an isolated particle is infinite. From the 
uncertainty principle, infinite lifetimes are associated with perfectly discrete energy states 
in the isolated molecule, i.e. if Dt , DE  0. 

But when, for example, a molecule is brought in contact with a metal electrode, the 
electron may eventually escape into the metal. Now, the electron‟s lifetime on the 
molecule is finite, and hence the molecule‟s energy levels should also exhibit a finite 
width. Thus, molecular energy levels are broadened in a coupled metal-molecule system 
– the greater the coupling, the greater the broadening of the molecular energy levels. 

Let‟s assume that there are two electrons in the molecular orbital. Let‟s assume that the 
lifetime of these electrons on the molecule is . Furthermore, let‟s assume that the decay 
of the electron probability on the molecule is exponential. Then the time dependence of 
the electron probability in the molecular orbital is: 
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Introduction to Nanoelectronics 

   
2 2 exp tt u t

 

 
   

(2.24) 

One choice for the corresponding wavefunction is 

   02 exp
2

E t tt i u t
 

 
    

(2.25) 

We have included a complex term in the exponent to account for the phase rotation of the 
electron. The characteristic angular frequency of the phase rotation is E0/ħ, where E0 is 
the energy of the molecular orbital in the isolated molecule. 

Next we use a Fourier transform to convert from the time to the energy domain. The 
Fourier transform of (t) gives 

 
 0

2
1 2

A
i E




 


 
(2.26) 

Now from the definition of normalization in angular frequency we require that 

   
21

2
A d g E dE 



 

 

  (2.27) 

where g(E) is the density of states. Thus, 

   
   

2

2 2
0

1 2 2
2 2

dg E A
dE E E
 


  

 
 

(2.28) 

This function is known as a Lorentzian – it is characteristic of an exponential decay in the 
time domain; see Fig. 2.15. The width of the Lorentzian at half its peak value (full width 
at half maximum, or FWHM) is ħ/. The coupling between the molecule and the contact 
can be described either by the lifetime of the electron on the molecule , or a coupling 
energy, G, equal to the FWHM of the Lorentzian density of states and given by 

G  (2.29) 
Thus, as expected, a stronger interaction between a molecule and a contact is correlated 
with a shorter electron lifetime on the molecule and a broader molecular density of states. 
In well coupled systems G may approach 1 eV, corresponding to an electron lifetime of 
 ~ 4fs. 
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Fig. 2.15. The density of states in a 
molecule is broadened when the 
molecule is brought in contact with a 
metal. The effect is significant if the 
molecule is small, and the lifetime of 
electrons on the molecule changes 
dramatically in the presence of the 
metal. 



    

 
 

 
 

     
       

  
 

         
     

         
      

   
  

 
  

      
     

   
      

   

 
         

     

 

     

Part 2. The Quantum Particle in a Box 

Periodic boundary conditions 

Usually, our material does not exist in isolation, but rather it may be connected to 
contacts, for example. So we have a problem: When determining its energy structure, 
how do we treat the boundaries between our material and the rest of the physical world? 

First of all, if the material is big enough (for example, if a quantum wire is long enough), 
the boundaries will not significantly affect the electron states in the majority of the 
material. If this is true, we can choose any boundary conditions that are convenient. 
Indeed, we shall continue for the moment assuming that we can choose convenient 
boundary conditions. But note that in nanoscale devices, boundary conditions can be 
problematic; see the previous discussion on 0-d materials coupled to contacts. 

When boundaries do not dominate the properties of the material, the usual choice is 
periodic boundary conditions. As shown in Fig. 2.16, to apply periodic boundary 
conditions, we take the wavefunction of the material, and make infinite copies in the 
unconfined directions. This gives us the ability to analyze electrons traveling in those 
directions in the material. After all, if just a single, isolated copy of the material was 
studied, the material could not support traveling electrons, only standing waves. 

z

L LL

kz

L
2

Fourier transform

z

L
Apply periodic boundary conditions

ψ0

ψ0 ψ0ψ0

Electron wavefunction

1-d molecule

Fig. 2.16. Given periodic boundary conditions, only certain k values are allowed in the 
„unconfined‟ direction of a quantum wire. 
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Introduction to Nanoelectronics 

But forcing periodicity in real space affects the Fourier transform of the wavefunction. In 
k-space, the periodic wavefunction is discrete. For example, on the long axis of a 
quantum wire of length L, the allowed k-values are spaced by 

2k
L


D  (2.30) 

Each allowed k-value corresponds to a plane wave, and each allowed k-value corresponds 
to a discrete electron wavefunction with a characteristic energy. As we shall see, knowing 
the separation of k-states in k-space allows us to easily count the number of electron 
states in the material. 

The other way to think about the limitation to certain discrete k values in a periodic 
material is to recall that any periodic structure supports modes. Consequently, there are 

characterize these modes by their wavevector, k given by 
only certain allowed wavevectors for delocalized electrons in a periodic molecule. We 

02 2k n Na n L   , where 
L is the length of the molecule. The allowed 

2 4 60, , , ,...k
L L L
  

   

k states are therefore: 

(2.31) 

n = 1 n = 2 n = 3

Fig. 2.17. Several modes on a ring. Because the ring is periodic, only the wavevectors, 
k = 2n/L give stable states, where L is the perimeter of the ring and n is an integer. 

Thus, in a conductor where we have applied periodic boundary conditions, the spacing of 
the allowed k states is determined by the length of conductor. 

The 1-d DOS: quantum wires confined in 2-d 

The density of states, g(E) is defined as the number of allowed states within energy range 

(2.32) 

dE, i.e. the total number of states within the energy range - < E < EF is 

   
FE

s Fn E g E dE


 

To determine g(E) we will count k states and then use the relation between E and k 
(known as the dispersion relation) to change variables from k to E. 

We showed above that the energy of electrons in a quantum wire is 
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Part 2. The Quantum Particle in a Box 

2
Lz

E

kz

1st mode

2nd mode

3rd mode.
.
.

.

.

.

2
Lz

Fig. 2.18. The dispersion relation of a quantum wire after application of periodic 
boundary conditions. 

22 2 22 2

, 2 2 , , 1,2,...
2 2x y

yx z
n n x y

x y

nn kE n n
m L L m
  

     
 

(2.33) 

Thus, counting the x-y modes is straight forward, since in the confined potential they are 
discrete. But to count the modes in the z-direction we impose periodic boundary 
conditions. 

This should be OK if the wire is sufficiently long since the boundaries of the wire are 
then less significant. Periodic boundary conditions 

2 zL

cause kz to be quantized, and each 
allowed value of k-space occupies a length . 

For convenience, we will integrate with respect to the magnitude of kz. Since we are 
integrating |kz| from 0 to , not - < kz < , there is an extra factor of two to account for 
modes with negative kz, and an additional factor of two to account for the two possible 
electron spins per k state. 

 
0

12 2
2

zk

s z
z

n k dk
L

    . (2.34) 

Next we need to change variables in Eq. (2.34), i.e. we need 

   
FE

s Fn E g E dE


 

g(E) where 

(2.35) 

Now |kz| is related to the energy by 
22

, ,,
2x y x y

z
n n n n

k
E E E E

m
   (2.36) 

Using the dispersion relation of Eq. (2.36) in Eq. (2.34) gives, 

 
 ,

2
, ,

2
2

x y

x y x y

n n

n n n n

u E EL mg E dE dE
E E





 , (2.37) 
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Introduction to Nanoelectronics 

where u is the unit step function. The DOS is plotted in Fig. 2.19. Note that the flat 
region in the dispersion relation as k → 0 yields infinite peaks in the DOS at the bottom 
of each band. The peaks have finite area, however, since the wire contains a finite 
number of states. 

Energy
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1d

Fig. 2.19. The density of states for a quantum wire (1d). 

Periodic Boundary Conditions in 2-d 

Applying periodic boundary conditions to 2d materials follows the same principles as in 
1d. 

Let‟s assume that the long axes of the quantum well are aligned with the x and y axes, 
and that the dimensions of the quantum well are Lx × Ly. When we apply periodic 
boundary conditions, the infinite system is periodic on both the x-axis (period Lx) and the 
y-axis (period Ly). 

First, let‟s consider periodicity on the x-axis; see Fig. 2.20. 

barrier

quantum well

barrier

Lx

Ly

Lz

Lx

Fig. 2.20. The quantum well, assuming periodic boundary conditions on the x-axis. 
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Part 2. The Quantum Particle in a Box 

   expx xx ik x  (2.38) 

2
x x

x

k n
L


 (2.39) 

where nx is an integer. 

Similarly, for periodicity on the y-axis: 

On the x-axis the wavefunction is a plane wave. 

Under periodic boundary conditions, only discrete kx values are allowed 

barrier

quantum well

barrier

Lx

Ly

Lz

Fig. 2.21. The quantum well, assuming periodic boundary conditions on the y-axis. 

the wavefunction on the y-axis 
  expy yy ik y    

2
y y

y

k n
L




(2.40) 
is restricted to discrete ky values: 

(2.41) 

where ny is an integer. 

(2.42) 

(2.43) 

where A is the area of the quantum well. 

Thus, in k-space the allowed k-states are spaced regularly, with: 
2 2,x y

x y

k k
L L
 

D  D 

Overall, the area occupied in k-space per k-state is: 
2

2 2 2 4
x y

x y

k k k
L L A
  

D  D D  
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Introduction to Nanoelectronics 

ky

kx
2

xL


2

yL


2 2

x yL L
 

Fig. 2.22. In k-space only certain discrete values are allowed. Each state occupies an 
area of 42/LxLy. 

The 2-d DOS: quantum wells confined in 1-d 

(2.44) 

We showed above that the energy of electrons in a quantum well is 
 2 2 22 2

2
2 , 1,2,...

2 2
x y

z

k k
E n n

mL m
 

  

For the DOS calculation, the specifics of the confining potential are irrelevant; we note 
only that the electron is unconfined in two dimensions. If the quantum well has area 

x yL L then each allowed value of k-space occupies an area of 2 2x yL L  . 

It is convenient to convert to cylindrical coordinates (k,,z) where k is the magnitude of 
the k-vector in the x-y plane. The number of states within a ring of thickness dk is then 

  2

12 2
4sn k dk kdk

A



   (2.45) 

where x yA L L  , and again we have multiplied by two to account for the electron spin. 

Now k is related to the energy by 
2 2

,
2n n

kE E E E
m

   (2.46) 

Thus, from Eq. (2.46), 
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Part 2. The Quantum Particle in a Box 

   2 n
n

Amg E dE u E E dE


  , (2.47) 

where u is the unit step function. The DOS is plotted in Fig. 2.24. 

ky

kx
2

xL


2

yL
 |k|

Fig. 2.23. We calculate the number of k-states within a circle of radius |k|. 
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Fig. 2.24. The density of states for a quantum well (2d). 
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Introduction to Nanoelectronics 

Periodic boundary conditions in 3-d 

In three dimensions, again only discrete values of k are allowed. This time the volume of 
k-space per allowed state is 

3
3 2 2 2 8

x y z
x y z

k k k k
L L L V
   

D  D D D   (2.48) 

where V is the volume of the material. 

kx

kz

ky

2
Lx

2
Lx

2
Lz

2
Lz

2
Ly

2
Ly

Fig. 2.25. In k-space only certain discrete values are allowed. Each state occupies a 
volume of 83/LxLyLz. 

In summary, the k-space occupied per state is 

2k
L


D 

2
2 4k

A


D 

3
3 8k

V


D 3-d

2-d

1-d

3-d

2-d

1-d

Table 2.1. The k-space occupied per state in 1, 2 and 3 dimensions. 
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Part 2. The Quantum Particle in a Box 

The 3-d DOS: bulk materials with no confinement 

In 3-d, there is no electron confinement. The only constraint on kx, ky, or kz are the 

value of k-space occupies a volume of 
periodic boundary conditions. We have just shown that if the system has volume 

x y zL L L  then each allowed 
32 2 2 8x y zL L L V      . 

To determine the number of allowed states, we will integrate over all k-space. It is 
convenient to do this in spherical coordinates. If k is the magnitude of the k vector, the 
number of modes within a spherical shell of thickness dk is then 

  2
3

12 4
8sn k dk k dk

V



   . (2.49) 

where x y zV L L L   x y zV L L L   , and the factor of two accounts for electron spin. 
The unconfined wavefunctions within our 3-d box are plane waves in all directions, i.e. 
the wavefunction could be described by 

  0, , yx zik yik x ik zx y z e e e  (2.50) 
Substituting into the Schrödinger Equation gives 

Which gives 

Rearranging: 

2 2 2 2

2 2 22
d d d E

m dx dy dz
 

 
    

 

 
2

2 2 2

2 x y zk k k E
m

  

kx

ky

kz

k

2
Lx

2
Lx

2
Lz

2
Lz

2
Ly

2
Ly

(2.51) 

(2.52) 

Fig. 2.26. Construction used for calculating the DOS for a 3d system. 
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Introduction to Nanoelectronics 

2 2

2
kE
m



Using Eq. (2.53) to relate E to k gives: 

 

3
2

2 2

2
2
V mg E dE EdE


 
  

 

where g(E) is the density of states per unit energy. 

(2.53) 

(2.54) 

A comparison of the density of states in 1-d, 2-d and 3-d materials is shown in Fig. 2.27. 

Energy

D
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ty
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f s
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s

3d
2d
1d

3d
2d
1d

Fig. 2.27. Normalized densities of states for bulk materials (3d), quantum wells (2d), and 
molecular wires (1d). 
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Part 2. The Quantum Particle in a Box 

Problems 

1. i) Using MATLAB, generate Fig. 2.13. 

ii) If 3
5y xL L  which mode has a lower energy {

04 

nx = 3, ny = 1} or {nx = 2, ny = 2} 

2. The transistor illustrated below has an oxide ( ) thickness d = 1.2nm and 
channel depth Lz = 2.5nm. Considering the channel as a quantum well, how many modes 
are filled when a voltage V=1V is applied to the gate? 

Metal 

Oxide 
Channel 

d=1.2nm 
Lz =2.5nm 

+ 
- V 

Fig. 2.28. A simple model of a modern transistor. 

Hint: calculate the charge in the channel using the expression for a parallel plate 
capacitor. 

3. A particular conductor of length L has the dispersion relation: 

   

   

1

2

5 2 cos

10 2 cos

E k V ka

E k V ka

 

 
, k

a




where V and a are positive constants. 

i) Sketch the dispersion relation. 

ii) Calculate the density of states in terms of E, V, and a. 

4. In general, the degenerate approximation for the electron distribution function f(E,EF) 
works when the density of states is large and slowly varying above and below the Fermi 
level. The non degenerate approximation works best when the density of states at the 
Fermi level is much smaller than the density of states at higher energies. 

Here, we consider these approximations in a Gaussian density of states. The Gaussian 
varies fairly slowly near its center, but it decreases extremely rapidly in its tails. The 
electron population in a Gaussian density of states is given by 

 
 

21
2

2

1 ,
2

E

Fn e f E E dE









  , 
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Introduction to Nanoelectronics 

where f(E,EF) is the Fermi function. For a particular range of the Fermi level, EF, the 
electron population may be approximated as: 

 
21

2
2

1
2

FE
E

n e dE








 

This is the degenerate limit.  

As the Fermi level decreases, the electron population is better calculated in the non-
degenerate limit. Derive the minimum Fermi level EF for the degenerate limit to hold as a 
function of temperature T and standard deviation ζ . 

Hint: estimate the minimum Fermi level by examining the energetic distribution of 
electrons in the non-degenerate limit. 
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Part 3. Two Terminal Quantum Dot Devices 

Part 3. Two Terminal Quantum Dot Devices 

In this part of the class we are going to study electronic devices. We will examine devices 
consisting of a quantum dot or a quantum wire conductor between two contacts. We will 
calculate the current in these „two terminal‟ devices as a function of voltage. Then we 
will add a third terminal, the gate, which is used to independently control the potential of 
the conductor. Then we can create transistors, the building-block of modern electronics. 
We will consider both nanotransistors and conventional transistors. 

We will begin with the simplest case, a quantum dot between two contacts. 

Fig. 3.1. A molecule between two contacts. We will model the molecule as a quantum 
dot. 

Quantum Dot / Single Molecule Conductors 

As we saw in Part 2, a quantum dot is a 0-d conductor; its electrons are confined in all 
dimensions. A good example of a quantum dot is a single molecule that is isolated in 
space. We can approximate our quantum dot or molecule by a square well that confines 
electrons in all dimensions. One consequence of this confinement is that the energy levels 
in the isolated quantum dot or molecule are discrete. Typically, however, the simple 
particle-in-a-box model does not generate sufficiently accurate estimates of the discrete 
energy levels in the dot. Rather, the material in the quantum dot or the structure of the 
molecule defines the actual energy levels. 

Fig. 3.2 shows a typical square well with its energy levels. We will assume that these 
energy levels have already been accurately determined. Each energy level corresponds to 
a different molecular orbital. Energy levels of bound states within the well are measured 
with respect to the Vacuum Energy, typically defined as the potential energy of a free 
electron in a vacuum. Note that if an electric field is present the vacuum energy will vary 
with position. 

Next we add electrons to the molecule. Each energy level takes two electrons, one of 
each spin. The highest occupied molecular orbital (HOMO) and the lowest unoccupied 
molecular orbital (LUMO) are particularly important. In most chemically stable 
materials, the HOMO is completely filled; partly filled HOMOs usually enhance the 
reactivity since they tend to readily accept or donate electrons. 
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Introduction to Nanoelectronics 

Earlier we stated that charge transport occurs only in partly filled states. This is best 
achieved by adding electrons to the LUMO, or subtracting electrons from the HOMO. 
Modifying the electron population in all other states requires much more energy. Hence 
we will ignore all molecular orbitals except for the HOMO and LUMO. 

Fig. 3.2 also defines the Ionization Potential (IP) of a molecule as the binding energy of 
an electron in the HOMO. The binding energy of electrons in the LUMO is defined as the 
Electron Affinity (EA) of the molecule. 

E vacuum energy E

HOMO

LUMOIP

EA

EF

vacuum energy

add electrons

energy 
levels

molecular 
orbitals

Fig. 3.2. A square well approximation of a molecule. Energy levels within the molecule 
are defined relative to the vacuum energy – the energy of a free electron at rest in a 
vacuum. 

Contacts 

There are three essential elements in a current-carrying device: a conductor, and at least 
two contacts to apply a potential across the conductor. By definition the contacts are 
large: each contact contains many more electrons and many more electron states than the 
conductor. For this reason a contact is often called a reservoir. We will assume that all 
electrons in a contact are in equilibrium. The energy required to promote an electron from 
the Fermi level in the contact to the vacuum energy is defined as the work function (F). 

Work 
Function (F)

EF

Contact
E Vacuum energy

manifold
of states

Fig. 3.3. An energy level model of a metallic contact. There are many states filled up 
with electrons to the Fermi energy. The minimum energy required to remove an electron 
from a metal is known as the work function. 
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Part 3. Two Terminal Quantum Dot Devices 

Metals are often employed as contacts, since metals generally possess very large numbers 
of both filled and unfilled states, enabling good conduction properties. Although the 
assumption of equilibrium within the contact cannot be exactly correct if a current flows 
through it, the large population of mobile electrons in the contact ensures that any 
deviations from equilibrium are small and the potential in the contact is approximately 
uniform. For example, consider a large metal contact. Its resistance is very small, and 
consequently any voltage drop in the contact must be relatively small. 

Equilibrium between contacts and the conductor 

In this section we will consider the combination of a molecule and a single contact. 

In the absence of a voltage source, the isolated contact and molecule are at the same 
potential. Thus, their vacuum energies (the potential energy of a free electron) are 
identical in isolation. 

When the contact is connected with the molecule, equilibrium must be established in the 
combined system. To prevent current flow, there must be a uniform Fermi energy in both 
the contact and the molecule. 

But if the Fermi energies are different in the isolated contact and molecules, how is 
equilibrium obtained? 

HOMO

LUMO
Work 
Function (F)

EF

EF

Contact Molecule

Vacuum energy
Electron 

Affinity
(EA)

Ionization 
Potential (IP)

E

Fig. 3.4. The energy lineup of an isolated contact and an isolated molecule. If there is no 
voltage source in the system, the energy of a free electron is identical at the contact and 
molecule locations. Thus, the vacuum energies align. The Fermi energies may not, 
however. But at equilibrium, the Fermi energies are forced into alignment by charge 
transfer. 
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Introduction to Nanoelectronics 

Since Fermi levels change with the addition or subtraction of charge, equilibrium is 
obtained by charge transfer between the contact and the molecule. Charge transfer 
changes the potential of the contact relative to the molecule, shifting the relative vacuum 
energies. This is known as „charging‟. Charge transfer also affects the Fermi levels as 
electrons fill some states and empty out of others. Both charging and state filling effects 
can be modeled by capacitors.  We‟ll consider electron state filling first. 

(i) The Quantum Capacitance 

Under equilibrium conditions, the Fermi energy must be constant in the metal and the 
molecule. We can draw an analogy to flow between water tanks. The metal is like a very 
large tank. The molecule, with its much smaller density of states, behaves as a narrow 
column. When the metal and molecule are connected, water flows to align the filling 
levels. 

„metal‟ „molecule‟ „metal‟ „molecule‟

(a) non-equilibrium (b) equilibrium

„density of 
states‟

„density of 
states‟

„Fermi 
level‟

„Fermi 
level‟

Water tank Water tank

Fig. 3.5. An analogy for electron transfer at the interface between a metal and a 
molecule. The size of the water tank is equivalent to the density of states. The Fermi 
level is equivalent to the water level. If the „metal‟ has a sufficiently large density of 
states, then the change in its water level is imperceptible. 

But a molecule will not necessarily have a uniform density of states as shown in Fig. 3.5. 
It is also possible that only a fractional amount of charge will be transferred. For 
example, imagine that some fractional quantity n electrons are transferred from the 
contact to the molecule. It is possible for the wavefunction of the transferred electron to 
include both the contact and the molecule. Since part of the shared wavefunction resides 
on the molecule, this is equivalent to a fractional charge transfer. 

But if n were equal to +1, the LUMO would be half full and hence the Fermi energy 
would lie on the LUMO, while if n were -1, the HOMO would be half full and hence the 
Fermi energy would lie on the HOMO. In general, the number of charges on the molecule 
is given by 
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Part 3. Two Terminal Quantum Dot Devices 

   , Fn g E f E E dE




  (3.1) 

where g(E) is the density of molecular states per unit energy. For small shifts in the Fermi 
energy, we can linearize Eq. (3.1) to determine the effect of charge transfer on EF. We are 
interested in the quantity dEF/dn. For degenerate systems we can simplify Eq. (3.1): 

(3.2) 

taking the derivative with respect to the Fermi energy gives: 

(3.3) 

 
FE

n g E dE


 

 F
F

dn g E
dE



 
F

F

nE
g E


 

We can re-arrange this to get: 

(3.4) 

Thus after charge transfer the Fermi energy within the molecule changes by n/g, where 
g is the density of states per unit energy. 

Sometimes it is convenient to model the effect of filling the density of states by the 
„quantum capacitance‟ which we will define as: 

i.e. 
 2

Q FC q g E

2

F
Q

qE n
C

 

(3.5) 

(3.6) 

If the molecule has a large density of states at the Fermi level, its quantum capacitance is 
large, and more charge must be transferred to shift the Fermi level. 

EF n/g(EF)
n

E

Density of states [g(E)]

Fig. 3.6. Transferring charge changes the Fermi level in a conductor. The magnitude of 
the change is determined by the density of states at the Fermi level, and often 
expressed in terms of a „quantum capacitance‟. 

We can also calculate the quantum capacitance of the contact. Metallic contacts contain a 
large density of states at the Fermi level, meaning that a very large number of electrons 
must be transferred to shift its Fermi level. Thus, we say that the Fermi energy of the 
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Introduction to Nanoelectronics 

contact is „pinned‟ by the density of states. Another way to express this is that the 
quantum capacitance of the contact is approximately infinite. 

The quantum capacitance can be employed in an equivalent circuit for the metal-
molecule junction. But we have generalized the circuit such that each node potential is 
the Fermi level, not just the electrostatic potential as in a conventional electrical circuit. 

In the circuit below, the metal is modeled by a voltage source equal to the chemical 
potential 1 of the metal. Prior to contact, the Fermi level of the molecule is EF 

0. The 
contact itself is modeled by a resistor that allows current to flow when the Fermi levels 
on either side of the contact are misaligned. Charge flowing from the metal to the 
molecule develops a potential across the quantum capacitance. But note that this is a 
change in the Fermi level, not an electrostatic potential. It is also important to note that 
the quantum capacitance usually depends on the Fermi level in the molecule. The only 
exception is if the density of states is constant as a function of energy. Thus, a constant 
value of CQ can only be employed for small deviations between 1 and EF 

0. 

+
-

+
-1 EF

0

EF

CQ

R
Metal Molecule

Fig. 3.7. A small signal model for the metal-molecule junction. The effects of charging 
are not included. The resistor will be characterized further in later sections. 
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Part 3. Two Terminal Quantum Dot Devices 

(ii) Electrostatic Capacitance 

Unfortunately, the establishment of equilibrium between a contact and the molecule is 
not as simply as water flow between two tanks. Electrons, unlike water, are charged. 
Thus, the transfer of electrons from the contact to a molecule leaves a net positive charge 
on the contact and a net negative charge on the molecule. 

Charging at the interface changes the potential of the molecule relative to the metal and is 
equivalent to shifting the entire water tanks up and down. Charging assists the 
establishment of equilibrium and it reduces the number of electrons that are transferred 
after contact is made. 

„metal‟

„molecule‟(b) Equilibrium with charging

„density of 
states‟

„Fermi 
level‟

Water tank

„metal‟ „molecule‟

(a) non-equilibrium

„density of 
states‟

„Fermi 
level‟

Water tank

-----

+++++

Fig. 3.8. Electrons carry charge and shift the potential when they are transferred 
between a metal and a molecule. The resulting change in potential is equivalent to lifting 
up the „molecule‟ column of water. The water levels must ultimately match, but now less 
water is required to be transferred. 

The contact and the molecule can be considered as the two plates of a capacitor. In Fig. 
3.9 we label this capacitor, CES - the electrostatic capacitance, to distinguish it from the 
quantum capacitance discussed in the previous section. 

When charge is transferred at the interface, the capacitor is charged, a voltage is 
established and the molecule changes potential. The change in the molecule‟s potential 
per electron transferred is known as the charging energy and is reflected in a shift in the 
vacuum energy. From the fundamental relation for a capacitor: 

ES
QC
V

 (3.7) 

where V is the voltage across the capacitor. We can calculate the change in potential due 
to charging: 

2

C
ES

qU qV n
C

  . (3.8) 
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Introduction to Nanoelectronics 

CES

CES

Contact Molecule Contact Molecule

+-VC

+-VC

+Q-Q

V=VC+Q/CES

+Q

Fig. 3.9. A contact and a molecule can be modeled as two plates of a parallel capacitor. 
When charge is transferred, this electrostatic capacitance determines the change in 
electrostatic potential, and hence the shift in the vacuum energy. 

We will find that n is a dynamic quantity – it changes with current flow. It can be very 
important in nanodevices because the electrostatic capacitance is so small. For the small 
spacings between contact and conductor typical of nanoelectronics (e.g. 1 nm), the 
charging energy can be on the order of 1V per electron. 

Summarizing these effects, we find that the Fermi energy of the neutral molecule, 0
FE , is 

related to the Fermi energy of the metal-molecule combination, EF, by 
2

0
F F

ES

qE n g n E
C

    (3.9) 

+
-1

EF
0

EF

CQ

R
Metal Molecule

CES

+
-

Fig. 3.10. A small signal model for the metal-molecule junction, including the effects of 
charging. The resistor will be characterized further in later sections. 
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Part 3. Two Terminal Quantum Dot Devices 

Or, in terms of the quantum capacitance: 
2 2

0
F F

Q ES

q qE n n E
C C

    (3.10) 

EF

HOMO

LUMO

EF
0

n/g =

F

vacuum energy

n
IPEA

contact

molecule

q2n
CES

q2n
CES

q2n
CES

q2n
CES

q2n
CQ

q2n
CQ

Fig. 3.11. Changes in energy level alignment when charge is transferred from the metal 
to a molecule. Charging of the molecule corresponds to applying a voltage across an 
interfacial capacitor, thereby changing the potential of the molecule. Consequently, the 
vacuum level shifts at the molecule‟s location, shifting all the molecular states along with 
it. In addition, the transferred charge fills some previous empty states in the molecule. 
Both effects change the Fermi energy in the molecule. 

Calculation of the electrostatic capacitance 

(i) Isolated point conductors 

For small conductors like single molecules or quantum dots, it is sometimes convenient 
to calculate CES by assuming that the conductor is a sphere of radius R. From Gauss‟s 
law, the potential at a point with radius r 

4
QV

r


from the center of the sphere is: 

(3.11) 

where r > R,  is the dielectric constant and Q is the net charge on the sphere. 
potential at infinity to be zero, then the potential of the sphere is 

and the capacitance is 
If we take the 

4V Q R
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Introduction to Nanoelectronics 

(3.12) 4ES
QC R
V

 

The notable aspect of Eq. (3.12) is that the electrostatic capacitance scales with the size 
of the conductor. Consequently, the charging energy of a small conductor can be very 
large. For example, Eq. (3.12) predicts that the capacitance of a sphere with a radius of 
R = 1nm is approximately CES = 10-19 F. The charging energy is then UC = 1.6eV per 
charge. 

(ii) Conductors positioned between source and drain electrodes 

In general, the potential profile for an arbitrary distribution of charges must be calculated 
using Gauss‟s law. But we can often make some approximations. The source and drain 
contacts can sometimes be modeled as a parallel plate capacitor with 

AC
d


 (3.13) 

where A is the area of each contact and d is their separation. This approximation is 
equivalent to assuming a uniform electric field between the source and drain electrodes. 
This is valid if A >> d and there is no net charge between the contacts. For source and 
drain electrodes separated by a distance l, the source and drain capacitances at a distance 
z from the source are: 

   ,S D
A AC z C z
z l z
 

 


. (3.14) 

The potential varies linearly as expected for a uniform electric field. 

. (3.15)  
 

   

1
1 1

S
DS DS

D S

C z zU z qV qV
C z C z l

   


r

R

V = 0 at 
r → ∞

(a)

r

(b)

S D

U

zl0

+Q
+Q-Q

Fig. 3.12. (a) The capacitance of an isolated 0-d conductor is calculated by assuming 
the potential at infinity is zero. (b) A uniform electric field between the source and drain 
yields a linearly varying potential. The source and drain capacitors can be modeled by 
parallel plates. 
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Part 3. Two Terminal Quantum Dot Devices 

Current Flow in Two Terminal Quantum Dot/Single Molecule Devices 

In this section we present a simplified model for conduction through a molecule. It is 
based on the „toy model‟ of Datta, et al. † which despite its relative simplicity describes 
many of the essential features of single molecule current-voltage characteristics. 

The contact/molecule/contact system at equilibrium is shown in Fig. 3.13. At 
equilibrium, 1 = EF = 2. Since there are two contacts, this is an example of a two 
terminal device. In keeping with convention, we will label the electron injecting contact, 
the source, and the electron accepting contact, the drain. We will model the molecule by a 
quantum dot. This is accurate if the center of the molecule is much more conductive than 
its connections to the contacts. 

.

.

HOMO

LUMO

.

.

EFS D

+-

V=0

+-
V=0

source drain

molecule
source drain

molecule

Fig. 3.13. A two terminal device with a molecular/quantum dot conductor. At equilibrium 
no current flows and the Fermi levels are aligned. 

Now, when we apply a potential between the source and drain contacts we shift Fermi 
level of one contact with respect to the other, i.e. 

D S DSqV    (3.16) 

There are two effects on the molecule: 
(i) The electrostatic effect: the potential at the molecule is changed by the electric field 
established between the contacts. The energy levels within the molecule move rigidly up 
or down relative to the contacts. 
(ii) The charging effect: Out of equilibrium, a current will flow and the amount of charge 
on the molecule changes. It may increase if current flows through the LUMO, or decrease 
if current flows through the HOMO. 

† S. Datta, „Quantum transport: atom to transistor‟ Cambridge University Press (2005). 
F. Zahid, M. Paulsson, and S. Datta, „Electrical conduction in molecules‟. In Advanced Semiconductors 
and Organic Nanotechniques, ed. H. Korkoc. Academic Press (2003). 
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Introduction to Nanoelectronics 

Unfortunately, these effects are linked: moving the molecular energy levels with respect 
to the contact energy levels changes the amount of charge supplied to the molecule by the 
contacts. But the charging energy associated with charge transfer in turn changes the 
potential of the molecule. 

We will first consider static and charging effects independently. 

(i) Electrostatics: The Capacitive Divider Model of Potential 
Our two terminal device can be modeled by a quantum dot linked to the source and drain 
contacts by two capacitors, CS and CD, respectively. The values of these capacitors 
depend on the geometry of the device. If the molecule is equi-spaced between the 
contacts we might expect that CS ~ CD. On the other hand, if the molecule is closely 
attached to the source but far from the drain, we might expect CS >> CD. (Recall that the 
capacitance of a simple parallel plate capacitor is inversely proportional to the spacing 
between the plates.) 

S

D

-qV

S S

+-
V

= 0.5

-qV

+-

S CH3

V

= 0

(a) (b)

+-

V

CS CD

source drain

molecule

source drain

molecule

CS ~ CD CS >> CD

+-

V

CS CD

S

D

Fig. 3.14. Two single molecule two terminal devices accompanied by possible potential 
profiles in the molecular conductor. (a) symmetric contacts, (b) asymmetric contacts. We 
are concerned with the voltage in the center of the molecule. This is determined by the 
voltage division factor, . It can be obtained by from a voltage divider constructed from 
capacitors. Adapted from F. Zahid, M. Paulsson, and S. Datta, „Electrical conduction in 
molecules‟. In Advanced Semiconductors and Organic Nanotechniques, ed. H. Korkoc. 
Academic Press (2003). 
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Part 3. Two Terminal Quantum Dot Devices 

These two potential profiles are shown in Fig. 3.14. The voltage is calculated from the 
capacitive divider. Thus, an applied voltage, V, shifts the chemical potentials of both the 
source and drain contacts:† 

1
1 1

S
F DS S

D S

CE qV
C C

  


(3.17) 

It is convenient to use the Fermi energy of the molecule at equilibrium as a reference, i.e. 
if we set EF = 0: 

D
S DS

S D

S
D DS

S D

C qV
C C

C qV
C C





 


 


. (3.18) 

We can define a voltage division factor, . † It gives the fraction of the applied bias that is 

(3.19) 

dropped between the molecule and the source contact, i.e. 
D

S D

C
C C

 


As shown in Fig. 3.15, the voltage division factor determines in part whether conduction 
occurs through the HOMO or the LUMO. If  = 0, then the molecular energy levels are 
fixed with respect to the source contact. As the potential of the drain is increased, 
conduction eventually occurs through the HOMO. But if the potential of the drain is 
decreased, conduction can occur through the LUMO. The current-voltage characteristic 
of this device will exhibit a gap around zero bias that corresponds to the HOMO-LUMO 

†gap. 

If  = 0.5, however, then irrespective of whether the bias is positive or negative, current 
always flows through the molecular energy level closest to the Fermi energy. In this 
situation, which is believed to correspond to most single molecule measurements,1 the 
gap around zero bias is not the HOMO-LUMO gap, but, in this example, four times the 
Fermi energy – HOMO separation.§ 

The voltage division factor is a crude model of the potential profile, which more 
generally could be obtained from Poisson‟s equation.  is also likely to vary with bias. At 
high biases, there may be significant charge redistribution within the molecule, leading to 
a change in . † 

† F. Zahid, M. Paulsson, and S. Datta, „Electrical conduction in molecules‟. In Advanced Semiconductors 
and Organic Nanotechniques, ed. H. Korkoc. Academic Press (2003). 
§ It is possible to experimentally distinguish between  = 0.5 and  = 0 by choosing contact metals with 
different work functions. If the conductance gap is observed to change then it cannot be determined by the 
HOMO-LUMO gap, and hence  ≠ 0 
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Introduction to Nanoelectronics 

 = 0: 
Molecular levels are fixed with respect to the source.

HOMO

LUMO

EFS

D

V

qVL

+-

0

0

C
ur

re
nt

Voltage

Conductance gap

VHVL

HOMO

LUMO

EF
S

D

+-

V

qVH

moleculemolecule

V < 0 V > 0

Fig. 3.15. The voltage division factor is crucial in determining the conduction level in a 
single molecule device. In this example, when  = 0, conduction always occurs through 
the HOMO when the applied bias is positive, and through the LUMO when the applied 
bias is negative. The conductance gap is determined by the HOMO-LUMO separation. 
Adapted from F. Zahid, M. Paulsson, and S. Datta, „Electrical conduction in molecules‟. 
In Advanced Semiconductors and Organic Nanotechniques, ed. H. Korkoc. Academic 
Press (2003). 

 = 0.5: Molecular levels shift with respect to the 
source by half the applied bias

0

0

C
ur

re
nt

Voltage

Conductance gap

2VH-2VH

V < 0 V > 0

HOMO

LUMO

EF

S

D

V

qVL

+-
molecule

qVH
HOMO

LUMO

EF

D

S

V

qVL

+ -
molecule

qVH

Fig. 3.16. When  = 0.5, conduction always occurs through the molecular orbital closet 
to the Fermi Energy. In this example that is the HOMO, irrespective of the polarity of the 
applied bias. Adapted from F. Zahid, M. Paulsson, and S. Datta, „Electrical conduction in 
molecules‟. In Advanced Semiconductors and Organic Nanotechniques, ed. H. Korkoc. 
Academic Press (2003). 
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Part 3. Two Terminal Quantum Dot Devices 

(ii) Charging 

Previously, we defined the charging energy as the change in the molecule‟s potential per 
additional electron. To calculate the net effect of charging we need the number of 
electrons transferred. 

At equilibrium, the number of electrons on the molecule is determined by its Fermi 
energy. 

   0 , FN g E f E E dE




  (3.20) 

Under bias, the electron distribution on the molecule is no longer in equilibrium. We will 
define the number of electrons under bias as N. 

Thus, the change in potential at the molecule due to charging is 

 
2

0C
ES

qU N N
C

  (3.21) 

EF

HOMO

LUMO

EF

Molecule 
before
charge
transfer

IP

0

Molecule 
after

charge
transfer

EA

vacuum energy

n

q2n
CES

q2n
CES

q2n
CES

q2n
CES

n/g = q2n
CQ

n/g = q2n
CQ

q2n
CQ

Fig. 3.17. The effect of charging on a molecule. The addition of electrons shifts the 
molecular potential (and hence all orbitals within the molecule) in order to repel the 
addition of more electrons. Note that although we have shown the expected change in 
the Fermi level, this is only meaningful if the molecule remains in equilibrium. Adapted 
from F. Zahid, M. Paulsson, and S. Datta, „Electrical conduction in molecules‟. In 
Advanced Semiconductors and Organic Nanotechniques, ed. H. Korkoc. Academic 
Press (2003). 
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Introduction to Nanoelectronics 

Summary 

The net change in potential at the molecule, U, is the sum of electrostatic and charging 
effects: 

ES CU U U  (3.22) 
By applying the source-drain voltage relative to a ground at the molecule we have forced 
UES = 0 in Fig. 3.16. But it will not always be possible to ignore electrostatic effects on U 
if the ground is positioned elsewhere. Analyses of transistors, for example, typically 
define the source to be ground. 

We model the effect of the change in potential by rigidly shifting all the energy levels 
within the molecule, i.e. 

 g g E U  (3.23) 

Calculation of Current 

Let‟s model the net current at each contact/molecule interface as the sum of two 
components: the contact current, which is the current that flows into the molecule, and 
the molecule current, which is the current that flows out of the molecule. 


Contact

.

.

Filled to  N electrons

Contact 
current

.

.

Molecule

Molecule 
current

Fig. 3.18. The net current at a contact/molecule interface can be broken into a contact 
current – the current that flows out of the contact - and a molecule current – the current 
that flows out of the molecule. At equilibrium, these currents must balance. 
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Part 3. Two Terminal Quantum Dot Devices 

(i) The contact current 

This current is the number of available states in the molecule filled per second. Electrons 
in the contact are filled to its chemical potential. They cannot jump into higher energy 
states in the molecule. The total number of electrons that can be transferred is simply 
equal to the number of states. 

At the source contact, we get 

   ,S SN g E U f E dE




  (3.24) 

where g(E-U) is the molecular density of states shifted by the net potential change. 
Similarly, if at the drain contact then the number of electrons, ND, that could be 
transferred level is 

   ,D DN g E U f E dE




  (3.25) 

Let‟s define the transfer rate at the source and drain contacts as 1/S and 1/D, 
respectively. Then the contact currents are 

,C CS D
S D

S D

N NI q I q
 

   (3.26) 

Note that we have defined electron flow out of the source and into the drain as positive. 

.

.


Contact Molecule

Filled to  N1 empty 
states 

below 



.

.

Fig. 3.19. The contact current is the rate of charge transfer from the contact to the 
molecule. Only states in the molecule with energies below the chemical potential of the 
contact may be filled. The transfer rate of a single electron from the contact is 1/S. 
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Introduction to Nanoelectronics 

(ii) The molecule current 

Now, if we add electrons to the molecule, these electrons can flow back into the contact, 
creating a current opposing the contact current. The molecule current is the number of 
electrons transferred from the molecule to the contact per second. 

(3.27) 

Thus, the molecule currents into the source and drain contacts are 

,M M
S D

S D

N NI q I q
 

  

where we have again defined electron flow out of the source and into the drain as 
positive. 

.

.

N electronsManifold 
of empty 

states

.

.
.
.

.

.

Contact Molecule



Fig. 3.20. The molecule current is the rate of charge transfer from the molecule to the 
contact. Note that the electrons on the molecule are not necessarily in equilibrium. The 
lifetime of a single electron on the molecule is . 

From Eqns. (3.26) and (3.27) the net current at the source contact is 

 S S
S

qI N N


  (3.28) 

and the net current at the drain contact is 

 D D
D

qI N N


  (3.29) 

Note that we have assumed that the transfer rates in and out of each contact are identical. 
For example, let‟s define S 

M as the lifetime of an electron in the molecule and 1/S 
C as 

the rate of electron transfer from the source contact. It is perhaps not obvious that 
S 

M = S 
C, but examination of the inflow and outflow currents at equilibrium confirms that 

it must be so. When the source-molecule junction is at equilibrium, no current flows. 
From Eqns. (3.20), (3.21) and (3.24), we have NS = N. Thus, for IS = 0 we must have 

M C1 = 1 . 
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Part 3. Two Terminal Quantum Dot Devices 

Equating the currents in Eqns. (3.28) and (3.29) gives† 

      
1 , ,S D

S D

I q g E U f E f E dE 
 





  
 (3.30) 

and 

 
   , ,D S S D

S D

f E f E
N g E U dE

   

 






 

 (3.31) 

The difficulty in evaluating the current is that it depends on U and hence N. But Eq. 
(3.31) is not a closed form solution for N, since the right hand side also contains a N 
dependence via U. Except in simple cases, this means we must iteratively solve for N, 
and then use the solution to get I. This will be discussed in greater detail in the problems 
accompanying this Part. 

 
   , ,D S S D

S D

f E f E
N g E U dE

   

 






 



 
2

0
ES

qU N N
C

 

Guess U

Calculate N

Calculate U

Converged?

Calculate I

      
1 , ,S D

S D

I q g E U f E f E dE 
 





  


Yes

No

Fig. 3.21. A flow diagram describing an iterative solution to the IV characteristics of two 
terminal molecular devices. Adapted from F. Zahid, M. Paulsson, and S. Datta, 
„Electrical conduction in molecules‟. In Advanced Semiconductors and Organic 
Nanotechniques, ed. H. Korkoc. Academic Press (2003). 

† F. Zahid, M. Paulsson, and S. Datta, „Electrical conduction in molecules‟. In Advanced Semiconductors 
and Organic Nanotechniques, ed. H. Korkoc. Academic Press (2003). 
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Introduction to Nanoelectronics 

Analytic calculations of the effects of charging 

The most accurate method to determine the IV characteristics of a quantum dot device is 
to solve for the potential and the charge density following the scheme of Fig. 3.21. This is 
often known as the self consistent approach since the calculation concludes when the 
initial guess for the potential U has been modified such that it is consistent with the value 
of U calculated from the charge density. 

Unfortunately, numerical approaches can obscure the physics. In this section we will 
make some approximations to allow an analytic calculation of charging. We will assume 
operation at T = 0K, and discrete molecular 

  0G   . 
energy levels, i.e. weak coupling between the 

molecule and the contacts such that 

Let‟s consider a LUMO state with energy ELUMO that is above the equilibrium Fermi 
level. Under bias, the energy of the LUMO is altered by electrostatic and charging-
induced changes in potential. When we apply the drain source potential, it is convenient 
to assume that the molecule is ground. Under this convention, the only change in the 
molecule‟s potential is due to charging. Graphically, the physics can be represented by 
plotting the energy level of the molecule in the presence and absence of charging. In Fig. 
3.22, below, we shade the region between the charged and uncharged LUMOs. Now 

 
2

0C
ES

qU N N
C

  , (3.32) 

and at T = 0K, N0 = 0 for the LUMO in Fig. 3.22. Thus, the area of the shaded region is 
proportional to the charge on the molecule. 

S D

No charging Charging

S

D

ELUMO

UC
max

qVDS

qVDS = 0

ELUMO
0ELUMO

0

qVDS >> 0

Fig. 3.22. Under bias, the energy levels of the molecule can be shifted by electrostatic 
and charging-induced changes in the potential. If we assume the molecule is ground, 
then the electrostatic changes in potential alter the source and the drain. Only charging 
then alters the molecular energy level. The difference between the charged and 
uncharged molecular energy levels is proportional to the charge on the molecule and is 
shaded red. 
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Part 3. Two Terminal Quantum Dot Devices 

The graphical approach is a useful guide to the behavior of the device. There are three 
regions of operation, each shown below. 

S D

ELUMO

S

D

ELUMO

UC

S

D

ELUMO

UC
max

S

D

ELUMO

S

D

ELUMO

UC
max

No 
charging

Variable 
charging

Maximum 
charging

Tr
an

si
tio

n
Tr

an
si

tio
n

  max
DS ON CV V U q 

DS ONV V

Fig. 3.23. The three regions of operation for a two terminal quantum dot device with 
discrete energy levels at T = 0K. Current flow requires the source to inject carriers into 
the molecular energy levels. The onset of current flow occurs when the chemical 
potential of the source is resonant with the LUMO. Additional drain-source bias charges 
the molecule, and the current increases linearly with the molecular charge. Finally, a 
maximum charge density is reached. Further increases in applied bias do not increase 
the charging energy or the current flow. 

(i) No charging 
At T = 0K and VDS = 0 there is no charge in the LUMO. Charging cannot occur unless 
electrons can be injected from the source into the LUMO. So as VDS increases, charging 
remains negligible until the LUMO energy is aligned with the chemical potential of the 
source. Thus, for S < ELUMO the charging energy, UC = 0. 
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Introduction to Nanoelectronics 

In this region, IDS = 0. We define the bias at which current begins to flow as VDS = VON. 
VON is given by 

(3.33) 

where 0
LUMOE is the LUMO energy level at equilibrium. 

0
LUMO S

ON
EV

q







(ii) Maximum charging 
For S > ELUMO, the charge on the LUMO is independent of further increases in VDS. It is 

(3.34) 

Consequently, the charging energy is 

(3.35) 

For all operation in forward bias, it is convenient to calculate the current from Eq. (3.29). 
At T = 0K, the charges injected by the drain ND = 0. Consequently, 

22max D
C

ES S D

qU
C



 




2max

DS
D S D

qN qI
  

 


(3.36) 

Maximum charging occurs for voltages S > ELUMO. We can rewrite this condition as 
(3.37) 

(iii) Variable charging 
Charging energies between 

  max
DS ON CV V U q 

0 max
C CU U  require that S = ELUMO. Assuming that the 

molecule is taken as the electrostatic ground, then S = ELUMO = UC for this region of 

(3.38) 

(3.39) 

Then, from Eqs. (3.18) and (3.19) and noting that 

 ES
DS DS ON

D

CI V V


  . 

S = ELUMO = UC, 

(3.40) 

This region is valid for voltages 
. (3.41)  0 max

DS ON CV V U q  

The full IV characteristic is shown below. Under our assumptions 
  0G  

the transitions between 
the three regions of operation are sharp. For T > 0K and these transitions 
are blurred and are best calculated numerically; see the Problem Set. 

a maximum. From Eq. (3.31), the LUMO‟s maximum charge is 
2max D

S D

N 

 




operation. Calculating the current from Eq. (3.29) gives 

DS
D

qNI




Then, given that 2
C ESU q N C , we can rearrange Eq. (3.38) to get 

ES C
DS

D

C UI
q


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Part 3. Two Terminal Quantum Dot Devices 
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Fig. 3.24. (a) An example of a single molecule device subject to strong charging effects. 
The coupling between the molecule and the contacts is small relative to the applied 
voltage, i.e. GS/q = GD/q = 1mV. The source and drain capacitances yield a large charging 
potential per electron q2/CES = 0.8 eV. The voltage division factor is  = 0.5. (b) The offset 
between the LUMO and the contact work functions is 0.3 eV, consequently, 
VON = 0.3/ = 0.6V (c) The current-voltage characteristic. 
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Introduction to Nanoelectronics 

A small signal circuit model 

In the discussion of the establishment of equilibrium between a contact and a molecule 
we introduced a generalized circuit model where each node potential is the Fermi level, 
not the electrostatic potential as in a conventional electrical circuit. 

We can extend the model to two terminal, and even three terminal devices. It must be 
emphasized, however, that the model is only valid for small signals. In particular, the 
model is constrained to small VDS. We assume that the density of states is constant and 
the modulation in VDS must be smaller than kT/q so that we can ignore the tails of the 
Fermi distribution. 

(3.42) 

Let‟s consider current injected by the source 

 S S
S

qI N N


 

This can be rewritten as 

      , ,S S F
S

qI g E U f E f E E dE






  

For small differences between the source and drain potentials, and at T = 0K, we get 
 Q S F

S
S

C E
I

q







(3.43) 

(3.44) 

Thus, each contact/molecule interface is Ohmic in the small signal limit. Defining 
RS = S/CQ, and RD = D/CQ.We can model the contact/molecule/contact as shown in Fig. 
3.25. 

+
-S

EF
0+U

EF

(CQ
-1+CES

-1)-1

RS

Metal Molecule

+
-

+
- D

RD

Metal

Fig. 3.25. A small signal model for two terminal metal/molecule/metal circuits. Note that 
the potential U must be determined separately (e.g. by using a capacitive divider circuit). 
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Part 3. Two Terminal Quantum Dot Devices 

The Ideal Contact Limit† 

Interfaces between molecules and contacts vary widely in quality. Much depends on how 
close we can bring the molecule to the contact surface. Here, we have modeled the source 
and drain interfaces with the parameters S and D. If electron injection is unencumbered 
by barriers or defects then these lifetimes will be very short. We might expect that the 
current should increase indefinitely as the injection rates decrease. But in fact we find a 
limit – known as the quantum limit of conductance. We will examine this limit rigorously 
in the next section but for the moment, we will demonstrate that it also holds in this 
system. 

We model ideal contacts by considering the current under the limit that 
Note that the uncertainty principle requires that the uncertainty in energy must increase if 
the lifetime of an electron on the molecule decreases. Thus, the density of states must 
change as the lifetime of an electron on a molecule changes. 

0S D   . 

Let‟s assume that the energy level in the isolated molecule is discrete. In Part 2, we found 
a Lorentzian density of states for a single molecular orbital with net decay rate 1 1

S D   : 

 
 

   
2 2

0

2 22
2 2

S D

S D

g E U dE dE
E U E

 

  


 

   
(3.45) 

If we take the limit, we find that the molecular density of states is uniform in energy: 

 
8 1lim 0

1 1S D
S D

g E U dE dE
h

 
 

   


(3.46) 

Substituting into Eq. (3.30) for S = D gives 

At T = 0K, 

   
2 , ,S D

qI f E f E dE
h

 




 

   ,f E u E  

(3.47) 

(3.48) 
where u is the unit step function, and the integral in Eq. (3.47) gives 

(3.49)  
2

S D
qI
h

  

Note  DS D SqV     , thus the conductance through a single molecular orbital is 
22qG

h
 (3.50) 

The equivalent resistance is G-1= 12.9 kΩ. Thus, even for ideal contacts, this structure is 
resistive. We will see this expression again in the next section. It is the famous quantum 
limited conductance. 

† This derivation of the quantum limit of conductance is due to S. Datta, „Quantum transport: atom to 
transistor‟ Cambridge University Press (2005). 
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Introduction to Nanoelectronics 

Problems 

1. (a) A 1nm × 1nm molecule is 30Å away from a metal contact. Calculate the 
electrostatic capacitance using the parallel plate model of the capacitor. Find the change 
in potential per charge added to the molecule, UES/δn. 

(b) A 50nm × 50nm molecule is 30Å away from a metal contact. Calculate the 
electrostatic capacitance using the parallel plate model of the capacitor. Find the change 
in potential per charge added to the molecule, UES/δn. 

(c) A 100nm × 100nm molecule is 30Å away from a metal contact. Calculate the 
electrostatic capacitance using the parallel plate model of the capacitor. Find the change 
in potential per charge added to the molecule, UES/δn. 

2.(a) Assume the molecule in problem 1(a) has a uniform density of states of g(E) = 
3×10 20/eV and Fermi level at 0

FE = -5.7eV in isolated space. The metal has a work 
function of 5eV. Sketch all of the energy levels in equilibrium after the metal contact 
and molecule are brought into contact. Find the number of charges, n, transferred from 
the molecule to the metal (or vice versa.). 

 

contact 
molecule 

0 5 7FE eV  .
FE

Φ=5eV 

vacuum energy

Fig. 3.26. A separated contact and molecule. The molecule has a uniform density of 
states. 

(b) Repeat part (a) for the molecule in problem 1(b) using the same density of states and 
Fermi levels. 

(c) Repeat part (a) for the molecule in problem 1(c) using the same density of states and 
Fermi levels. 
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Part 3. Two Terminal Quantum Dot Devices 

3. Consider the molecule illustrated below with EA = 2eV, IP = 5eV, and 0
FE = 3.5eV. 

 

Vacuum energy 

LUMO 

HOMO 

molecule 

EA IP 

 
0
FE

Fig. 3.27. Energy levels within a molecule. 

(a) What is CQ when the electron lifetime is 1 1ps fs , , ? 

(b) 
0 1n  .

For each of the lifetimes in part (a), what is the equilibrium Fermi level when 
charge is added to the molecule. 

(c) What is the equilibrium Fermi level when 1 1HOMO LUMOps and ps  . ? 

4. A quantum well is brought into contact with a metal electrode as shown in the figure 
below. 

Fig. 3.28. The quantum well in contact with a metal surface. 

(a) Calculate the DOS in the well between 0 and 2eV assuming an infinite confining 
potential and that the potential inside the well is zero. 

Continued…. 
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Introduction to Nanoelectronics 

(b) On contact charge can flow between the metal and the quantum well. But assume that 
on contact the well is still separated from the metal by a 0.1nm thick layer with dielectric 
constant 5×8.84×10-12 F/m. Calculate the surface charge density at equilibrium, for an 
initial separation of (i) 0.6eV and (ii) -0.6eV, between the quantum well EF and the 
chemical potential of the metal. Assume T=0. 

Fig. 3.29. Two different energetic alignments between the quantum well and the metal. 

(c) Plot the vacuum energy shift at each interface at equilibrium, for part b (i) and (ii), 
above. 

The next question is adapted from an example in „Introductory Applied Quantum and 
Statistical Mechanics‟ by Hagelstein, Senturia and Orlando, Wiley Interscience 2004. 

5. In this problem we consider charge injection from a discrete energy level rather than a 
metal. Consider charge transport through a quantum dot buried within an insulator. The 
materials are GaAs|GaAlAs|GaAs|GaAlAs|GaAs with thicknesses 
1000Å|40Å|100Å|40Å|1000Å. The potential landscape of this device is modeled as below 
with V0=0.3 eV, b=50Å, and a=90Å. Let the effective mass of an electron in GaAs and 
GaAlAs be 0.07me, where me is the mass of an electron. 

0V

a

 V x

x
0 ba b

GaAlAs GaAlAsGaAs GaAsGaAs

1 2 3 4 5

Fig. 3.30. The energy levels for a 
quantum dot buried within a 
tunnel barrier. 
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Part 3. Two Terminal Quantum Dot Devices 

Considering only energies below V0, the wavefunction is piecewise continuous with 

, where 2mEk  and  02m V E





(a) Match the boundary conditions and find M such that MC A , where 

B
C
D
F

C
G
H
I
J

 
 
 
 
 
 


 
 
 
 
 
 
 

and 

0
0
0
0
0
0

ika

ika

e
ike

A





 
 
 
 
 
 

  
 
 
 
 
 
 

(b) The transmission coefficient is  
22 8T J C  , where 

1

C M A


 . Determine T 

numerically or otherwise. It is plotted below as a function of electron energy, E. Verify 
that the resonant energies where T = 1 are within a factor of two of the eigenenergies of 
an infinite square well with width L=2b. Note that this approximation for the resonant 
energies works better for deeper square wells (V0 big). 

0 0.05 0.1 0.15 0.2 0.25 0.3

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9
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oe

ffi
ci
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t

Energy (eV)

Fig. 3.31. Your solution to part (b) should look like this. 
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Introduction to Nanoelectronics 

(c) Why do the widths of the resonances in the transmission coefficient increase at 
higher electron energy? 
(d) Now suppose we apply a voltage across this device. Electrons at the bottom of the 
conduction band EC in the GaAs on the left side will give net current flow which is 
proportional to the transmission coefficient T. 

Let‟s first consider only one discrete energy level E0 in the dot as shown in part (a) of the 
figure below. Assume the potential drop is linear (electric field F is constant) across the 
whole device, as shown in part (b) of the figure below. 

EC E0

qFW1

qFW2
qFW3

(b)

e

EC

E0

(a)

V0

W1 W2 W3

Fig. 3.32. (a) The Quantum Dot structure at zero bias, and (b) under an applied bias. 

Sketch out qualitatively what you think the current-vs-voltage curve will look like. It 
should look quite different to the IV characteristic of a quantum dot with metal contacts. 
Explain the difference. 

(e) Approximating E0 as the ground state of an infinite square well, what is the expression 
for the resonant voltage in terms of W2, assuming W1=W3? 

(f) Without solving for the wavefunction, sketch qualitatively what the probability 
density of the lowest eigenstate of an infinite well will look like when distorted by an 
electric field. Where in the well has the highest probability of finding an electron? 

(b)

E0

(a) V(x) V(x)

E0

-L/2 L/2 -L/2 L/2
x x

qFL
Fig. 3.33. The quantum dot under bias. 

(g) Now, if we consider the multiple discrete energy levels in the dot, what will the 
current-voltage curve look like? 

(h) Analytically determine the current through the dot at the 0.27eV resonance. Hint: 
consider the width of the resonance. 
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Part 3. Two Terminal Quantum Dot Devices 

6. Consider the two terminal molecular device shown below. Note that this calculation 
differs from the previous calculation of charging by considering transport through the 
HOMO rather than the LUMO. 

EFS D

VDS = 0

+-

source drain

source drain

molecule

CS = 10-19 F
S= 1ps

+-
HOMO               -5.5eV

-5eV

CD = 10-19 F
D = 1ps

VDS

T = 0K

Fig. 3.34. The device structure for an analytical calculation of charging effects. 

(a) Estimate the width of the HOMO from S and D. 

(b) Assuming that the molecule can be modeled as a point source conductor of radius 
2nm, calculate the charging energy per electron. Compare to the charging energy 
determined from the capacitance values shown in Fig. 3.34. 

(c) Assuming that the charging energy is negligible, calculate the IDS-VDS characteristic 
and plot it. 

(d) Now consider charging with q2/CES = 1eV. How does charging alter the maximum 
current and turn on voltage (the lowest value of VDS when current flows)? 

(e) Show that the number of electrons on the HOMO is at least 

2 D

S D

N 

 



2/CES = 1eV? (f) What is the maximum charging energy when q 

(g) Assuming that the charging energy is negligible, plot the energy level of the HOMO 
together with the source and drain workfunctions for VDS = 2V. On the same plot, 
indicate the energy level of the HOMO when q2/CES = 1eV and VDS = 2V. What is the 
charging energy at this bias? 

(h) Calculate the IDS-VDS characteristic when q2/CES = 1eV. Plot it on top of the IDS-VDS 
characteristic calculated for negligible charging. 
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Introduction to Nanoelectronics 

7. Consider the two terminal molecular device shown in the figure below. This question 
considers conduction through both the HOMO and LUMO as well as the effect of 
mismatched source and drain injection rates and capacitances. 

Note that: T = 0K;  CS = 2CD ; ηS = 1ps ; ηD = 9ps 

Fig. 3.35. A two terminal molecular device. 

(a) Estimate the width of the HOMO and LUMO from ηS and ηD. 

(b) If CD = 1pF calculate the charging energy per electron. 

(c) Plot the current-voltage characteristic (IV) from VDS = -10V to VDS = 10V assuming 
that the charging energy equals zero. 

(d) Assume the charging energy is now 1eV per electron. What is CD? 

(e) Plot the IV from VDS =  0V to VDS = 10V assuming that the charging energy is 1eV per 
electron. 

(f) Plot the IV from VDS = -10V to VDS = 0V assuming that the charging energy is 1eV 
per electron. Hint: you should find a region of this IV characteristic in which the HOMO 
and LUMO are charging together, increasing the current but leaving the net charge on the 
molecule unchanged. Consequently, your IV characteristic should exhibit a step change 
in current at a particular voltage. 
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Part 3. Two Terminal Quantum Dot Devices 

8. A quantum wire with square cross-section with a 1-nm thickness side is bent and fused 
into a circular ring with radius R= 2nm as shown below.  

Fig. 3.36. A quantum wire bent into a ring. 

(a) Plot the DOS in the wire from E = 0 to E = 0.8eV. Assume an infinite confining 
potential and that the potential in the ring is V = 0. 

(b) Next the ring is placed between contacts as shown. What is the charging energy? 

Fig. 3.37. The ring between contacts. 

(c) Plot the current versus voltage for V from 0 to 1.1V. 

(d) A magnetic field is applied perpendicular to the ring. Sketch the changes in the IV. 

108 



   

 
 

 
      

 
 

 
      

  
   

    
    

      
   

   

      
 

 
         

          
  

       
 

 
          
  

 
    

 
   

 
    

 
  

 

 

 

 

    
 

Introduction to Nanoelectronics 

The next three questions have been adapted from F. Zahid, M. Paulsson, and S. Datta, 
„Electrical conduction in molecules‟. In Advanced Semiconductors and Organic 
Nanotechniques, ed. H. Korkoc. Academic Press (2003). 

9. (a) Numerically calculate the current-voltage and conductance-voltage characteristics 
for the system shown in Fig. 3.38 with the following parameters: 

 = 0.5 
EF = -5.0 eV 

HOMO = -5.5 eV 
GS = GD = 0.1 eV 

T = 298K 
Set the charging energy to zero, i.e. take CES . 

EF1 2

V=0
+- +-

V=0

source drain

molecule
source drain

molecule

G=0.1eV G=0.1eV

+-

= 0.5

HOMO             -5.5eV

-5eV

Fig. 3.38. The two terminal molecular device for this problem. 

Hints 
(1) Despite the statement that GS = GD = 0.1 eV, the HOMO in this problem is assumed to 

be infinitely sharp. Simplify Eqns. (3.30) and (3.31) for g(E-U) = 2(E-U-), where  
is the energy of the HOMO. 

(2) You will need to implement the flow chart shown in Fig. 3.21. If your solution for U 
oscillates and does not converge, try setting 

 old calc oldU U U U   , 
where Ucalc is the solution to Eq. (3.21), Uold is the previous iteration‟s estimate of U 
and  is a small number that may be reduced to obtain convergence. 

(b) Repeat the numerical calculation of part (a) with q2/CES = 1 eV. 

(c) Explain the origin of the conductance gap. What determines its magnitude? 

(d) Write an analytic expression for the maximum current when q2/CES = 0. 

(e) Explain why the conductance is much lower when the charging energy is non-zero. 
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Part 3. Two Terminal Quantum Dot Devices 

-2 -1 0 1 2

-20
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0
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20

-2 -1 0 1 2
0

20

40

60

80

100

120

Voltage (V) Voltage (V)

C
ur

re
nt

 (
A

)

dI
/d

V
 (

A
/V

)q2/CES=0

conductance gap

q2/CES=1eV

q2/CES=0

q2/CES
=1eV

Fig. 3.39. Your solution should look like this. 

10. Next, we add a LUMO level at -1.5 eV. 

EF1 2

V=0

+- +-

V=0

source drain

molecule
source drain

molecule

G=0.1eV G=0.1eV

+-

= 0.5

HOMO             -5.5eV

-5eV

LUMO              -1.5eV

Fig. 3.40. The two terminal molecular device for this problem. 

(a) Numerically calculate the current-voltage and conductance-voltage characteristics for 
q2/CES = 1 eV  and EF = -2.5 eV. 

(b) Repeat the numerical calculation for q2/CES = 1 eV  and EF = -3.5 eV. 
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Introduction to Nanoelectronics 

(c) Repeat the numerical calculation for q2/CES = 1 eV  and EF = -5.0 eV (same as Q8.b). 

-6 -4 -2 0 2 4 6

-40

-20

0

20

40

-6 -4 -2 0 2 4 6
0

50

100

150

200

250

Voltage (V) Voltage (V)

C
ur

re
nt

 (
A

)

dI
/d

V
 (

A
/V

)

EF = -2.5eV
EF = -3.5eV
EF = -5.0eV

q2/CES = 1eV 

Fig. 3.41. Your solution should look like this. 

(d) Why are the current-voltage characteristics uniform? Hint: what would happen if 
  0.5? Identify the origin of the transitions in the IV curve. 

(e) Why is the effect of charging absent when EF = -3.5 eV? 

(51) 

11. Next, we consider a Lorentzian density of states rather than simply a discrete level. 

 
   

2 2
1

2
g E dE dE

E 

G


  G

where G = GS + GD and  is the center of the HOMO. Ignore the LUMO, i.e. consider the 
system from problem 9. 

EF1 2

V=0

+- +-

V=0

source drain

molecule
source drain

molecule

G=0.1eV G=0.1eV

+-

= 0.5

HOMO             -5.5eV

-5eV

Fig. 3.42. The two terminal molecular device for this problem. 
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Part 3. Two Terminal Quantum Dot Devices 

(a) Numerically compare the current-voltage and conductance-voltage characteristics for 
a discrete and broadened HOMO with q2/CES = 1 eV. 

(b) How would you expect the IV to change if GS > GD? Explain. 

-4 -3 -2 -1 0 1 2 3 4

-20

-10

0

10

20

0

2

4

6

8

10

12

Voltage (V) Voltage (V)

C
ur

re
nt

 (
A

)

dI
/d

V
 (

A
/V

)
-4 -3 -2 -1 0 1 2 3 4

q2/CES = 1eV,
broadening

q2/CES = 1eV, 
no broadening

Fig. 3.43. Your solution should look like this. 

12. The following problem considers a 2-terminal conductor under illumination. The light 
produces an electron transfer rate of NH from the HOMO to the LUMO. The light also 
causes an electron transfer rate of NL from the LUMO to the HOMO, where  is 
proportional to the intensity of the illumination, and the electron populations in the 
LUMO and HOMO are NL and NH, respectively. 

Assume CS = CD, that the LUMO and HOMO are delta functions, and T = 300K. Also, 
assume that under equilibrium in the dark, the Fermi Energy is midway between the 
HOMO and LUMO. 

Fig. 3.44. A model of a single molecule solar cell. 
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Introduction to Nanoelectronics 

Next, imagine that the contacts are engineered to have the following characteristics: 
Transfer rate between Drain and HOMO = 1/. 
Transfer rate between Drain and LUMO = 0. 
Transfer rate between Source and HOMO = 0. 
Transfer rate between Source and LUMO = 1/. 

(a) Determine the short circuit current for this system. (i.e. let VDS = 0, what is the current 
that flows through the external short circuit?) 

(b) Determine the open circuit voltage for this system. (i.e. Disconnect the voltage 
source, what is the voltage that appears across the terminals of the molecule?) 

(c) Repeat (a) and (b) with the addition of an additional electron transfer rate NL from 
the LUMO to the HOMO, where  is independent of the intensity of the illumination. 

13. This problem refers to the 2 terminal molecular conductor below. 

Fig. 3.45 Equilibrium between a molecule and a contact requires charge transfer. 

(a) When 10 fs, 5 fsS D   , calculate the actual molecular density of states versus 
energy. Determine the full width half maximum of HOMO and LUMO. 

(b) Based on the actual density of states calculated in part c), find the number of electrons 
and the charging energy when the molecule is brought into contact with the metal 
electrode and reached equilibrium (no applied voltage). Also sketch the energy diagram 
at equilibrium. Assume that the charging energy per electron is 1eV and 

10 fs, 5 fsS D   . 

Hint: You will need your calculator to solve this. You might use 1
2

1 tan ( )
1

dx x
x




. 
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Part 4. Two Terminal Quantum Wire Devices 

Part 4. Two Terminal Quantum Wire Devices 

Let‟s consider a quantum wire between two contacts. As we saw in Part 2, a quantum 
wire is a one-dimensional conductor. Here, we will assume that the wire has the same 
geometry as studied in Part 2: a rectangular cross section with area Lx.Ly. Electrons are 
confined by an infinite potential outside the wire, and can only flow along its length; 
arbitrarily chosen as the z-axis in Fig. 4.1. 

wire
z axis

Fig. 4.1. A quantum wire between two contacts. 

Under these assumptions, if we model the electrons by plane waves in the z direction we 
get 

22 2 22 2

2 2 , , 1,2,...
2 2

yx z
x y

x y

nn kE n n
m L L m

  
     

 

(4.1) 

L

1-d: Quantum Wire
E

kz

1st mode

2nd mode

3rd mode.
.
.

.

.

.

x
z

y

Fig. 4.2. Plane waves in a quantum wire have parabolic energy bands. 

Recall that for current to flow there must be difference in the number of electrons in +kz 
and -kz states. As in Part 2, we define two quasi Fermi levels: F+ for states with kz > 0, F-

for states with kz < 0. Thus, current flows when electrons traveling in the +z direction are 
in equilibrium with each other, but not with electrons traveling in the –z direction. For 
example, in Fig. 4.3, current is carried by the uncompensated electrons in the +kz states. 
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Introduction to Nanoelectronics 

E

kz

1st mode

2nd mode

3rd mode.
.
.

.

.

.

F-
F+

Fig. 4.3. Current flows when the quasi Fermi levels differ for +kz and –kz. states. 

Scattering and Ballistic Transport 

Next, let‟s assume that electrons travel in the wire without scattering, i.e. the electrons do 
not collide with anything in the wire that changes their energy or momentum. This is 
known as „ballistic‟ transport - the electron behaves like a projectile traveling through the 
conductor. 

Electron scattering is usually caused by interactions between electrons and the nuclei. 
The probability of an electron collision is enhanced by defects and temperature (since the 
vibration of nuclei increases with temperature). Thus, the scattering rate can be decreased 
by lowering the temperature, and working with very pure materials. But all materials 
have some scattering probability. So, the smaller the conductor, the greater the 
probability that charge transport will be ballistic. Thus, ballistic transport is a nanoscale 
phenomenon and can be engineered in nanodevices. 

For ballistic transport the electron has no interaction with the conductor. Thus, the 
electron is not necessarily in equilibrium with the conductor, i.e. the electron is not 
restricted to the lowest unoccupied energy states within the conductor. 

But scattering can bump electrons from high energy states down to lower energies. There 
are two categories of scattering: elastic, where the scattering event may change the 
momentum of the electron but its energy remains constant; and inelastic, where the 
energy of the electron is not conserved. Equilibrium may be established by inelastic 
scattering. 

Electron scattering is the mechanism underlying classical resistance. We will spend a lot 
more time on this topic later in this part. 
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Part 4. Two Terminal Quantum Wire Devices 

electron

(a) Ballistic transport

electron

(b) Scattering

Fig. 4.4. Here, we represent an electron traveling through a regular lattice of nuclei. If 
the electron travels ballistically it has no interaction with the lattice. It travels with a 
constant energy and momentum and will not necessarily be in equilibrium with the 
material. If, however, the electron is scattered by the lattice, then both its energy and 
momentum will change. Scattering assists the establishment of equilibrium within the 
material. 

Equilibrium between contacts and the conductor 

When the contact is connected with the wire, equilibrium must be established. For 
example, if F- is higher than the chemical potential of the contact, , then electrons will 
diffuse from the wire into empty states in the contact. This is known as depletion. If the 
electrons are not replenished from another source, the loss of electrons lowers the Fermi 
level within the wire. In addition, since the wire has lost negative charge, it becomes 
positively charged, establishing an electric field that counteracts the diffusion of electrons 
out of the wire. Ultimately equilibrium is established when the Fermi level in the wire 
equals the chemical potential of the contact. If all the electrons diffuse out of the wire 
then the wire is said to be fully depleted. 

If the chemical potential of the contact is higher than the Fermi level in the wire. 
Electrons diffuse into the wire from the contact, raising the Fermi level. This is known as 
accumulation. The addition of negative charge also establishes an electric field that 
counteracts the diffusion of electrons from the contact to the wire. 
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Introduction to Nanoelectronics 

E

kz

1st mode

2nd mode



F- F+

E E

kz

1st mode

2nd mode



F- F+

E

E

kz

1st mode

2nd mode

 F- F+

E

(a) Diffusion from wire to contact (b) Diffusion from contact to wire

(c) Equilibrium

Fig. 4.5. Equilibrium is obtained at the interface between a contact and a conductor 
when the diffusion currents in and out of the conductor match. 

Bias 

Now, what happens when a voltage is applied between the contacts? Recall that applying 
voltage shifts the relative potential energies of each contact, i.e. D-S=-qVDS, where the 
chemical potential of the source is S and the chemical potential of the drain is D. 

As in the equilibrium case, charges flow from each contact, ballistically through the 
conductor and into the other contact. Thus, all states with kz > 0 are injected by the source 
and have no relation with the drain. Similarly, electrons with kz < 0 are injected by drain. 

But now the injected currents do not balance. Conductor states in the energy range 
between S and D are uncompensated and only be filled by the source, yielding an 
electron current flowing from source to drain in Fig. 4.6. 

The quasi Fermi level for electrons with kz > 0, F+ must equal the electrochemical 
potential of the left contact, i.e. 

F+ = S. 
Similarly, 

F- = D. 
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Part 4. Two Terminal Quantum Wire Devices 

Thus, current can only flow when there is a difference between the chemical potentials of 
the contacts. This shouldn‟t be surprising, since the difference between chemical 
potentials is simply related to the voltage by D-S=-qVDS. 

E

kz

S

F-

F+

E

D

+-

VDS = -(D-S)/q

E

kz

S F- F+

E

D

+-

VDS = 0

(a) no bias (b) under bias

Fig. 4.6. Under bias the Fermi Levels of each contact shift. Diffusion from states in the 
contact with the higher potential causes a current. 

The Spatial Profile of the Potential 

As shown in Fig. 4.7, below, the wire may be described by its dispersion relation or by its 
density of states (DOS). The dispersion relation describes a band of conducting states. 
The bottom of the band is known as the conduction band edge. It corresponds to the 
lowest energy for a plane wave state in the wire. The conduction band edge is particularly 
important because its position controls the current flow in the wire. If it is below the 
source work function then electrons are readily injected into the wire. In contrast, if the 
conduction band edge is above the source workfunction, then current flow requires 
electrons with additional thermal energy. 

kz

E

EC

DOS

E

EC

Fig. 4.7. Two representations of a 1-d quantum wire. The dispersion relation at left 
shows a band of energies available for conduction. The density of states at right drops to 
zero below the conduction band edge (EC). 
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Introduction to Nanoelectronics 

S D

EC

EC

S D

(a) No injection from source at T = 0K (b) Electrons readily injected into wire

Fig. 4.8. The position of the conduction band edge, EC, determines whether charge can 
be injected from the source into the wire. 

The application of a bias may later the position of the conduction band edge by changing 
the local electrostatic potential, U. Two examples are shown in Fig. 4.9, below. 

S
D

EC

qVDS S
D

EC
qVDS

(a) (b)

position

V Delocalized 
plane waves

Localized 
states

Periodic 
boundary 

conditions

Periodic 
boundary 
conditions

EC

(c)

Fig. 4.9. (a) A metallic wire under bias. (b) An insulating or nanoscale wire under bias. 
Note that the conduction band edge corresponds to the maximum potential in the wire. 
This is explained in (c), where we consider the electronic wavefunctions in the wire 
under bias. We have applied periodic boundary conditions to help demonstrate that 
electronic states with energies below the maximum potential are localized. These states 
may only be accessed by tunneling from the source. Electronic states above the 
maximum potential are delocalized plane waves. Consequently, the conduction band 
edge is positioned at the point of the maximum repulsive potential in the wire. 

The first example in Fig. 4.9 demonstrates a metallic wire under bias. In this limit there is 
no potential variation along the wire. In (b) of Fig. 4.9 we present a wire with varying 
potential along its length. The conduction band edge, EC, occurs at the point of maximum 
repulsive potential. This is explained in (c) of Fig. 4.9. Electronic wavefunctions in the 
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Part 4. Two Terminal Quantum Wire Devices 

wire with energies below EC are localized and may only be accessed from the source by 
tunneling through a repulsive potential. Due to the relatively low rate of injection into 
these states we will ignore current through these modes in this class. Above EC, however, 
the electron wavefunctions are delocalized plane waves which readily transport electrons 
between the contacts. 

Determining the potential profile of the wire can be Consider a point, z, on the wire. The 
electrostatic potential at point z is given by 

 
 

 
D

DS
ES

C z
U z qV

C z
  (4.2) 

where CD is the capacitance linking the point at z to the drain, and CS is the capacitance 
linking the point at z to the source, and CES(z) is the total electrostatic capacitance at z; 

     ES S DC z C z C z  . 

If we assume that source and drain capacitances can be modeled by parallel plate 
capacitors, we found in Eq. (3.15) that the potential varies linearly between the contacts. 
However, charging of the conductor can change the potential profile by opposing changes 
induced by the drain source voltage. Adding the effect of charging to Eq. (4.2) gives: 

 2
0D

DS
ES ES

q N NCU qV
C C


   (4.3) 

Remember that all these electrostatic capacitances vary with position along the wire. 
Next, let‟s assume that applied bias is small and consequently the change in charge is 
small i.e. N = N – N0. We can relate N to the density of states at the Fermi level in the 
wire, g(EF), and the change in potential, U. 

 FN g E U   (4.4) 
Combining Eq. (4.4) with a small signal Eq. (4.3) gives 

(4.5) 

Substituting the quantum capacitance 

 2
FD

DS
ES ES

q g ECU q V U
C C

    

Q

D
DS

ES Q

CU q V
C C

  


C = q2g(EF) and collecting terms gives 

(4.6) 

The equivalent circuit is shown in Fig. 4.10. Note that the quantum capacitance depends 
on the position of the Fermi level within the DOS. Because the potential shifts the DOS 
relative to the Fermi level, the quantum capacitance also depends on the potential. 

In this class we‟ll consider two extreme cases: CQ >> CES and CQ << CES. The former 
case corresponds to a perfectly metallic wire. The later case can correspond to either a 
perfect insulator or a nanoscale conductor, which due to its size, has very few electronic 
states. 
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Introduction to Nanoelectronics 

CSVDS

CD

Wire

+
- CQ(U)

Fig. 4.10. The equivalent circuit to determine the potential in a nanowire under bias. 
When the quantum capacitance, CQ, is large the potential in the wire varies little with 
applied bias. This corresponds to the behavior of a metallic wire. In insulators or smaller 
wires with fewer electronic states, the potential varies with position in the wire. 

(i) Perfectly metallic wires 

In the limit that CQ >> CES, Eq. (4.6) reduces to U = 0, meaning that the potential is 
fixed along the length of the wire by the large density of states at the Fermi Level. The 
potential of the wire relative to the contacts is then determined by the contact properties, 
in particular the coupling coefficients S and D. The potential is determined from the 
analysis of Fig. 3.25. 

S

D

S D

VDS E

metal
S D

 S
S D

S D


 

 



+-

EC

Fig. 4.11. The potential of a metallic wire is constant along its length. The position of the 
conduction band edge can be modeled by a voltage divider where the source and drain 
coupling coefficients S and D, respectively, represent the source and drain contact 
resistors. 

(ii) The Insulator/Nanoscale Limit 

The spacing between k states in a 1-d conductor is simply Dk = 2/L, where L is the 
length of the wire. When L is small there are few states available for electrons. 
Consequently, insulators and many very small conductors have relatively few states for 
electrons at the Fermi level. We can ignore charging effects in these conductors. The 
potential is then simply described by Eq. (4.2). 
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Part 4. Two Terminal Quantum Wire Devices 

The quantum limit of conductance 

We‟ve seen that in a quantum wire, current flow requires a difference in the quasi Fermi 
levels for electrons moving with and against the current. Furthermore, only electrons 
between the quasi Fermi levels, i.e. F E F   carry current. 

+-

VDS=(S-D)/q

E

kz

F-

F+

kD kS

S

E

D

Fig. 4.12. In a single mode wire under bias, k states between kD and kS contain 
uncompensated electrons. 

In general, the total current in a quantum wire is 
I qN  (4.7) 

where N is the number of uncompensated electrons, and  is their transit time (the time 
they take to cross from one end of the wire to the other). Let‟s use Eq. (4.7) to calculate 
the current in a single mode quantum wire at T=0K. 

The velocity of electrons in the wire is given by the group velocity (see Problem 3) 

(4.8) 

As an aside, we note that if F+-F-

approximately the equilibrium Fermi velocity. 
1

F

F
E

dEv
dk

 (4.9) 

1 dEv
dk



is small, the current carrying electrons all move at 

The transit time in Eq. (4.7) is related to the length of the wire, L, and the velocity of the 
uncompensated electrons: 

1L dEL
dkv


 

   
 

(4.10) 

122 



   

 
 

     
               

     

   

  

   

  

   

   

   

  

   

 

   

      
     

 

   

   
       
 

 
   

  
 

      
       

  
 

       
     

Introduction to Nanoelectronics 

The number of uncompensated electrons is equal to the number of electrons in the states 
kD < k < kS, equivalent to D < E < S in Fig. 4.12. Each k state occupies Dk = 2/L. 
Recall also that there are two electrons per 

2
2

S

D

k

k

dkN
L

 

k state (one of each spin). Thus, 

(4.11) 

Equation (4.7) is then, 
12

2

S

D

k

k

dk dEI q
L L dk

  (4.12) 

Simplifying gives 
2 S

D

k

k

q dEI dk
h dk

  (4.13) 

Changing the variable of integration to energy gives 

 

2

2

S

D

S D

qI dE
h

q
h





 



 



Note  DS D SV q    , thus 
22qI V

h


This expression demonstrates that the resistance of an ideal single mode wire is 

2 12.9 kΩ
2
hR
q

 

(4.14) 

(4.15) 

(4.16) 

A multiple mode wire with M modes can be thought of as M single mode wires in 
parallel. Since parallel conductances add, the quantum limit is usually written as a 
conductance. For a multimode ballistic wire the conductance is 

22
C

qG M
h

 (4.17) 

This is the famous quantum limited conductance. It yields the surprising conclusion that 
even ballistic conductors have a resistance, although this resistance is independent of the 
length of the conductor. 

But a resistance implies that power is dissipated when a current flows. Given that 
electron transport in the wire is ballistic, where do the resistive power losses occur? 

If we look at Fig. 4.12 we find that carriers entering the wire from the source propagate 
without change in potential until they reach the drain where they must come to 
equilibrium at chemical potential D. Thus, the power is dissipated in the drain. 

The quantum limit in conductance arises as a consequence of the interface between the 
contact with its (ideally) infinite modes and infinite number of electrons all at 
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Part 4. Two Terminal Quantum Wire Devices 

equilibrium, and a conductor with a small number of modes supporting non-equilibrium 
electrons. Thus, the quantum limit can be thought of as a contact resistance. 

Of course, as the number of modes in the conductor increases, the contact resistance 
decreases. In the classical limit, it can be completely ignored. 

C
on

du
ct

an
ce

 (2
q2 /h

) 10

8

6

4

2

0

Width of conductor (nm)
44 88 132 176 2200

C
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 (2
q2 /h

) 10

8

6

4

2

0

Width of conductor (nm)
44 88 132 176 2200

Fig. 4.13. Experimental data from van Wees, et al PRL 60, 848 (1988) clearly showing 
conductance in a narrow conductor quantized in steps of 2q2/h. 

The Landauer Formula† 

We are now going to generalize the result of Eq. (4.15) by considering conduction at 
higher temperatures and in the presence of a scattering site. 

Electrons flowing through the wire may be reflected by the scatterer. We define the 
transmission probability T, of the scatterer, and assume that it acts equally on electrons 
flowing in either direction in the wire. 

Fig. 4.14. A quantum wire containing a scatterer with transmission probability T. 

† This section is adapted from S. Datta, „Electronic Transport in Mesoscopic Systems‟ Cambridge (1995). 
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Introduction to Nanoelectronics 

Let‟s define iS 
+ as the current carried by all electrons (compensated and uncompensated) 

in the +kz states in the wire adjacent to the source. Let iS 
- be the current carried by all 

electrons in the –kz states in the wire adjacent to the source. Similarly, we define iD 
+ and 

iD 
- as the currents entering and leaving the drain, respectively. 

Generalizing Eq. (4.11) for wires with multiple modes and arbitrary temperatures, we 
calculate the number of electrons traveling in the +kz states adjacent to the source: 

     
0

2 ,
2S S

dkN M E k f E k
L






   (4.18) 

where the number of modes at energy E is M(E), and as before f(E,) is the probability 
that a state of energy E is filled given the chemical potential . It follows that 

and 

   

   

0

0

2 ,

2 ,

S S

D D

qi M E f E dE
h

qi M E f E dE
h





















(4.19) 

         

         

0

0

2 , 1 ,

2 , 1 ,

D S D

S D S

qi M E f E M E f E dE
h

qi M E f E M E f E dE
h

 

 









  

  





T T

T T

(4.20) 

The total current is I = iS 
+ - iS 

- = iD 
+ - iD, this gives us the Landauer Formula 

      
0

2 , ,S D
qI M E f E f E dE
h

 


 T (4.21) 

Spatial variation of the electrochemical potential† 

Next, we try to answer the question: Where is the voltage dropped? 

Once again, let‟s consider a quantum wire at T = 0K. The wire has a single scatterer with 
transmission probability T. Uncompensated electrons emitted by the left contact are 
partly transmitted and partly reflected by the scatterer. Thus, to the right of the scatterer, 
only a fraction, T, of the + k states in the energy range D < E < S are filled. To the left 
of the scatterer, the fraction (1-T) of the - k states in the energy range D < E < S are 
filled; see Fig. 4.15(a). 

After scattering the + k states are no longer in equilibrium and the distribution of 
electrons in the + k states can no longer be described by a quasi Fermi level. These 
electrons are said to be hot, and may travel some distance before they equilibrate. 
Similarly electrons in the - k states are not in equilibrium to the left of the scatterer. 

† This section is adapted from S. Datta, „Electronic Transport in Mesoscopic Systems‟ Cambridge (1995). 
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Part 4. Two Terminal Quantum Wire Devices 

In Fig. 4.15(b) we plot the average quasi Fermi level of both + k and - k states. The 
change in the average quasi Fermi levels can be interpreted as a potential change in the 
vicinity of the scatterer of (1-T)(S-D). 

Fig. 4.15. (a) Distribution of electrons within a molecular wire that contains a scattering 
site. (b) The average quasi Fermi level of both +k and –k states changes at the 
scatterer. This can be interpreted as a change in potential at the scatterer. From S. 
Datta, „Electronic Transport in Mesoscopic Systems‟ Cambridge (1995). 

But where is the heat dissipated? 

It depends where the electrons relax into equilibrium. If the relaxation occurs within the 
contact, then once again all the heat is dissipated in the drain. Thus, although the average 
potential changes at the scatterer, heat is only dissipated where the electrons relax.   
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Introduction to Nanoelectronics 

Ohm’s law† 

What happens when we increase the size of a conductor? Eventually, we should obtain 
Ohm‟s law as the quantum phenomena transform into the familiar model of classical 
conduction: 

V IR (4.22) 
But a linear relationship between V and I is not particularly profound. Almost any system 
can be linearized over a sufficiently narrow range of voltage or current. It is more 
significant to evaluate the resistance, R, in terms of macroscopic quantities such as cross-
sectional area, A, and length, L. 

You might recall that resistance is classically defined as: 
LR

A


 . (4.23) 

where , the resistivity, is some material dependent quantity, usually determined by a 
measurement. Let‟s see where this expression comes from – it will help illustrate 
differences between quantum and classical models of charge conduction. 

At zero temperature, transmission formalism gives 

(4.24) 

where M is the number of modes, and T is the net transmission coefficient. Rearranging 
this in terms of a resistance, we have 

2

1
2
hR
q M


T

(4.25) 

22qG M
h

 T , 

To determine the net transmission coefficient, let‟s break the conductor into a series of N 
elements labeled i = 1… N, each containing a scattering site with transmission Ti; see 
Fig. 4.16. 

S D

+ -
V

T1

scattering site

T2 T3 TN

Fig. 4.16. The macroscopic conductor can be represented as a series of N scattering 
sites, each with transmission Ti. 

† This section is adapted from S. Datta, „Electronic Transport in Mesoscopic Systems‟ Cambridge (1995). 
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Part 4. Two Terminal Quantum Wire Devices 

For many scatterers there will be many reflections to consider. If the scattering 
mechanism preserves the phase information of the electrons, then multiple reflections can 
yield interference effects. Such scattering is said to be coherent. Here, we will consider 
only incoherent scattering that randomizes the electron phase. 

Let‟s begin with just two incoherent scatterers in series. The transmission for two 
incoherent scatterers in series is: 

 
2

12 1 2 1 2 1 2 1 2 1 2 ...   T TT TTRR TT RR (4.26) 
where Ri is the reflection from the ith scatterer, and Ti = (1-Ri). 

x xx x

x xx x

x xx x

T1 T1T2

T1T2R1R2

T1R2

T1T2(R1R2)2

T1R1R2

T1R1R2
2

T1(R1R2)2

T1
2R2

T1
2R1R2

2

x x

two scatterers

T12
R12

1 T1 T2

x x

1

R12

T12

Fig. 4.17. Two scatterers generate an infinite number of reflections, but we can sum the 
geometric series. Adapted from S. Datta, „Electronic Transport in Mesoscopic Systems‟ 
Cambridge (1995). 

This geometric series simplifies to 
1 2

12
1 21




TT
T

R R
, (4.27) 

We can rearrange Eq. (4.27) to show 
12 1 2

12 1 2

 
R R R

T T T
(4.28) 

Thus, for N identical scatterers: 
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Introduction to Nanoelectronics 

i

i

N
RR

T T
(4.29) 

Solving for the net transmission and using T = (1-R) 

 1
i

i iN


 

T
T

T T
(4.30) 

If we have  scatterers per unit length, then 

 
0

01
i

i i

L
L L L

 
  

T
T

T T
(4.31) 

Thus, Eq. (4.25) becomes 

2
0

1 1
2
h LR
q M L

 
  

 

where  0 1L  T T is a characteristic length. The length dependence of resistance is 

(4.32) 

clear from Eq. (4.32). The dependence on cross sectional area is due to the number of 
current-carrying modes in the conductor 

(4.33) 

where kF is the Fermi wavevector. 

Thus, we find that resistance can be broken into two components, a resistance due to the 

2

4
FkM A


 , 

contacts, and a resistance that scales with the length of the conductor. 
0

C B
L LR R R
A A
 

    (4.34) 

The contact resistance is the quantum effect that is familiar to us from Landauer theory. 
But in large conductors, the contact resistance is overwhelmed and we get the familiar 
classical expression for resistance. 

The Drude or Semi-Classical Model of Charge Transport 

Quantum models of charge conduction are rarely applied outside nanoelectronics. For 
traditional applications, the semi-classical model of the German physicist Paul Drude is 
usually sufficient. Drude proposed that conductors contain immobile positive ions 
embedded in a sea of electrons. Unlike the quantum view, where those electrons occupy 
various states with different energies, Drude viewed electrons as indistinguishable. 

In the quantum model of charge transport, current is carried by only that fraction of 
electrons close to the Fermi energy. carrying electrons move at 
approximately the Fermi velocity, The remaining electrons are 
compensated, i.e. equal numbers flow in each direction yielding no net current. 

The current 
F Fv k m . 
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Part 4. Two Terminal Quantum Wire Devices 

uncompensated 
electrons

E

kz

Es

EF
F+

F-

E

kz

Es

equilibrium under bias

Fig. 4.18. Application of an electric field shifts the quasi Fermi levels for electrons 
moving with the field (F+) and against the field (F-). 

But in the Drude model, current is carried by all electrons, moving at an average velocity 
known as the drift velocity, vd. Thus, the fundamental classical model for charge 
conduction is 

dqnJ v (4.35) 
where n is the density of electrons. 

In the Drude model, all the electrons travel in the direction of the electric field, gathering 
energy from the field. Eventually each electron collides with something, a positive ion or 
another electron, at which point, the electron is stopped. It is then accelerated once more 
by the electric field, traveling in this stop-start manner through the conductor. 

Electric Field

Fig. 4.19. Electron paths through scattering sites. The average time between collisions 
is the relaxation time, m. 

The conductivity of the material is characterized by m, the relaxation time, the mean time 
between collisions. 

The rate at which electrons gain momentum from the field,  must be equal to the rate of 
losses due to scattering:† 

† This derivation follows Ashcroft and Mermin, „Solid State Physics‟, Saunders College Publishing (1976). 
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Introduction to Nanoelectronics 

(4.36) . 
scattering field

d d
dt dt


p p

d

m

mv q


 , (4.37) 

Rearranging Eq. (4.37), we can express the drift velocity and current density in terms of 
the relaxation time. 

2
mnq

m


J ε (4.38) 

Comparing to Ohm‟s law (expressed in terms of the conductivity, 
J ε

 = 1/) 
(4.39) 

where 
2

mnq
m


  (4.40) 

Mobility 

One of the most important simplifications of the Drude model is mobility, defined as the 
ratio of the electric field to the drift velocity. 

dv  (4.41) 
Using Eq. (4.37) we obtain 

mq
m


  (4.42) 

Mobility is a very common metric for the quality of transistor materials. It typically peaks 
at several thousand cm2/Vs in high quality transistor materials such as GaAs or InP. But 
as we have seen, the actual charge carrier velocity, vF, has little relation to the electric 
field. So, why are Drude parameters such as mobility and conductivity useful quantities? 

Effective Mass 

So far, both the classical and quantum models of conduction have assumed that the 
current carrying electrons occupy pure planewave states. The dispersion relation of real 
materials, however, varies from the ideal parabola. We can approximate any dispersion 
relation by a plane wave if we allow the mass of the electron to vary. We call the 
modified mass the effective mass. Under this approximation, the electron is thought of as 
a classical particle and various complex phenmomena are wrapped up in the effective 
mass. For example, given dispersion relation E(k), a Taylor expansion about k = 0 yields: 

   
2

2
2

0 0

10 ...
2k k

dE d EE k E k k
dk dk 

    (4.43) 

Approximating the dispersion relation by a plane wave gives 

 
2 2

0 2 *
kE k E

m
  (4.44) 
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Part 4. Two Terminal Quantum Wire Devices 

Equating the quadratic terms in Eqns. (4.43) and (4.44) we get an expression for the 
effective mass 

(4.45) 

The effective mass concept is commonly used in classical models of electron transport, 
especially models of mobility like Eq. (4.42). 

12
2

2* d Em
dk



 
  

 

E

kz

actual 
dispersion 
relation

parabolic fit 
to bottom 
of band

Fig. 4.20. We can model 
conduction in a material of 
arbitrary dispersion 
relation by assuming plane 
wave electron states with 
variable (effective) 
electron mass, m*, 
obtained by fitting a 
parabola to the bottom of 
the band. 

Comparing the quantum and Semi-Classical Drude models of conduction 

(i) The mean free path 

The Drude model gives a physically incorrect picture of charge conduction. Nevertheless 
it works quite well. The quantum model shows that rather than all the electrons moving at 
the drift velocity, as in the Drude model, only the uncompensated electrons carrying 
current, each moving at approximately the Fermi velocity:3 Thus, the Drude model can be 
rearranged as 

' FJ qn v (4.46) 
where the uncompensated charge density is 

' d

F

vn n
v

 (4.47) 

We can also define the mean free path, Lm, as the average distance an electron travels 
between scattering events. The mean free path is related to the Fermi velocity by: 

m F mL v  (4.48) 
Interestingly, the mean free path is approximately equal to the characteristic length L0 in 
the derivation of Ohm‟s law. 

(ii) Equilibrium and Non-equilibrium current flow 

We can demonstrate the differences between the classical and ballistic limits using the 
analogy of water flow from one reservoir to another. The application of bias across a wire 
is equivalent to depressing the height of the drain reservoir relative to the source 
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Introduction to Nanoelectronics 

reservoir. In the ballistic model water flowing from the source travels across the wire as a 
jet before relaxing to equilibrium in the drain. In the classical model the water minimizes 
its potential in channel. 

source wire drain

VS

BALLISTIC CLASSICAL

source wire drain

VS VD
VD

Fig. 4.21. A water flow analogy for ballistic and classical current flow. In the classical 
limit, the water is always in local equilibrium with the channel. 

One way to think about classical transport is as the limit of a series of nanoscale ballistic 
wires interspersed by contacts. By definition, electrons in the contacts are in equilibrium. 
Thus contacts are different to the elastic scatterers we considered above, because 
electrons change energy in contacts. The limiting case of many closely spaced contacts is 
a continuously varying conduction band edge; see Fig. 4.22. 

S

EC
EC

D

EC
qVDS

EC

(a) Quantum model: series of ballistic wires 

(b) Classical limit: continuously 
varying EC

Source

ballistic
wire ballistic

wire ballistic
wire ballistic

wire

Drain
equilibrium

equilibrium
equilibrium

equilibrium equilibrium

classical
wire

Source

Drain
equilibrium

equilibriumEC

Fig. 4.22. In a classical wire, the conduction band edge varies continuously with 
position. The classical model can be imagined as the limiting case of many ballistic 
devices in series. 
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Part 4. Two Terminal Quantum Wire Devices 

(iii) The length scale of ballistic conduction 

To determine whether we should use the ballistic or semi-classical models of charge 
transport we need to know the likelihood of electron scattering in the channel. This 
depends on the channel length, and the quality of the semiconductor. 

The number of scattering events in the channel is given by /m where  is the transit time 
of the electron, and m is its average scattering time. Relating the transit time to the 
carrier velocity, and m to the definition of mobility in Eq. (4.42) gives: 

2 2

2
SD

m eff eff eff SD

l Vl v ql
m q m q m V



   
   (4.49) 

This expression is plotted in Fig. 4.23 assuming a Si conductor with VDS = 1V, 
 = 300 cm2/Vs and meff = 0.5 × m0, where m0 is the mass of the electron. It shows that 
silicon is expected to cross into the ballistic regime for lengths of approximately 
l < 50nm. 

10-9 10-8 10-7 10-6 10-5 10-4
10-4

10-2

100

102

104

106

108

Channel length [m]

Ballistic Semi-classical

S
ca

tte
rin

g 
ev

en
ts

Fig. 4.23. The expected number of electron scattering events in Si as a function of the 
channel length. The threshold of ballistic operation occurs for channel lengths of 
approximately 50nm. 
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Introduction to Nanoelectronics 

Problems 

1. Consider the metal/nanowire/metal device shown below. Assume the nanowire is an 
ideal 1-dimensional conductor with no scattering. 

Fig. 4.24. A thermoelectric nanowire. 

The source contact is heated to temperature T1, while the drain contact remains at 
temperature T2. Assume that the energy separation between the source and the bottom of 
the conduction band (D) is independent of bias. Assume also that D >> kT1. 

(a) The contacts are now shorted together, i.e. R → 0. What is the current that flows? 
(This is the „short circuit current‟). 

(b) Next assume the contacts are returned to open circuit, i.e. R → ∞. What is the voltage 
between the contacts? (This is the „open circuit voltage‟) 

2. The dispersion relation for a relativistic particle is given by 
where E  and p k . Find the group velocity of this particle. 

2 2 2 2
0( )E p c m c 

3. The group velocity is given by g
dv x
dt

 . Show that 1d dEx
dt dk

 . 
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Part 4. Two Terminal Quantum Wire Devices 

4. Find the effective mass for an electron in a conductor with the dispersion relation: 

   5 2 cosE k V ka  , k
a




where V and a are positive constants. 

5. Graphene exhibits a photon-like dispersion relation. Assume the carrier velocity is 
independent of the carrier‟s energy and equal to the speed of light, c. Based on the high 
velocity of carriers in graphene it is often argued that graphene transistors will be faster 
than similar transistors constructed from other materials. 

(a) Draw the dispersion relation of a graphene wire. Assume the wire has only one mode. 

(b) Given a wire of length, l, constructed of ballistic graphene, assume we inject a carrier 
pulse as shown below. f is the distribution function, i.e. when f = 1 each state is 
completely full. What is the applied voltage? 

1

f

k0 k0+Dk0-D k
Fig. 4.25. The electron distribution in the graphene wire. 

(c) How many carriers are contained in the pulse? 

(d) Determine the current carried by the wire from the group velocity and number of 
carriers. 

(e) What is the conductance of the wire? 

(f) Now assume that the graphene is used to drive a load capacitance of value C. What is 
the time constant of the system? How does the graphene wire compare to other 1d wires? 
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Introduction to Nanoelectronics 

6. This problem refers to the ballistic 1-D wire below. The X‟s in the wire are 
representative of elastic scattering sites, each with transmission, Τ. Assume 
where 

Fig. 4.26. A ballistic nanowire with two scattering sites. 

(a) For T = 1.0, plot the filling function at positions (i), (ii), and (iii) along the z-axis. 

(b) For T = 0.5, plot the filling function at positions (i), (ii), and (iii) along the z-axis. 
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Part 4. Two Terminal Quantum Wire Devices 

(c) Consider a very large number of scattering sites along the wire, each with T = 0.5. 
Plot the filling function at the source (i), at the midpoint of the wire (ii), and at the drain 
(iii). 
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Introduction to Nanoelectronics 

Part 5. Field Effect Transistors 

Field Effect transistors (FETs) are the backbone of the electronics industry. The 
remarkable progress of electronics over the last few decades is due in large part to 
advances in FET technology, especially their miniaturization, which has improved speed, 
decreased power consumption and enabled the fabrication of more complex circuits. 
Consequently, engineers have worked to roughly double the number of FETs in a 
complex chip such as an integrated circuit every 1.5-2 years; see Fig. 1 in the 
Introduction. This trend, known now as Moore‟s law, was first noted in 1965 by Gordon 
Moore, an Intel engineer. We will address Moore‟s law and its limits specifically at the 
end of the class. But for now, we simply note that FETs are already small and getting 
smaller. Intel‟s latest processors have a source-drain separation of approximately 65nm. 

In this section we will first look at the simplest FETs: molecular field effect transistors. 
We will use these devices to explain field effect switching. Then, we will consider 
ballistic quantum wire FETs, ballistic quantum well FETs and ultimately non-ballistic 
macroscopic FETs. 

(i) Molecular FETs 

The architecture of a molecular field effect transistor is shown in Fig. 5.1. The molecule 
bridges the source and drain contact providing a channel for electrons to flow. There is 
also a third terminal positioned close to the conductor. This contact is known as the gate, 
as it is intended to control the flow of charge through the channel. The gate does not 
inject charge directly. Rather it is capacitively coupled to the channel; it forms one plate 
of a capacitor, and the channel is the other. In between the channel and the conductor, 
there is a thin insulating film, sometimes described as the „oxide‟ layer, since in silicon 
FETs the gate insulator is made from SiO2. In the device of Fig. 5.1, the gate insulator is 
air. 

S S

+- +-

VDS

source drain

molecule

+
-
+
-VGS

gate

Fig. 5.1. A molecular FET. An insulator separates the gate from the molecule. The gate 
is not designed to inject charge. Rather it influences the molecule‟s potential. 
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Part 5. Field Effect Transistors 

FET switching 

In digital circuits, an ideal FET has two states, ON and OFF, selected by the potential 
applied to the gate. In the OFF state, the channel is closed to the flow of electrons even if 
a bias is applied between the source and drain electrodes. To close the channel, the gate 
must prevent the injection of electrons from the source. For example, consider the 
molecular FET in Fig. 5.2. Here, we follow FET convention and measure all potentials 
relative to a grounded source contact. For a gate bias of VGS < ~6.2V little current flows 
through the molecule. But for ~6.2V< VGS < ~6.4V the FET is ON and the channel is 
conductive. 

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5

5 5.5 6 6.5 7 7.55 5.5 6 6.5 7 7.5

I D
S

(n
A)

VGS (V)

VDS=10mV
G=10eV
T=1K

+- +-

VDS

source drain
+
-
+
-

VGS

gate
CG=1aF

CS=10aF CD=10aF

Fig. 5.2. The IDS-VGS characteristics of a FET employing the buckyball molecule C60. At 
equilibrium the source and drain chemical potentials are at -5eV, and the molecule‟s 
LUMO is at -4.7eV. The various electrostatic capacitances in the device are labeled. As 
the gate potential is increased, the LUMO is pushed lower. At approximately VGS = 6.3V, 
it is pushed into resonance with the source and drain contacts and the current increases 
dramatically. The width of the LUMO determines the sharpness of the resonance. Note 
„aF‟ is the symbol for atto Farad (10-18 F). 

As shown in Fig. 5.3, the transitions are much more gradual if the molecular energy level 
is broader. Similarly, increasing the temperature can also blur the switching 
characteristics. 
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Fig. 5.3. A comparison between 
the switching characteristics of 
molecular FETs with broad and 
narrow energy levels. Note the 
different current scales. 
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Introduction to Nanoelectronics 

The origin of FET switching is explained in Fig. 5.4. The gate potential acts to shift 
energy levels in the molecule relative to the contact chemical potentials. When an energy 
level is pushed between 1 and 2 electrons can be injected from the source. 
Correspondingly, the current is observed to increase. Further increases in gate potential 
push the energy level out of resonance and the current decreases again at ~ 6.4V. 
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-qVds

source drain
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Conductance gap Conductance gap

Fig. 5.4. The IDS-VDS characteristics of the FET from Fig. 5.2. Outside resonance a 
conductance gap opens because additional source-drain bias is required to pull the 
molecular level between the source and drain chemical potentials. 
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Fig. 5.5. The IDS-VDS characteristics of the FET from Fig. 5.2, except this time the width of 
the LUMO is 1000 x broader in energy. The corresponding IV shows more gradual 
transitions, a narrower conductance gap and much higher currents. 
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Part 5. Field Effect Transistors 

FET Calculations 

Unlike the two terminal case, where we arbitrarily set EF = 0 and shifted the Source and 
Drain potentials under bias, the FET convention fixes the Source electrode at ground. 
There are two voltage sources: VGS, the gate potential, and VDS, the drain potential. We 
analyze the influence of VGS and VDS on the molecular potential using capacitive dividers 
and superposition: 

= +VGS
+
- VDS

CS

CD

CGCS CD

CG

VGS
+
- VDS
+
-

CD

CS

+
-
+
-

CG

+
-
+
-

+
-

Fig. 5.6. Analyzing a molecular FET using a capacitive divider and superposition. 
 

 

 

 

1 1
1 1 1 1

D S G S
ES GS DS

D S G G S D

C C C C
U qV qV

C C C C C C
 

  
   

(5.1) 

Simplifying, and noting that the total capacitance at the molecule is CES = CS + CD + CG: 
G D

ES GS DS
ES ES

C CU qV qV
C C

   (5.2) 

We also must consider charging. As before, 

 
2

0C
ES

qU N N
C

  (5.3) 

Recall that charging opposes shifts in the potential due to VGS or VDS. Thus, if charging is 
significant, the switching voltage increases; see Fig. 5.7. 
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Fig. 5.7. IDS-VGS characteristics for the FET of Fig. 5.2 calculated under two different sets 
of capacitances. Charging is more important for the smaller capacitances. The switching 
voltage for this device is observed to increase to ~ 8.1V. 
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Introduction to Nanoelectronics 

Adding the static potential due to VDS and VGS gives, the potential U in terms of the 
charge, N, and bias 

 
2

0
G D

GS DS
ES ES ES

C C qU qV qV N N
C C C

     (5.4) 

We also have an expression for potential for N in terms of U (see Eq. (3.31)) 

 
   , ,D S S D

S D

f E f E
N g E U dE

   

 






 

 (5.5) 

As before, Eqns. (5.4) and (5.5) must typically be solved iteratively to obtain U. Then we 
can solve for the current using: 

      
1 , ,S D

S D

I q g E U f E f E dE 
 





  
 (5.6) 

Quantum Capacitance in FETs 

Unfortunately, Eqns. (5.4) and (5.5) typically must be solved iteratively. But insight can 
be gained by studying a FET with a few approximations. 

Another way to think about charging is to consider the effect on the channel potential of 
incremental changes in VGS or VDS. We can then apply simple capacitor models of 
channel charging to determine the channel potential in Eq. (5.6). 

If the potential in the channel changes by U then the number of charges in the channel 
changes by 

 FN g E U   (5.7) 
Note that we have assumed T = 0K, and note also the negative sign – making the channel 
potential more negative increases the number of charges. 

N

channel

EF

source drain

channel

EF

source drain

U

Fig. 5.8. A shift in the channel potential changes the number of charges in the channel. 

Substituting back into Eq. (5.4) gives 

(5.8)  
2

G D
GS DS F

ES ES ES

C C qU q V q V g E U
C C C

      
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Part 5. Field Effect Transistors 

Collecting U terms gives 

(5.9) G D
GS DS

ES Q ES Q

C CU q V q V
C C C C

    
 

Where we recall the quantum capacitance (CQ): 
 2

Q FC q g E (5.10) 
Using the quantum capacitance, we can easily construct a small signal model for changes 
in VGS or VDS. See, for example the small signal VGS model in Fig. 5.9. Note that the value 
of the quantum capacitance depends on the channel potential at the bias point.  

CS CDVGS

CG

Channel

+
- CQ(U)

Fig. 5.9. A small signal model for the channel potential. 

(5.11) 

Using Eq. (5.7) we can also determine a small signal model for the charge in the channel. 
G Q

GS
ES Q

C C
q N V

C C
 



In the next section we will consider FET operation under two limiting cases: (i) when CQ 
is large relative to CES, and (ii) when CQ is small. The two cases typically correspond to 
the ON and OFF states of a FET, respectively. 

Simplified models of FET switching 

To further simplify the problem, we define two quantities, NS and ND, the charges 
injected into the channel from the source and drain contacts, respectively. Next, we 
assume that  = S + D, where S = D and CG >> CS, CD, Eqs (5.4), (5.5) and (5.6)become 

 
2

0GS
G

qU qV N N
C

   

2
S DN NN 



 S D
qI N N


 

   ,S SN g E U f E dE




 

   ,D DN g E U f E dE




 

(5.12) 

(5.13) 

(5.14) 

where 

(5.15) 

(5.16) 

Conduction in the FET is controlled by the number of electron states available to charges 
injected from the source. For switching applications, transistors must have an OFF state 
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Introduction to Nanoelectronics 

where IDS is ideally forced to zero. The OFF state is realized by minimizing the number 
of empty states in the channel accessible to electrons from the source. In the limit that 
there are no available states, the channel is a perfect insulator. 

Switching between ON and OFF states is achieved by using the gate to push empty 
channel states towards the source chemical potential. The transition between ON and 
OFF states is known as the threshold. Although the transition is not sharp in every 
channel material, it is convenient to define a gate bias known as the threshold voltage, VT, 
where the density of states at the source chemical potential g(EF) undergoes a transition. 

The Zero Charging limit 

As we saw in Part 3, charging-induced shifts in the energy levels of conductors can 
significantly complicate the calculation of IV characteristics. Equation (5.11) 
demonstrates that charging can be neglected if the quantum capacitance is much smaller 
than the electrostatic capacitance, i.e. CQ << CES. For example, in Eq. (5.11), if CQ << CES 
then the charging, N → 0. 

In the zero charging limit, Eq. (5.12) reduces to 
GSU qV  (5.17) 

i.e. in this limit the channel potential simply tracks the gate bias. 

Thus, in the zero charging limit, we can determine the current directly from Eq. (5.6), 
with the channel potential U = -qVGS. 

The zero charging limit almost always holds for insulators and transistors in the OFF 
state because the density of states at the Fermi level is small in both these examples. 
Determining whether a transistor remains in the zero charging limit in the ON state 
requires a comparison of CQ and CES. Bulk devices very rarely operate within the zero 
charging limit in the ON state. But many small conductors contain relatively few states at 
the Fermi level even in the ON state, such that CQ << CES even when significant channel 
current is flowing. 

E
ne

rg
y

Source

Density of States [ g(E) ]

g(E)

qVT

ON

CES/q2

E
ne

rg
y

Quantum Capacitance [CQ]

CQ CES

OFF

E
ne

rg
y

Source

Density of States [ g(E) ]

g(E)qVT

ON

CES/q2

E
ne

rg
y

Quantum Capacitance [CQ]

CQ

CES

OFF

(a) (b)

Fig. 5.10. We consider a channel material with a sharp transition in its density of states. 
In (a) we show a channel which remains in the insulator limit even in the ON regime. In 
(b) the channel states have sufficient density for the channel to be metallic in the ON 
regime. 
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Part 5. Field Effect Transistors 

The Strong Charging Limit 

In metals and many large transistors in the ON state, the density of states at the Fermi 
level is sufficiently large that adding charges barely moves the channel potential. We say 
that the Fermi level is pinned. In the limit that g(EF) → ∞ then DU → 0. 

In terms of the quantum capacitance, we find that if 
GS Gq N V C 

CQ >> CES, Eq. (5.11) reduces to 
(5.18) 

This limit is also known as strong inversion in conventional FET analysis. The channel 
transforms from an insulator to a metal. The transition occurs when the gate bias equals 
the threshold voltage, VT, which is defined as the gate bias required to push the channel 
energy level down to the source workfunction. 

In the strong charging/metallic limit, the gate and channel act as two plates of a capacitor. 
The charge in the channel then changes linearly with additional gate bias. In FETs, the 
channel potential relative to the source, V(x), may also vary with position. Including the 
channel potential and the threshold voltage in Eq. (5.18) yields: 

  G GS TqN C V V V x   (5.19) 
One way to interpret the metallic limit is to consider the difference between the actual 
position of the conduction band edge and its position in the absence of charging. The 
difference is proportional to the amount of charging; see Fig. 5.11. Note that the shaded 
region in the figure does not represent filled electron states below the conduction band. 
These electrons are in fact all at the bottom of the conduction band. Rather this the same 
graphical tool that we used in Part 3 to analyze charging within conductors. 

The metallic or strong inversion limit is only maintained for VGS - VT - V(x) > 0. If V(x) 
crosses the zero charging limit (VGS-VT) then charging decreases to zero. This is known as 
„pinch off‟. 

Fig. 5.11. 
Charging 
opposes gate-
induced 
changes in the 
channel 
potential. Here 
we illustrate the 
effect of 
charging in a 
non-ballistic 

S

D

E

electron
charging

Pinch off

-q(VGS – VT)
Zero charging 

limit

FET. In the absence of charging, increasing gate potential lowers the conduction band 
edge (the „zero charging limit‟). Charging pushes the conduction band edge back up 
towards the source workfunction. The red shaded region is the difference between the 
actual channel potential and the zero charging limit. It represents the population of 
electrons in the conduction band. It does not represent filled states below the bottom of 
the conduction band. 
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Introduction to Nanoelectronics 

The temperature dependence of current in the OFF state 

Both nanoscale and larger transistors have a small quantum capacitance in the OFF state, 
which is also known as subthreshold since VGS < VT. 

But even if the density of states is zero between S > E > D, at higher temperatures, 
some electrons may be excited into empty states well above the Fermi Energy. If the 
density of states is very low at the Fermi Energy, but higher far from the Fermi level, 
then we can model the Fermi distribution by an exponential tail. Recall that this is known 
as a non-degenerate distribution; see Fig. 5.12. 

En
er

gy



Density of States [ g(E) ]

g(E)f(E,) ~ e-(E-)/kT

f(E,)=
1+ e(E-)/kT

1f(E,)=
1+ e(E-)/kT

1

filled states

Fig. 5.12. If only the extreme tail states of the Fermi distribution are filled, then we can 
model the distribution by an exponential. This is common when the density of states at 
the Fermi Energy is small. 

Equation (5.14) becomes 

   SE kT
SN g E U e dE


 



 

Now changing the variable of integration to 'E E U 

   '' 'SE U kT
SN g E e dE


  



 

   '' 'SE kTU kT
SN e g E e dE


 



 

   '' 'DE kTU kT
DN e g E e dE


 



 

Simplifying 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

Similarly, 

Thus, from Eq. (5.14) the current is 

      ' 'exp . ' 'S DE kT E kTGSqVqI g E e e dE
kT

 




   



 
  

 
 (5.24) 
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Part 5. Field Effect Transistors 

Equation (5.24) holds in the limit that CG >> CS, CD. In general, we find that the current 
in the subthreshold region is 

0 exp GS G

ES

qV CI I
kT C

 
  

 
(5.25) 

Taking logarithm of both sides we find, 

The slope, S, of the subthreshold regime is usually expressed gate volts per decade of 

(5.27) 

The slope becomes much sharper at low temperatures; see Fig. 5.13. 

 10 10 10 0log log logG
GS

ES

CqI e V I
kT C

  (5.26) 

drain current. At room temperature, the optimum, when CG >> CS, CD, is 

10

1 60 mV/decade
log

kTS
q e

 

0 0.1 0.2 0.3 0.4 0.5 0.6

CG = 1000aF
CS = 10aF
CD = 10aF

VDS = 10mV

G = 0.1meV
T = 298K
T = 1K

I D
S
(A

)

VGS (V)
10-12

10-11

10-10

10-9

10-8

10-7

60 mV/decade

Fig. 5.13. A comparison of 
the switching characteristics 
of our C60 model FET at 
T = 1K and room 
temperature. In the OFF 
regime, the current varies 
exponentially with gate bias, 
i.e. a straight line on a log-
linear plot. The slope at room 
temperature is 60 mV/decade 
of drain current. 

Transconductance 

A field effect transistor is a voltage controlled current source. Its input is the gate 
potential, and the output is the source-drain current. In applications, we usually desire 
that the FET amplifies small changes in VGS. Thus, an important figure of merit for an 
FET is the transconductance, defined as 

ds
m

gs

dIg
dV

 (5.28) 

In the OFF state, the quantum capacitance is small and the gate‟s only influence on the 
FET is its electrostatic control of the channel potential. From Eq. (5.1), we see that this 
control is maximized when 

,G S DC C C (5.29) 
This is an important design goal for FETs. Under this limit the transconductance is 
commonly expressed as: 
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Introduction to Nanoelectronics 

1m ds

ds ds gs

g dI q
I I dV kT

  (5.30) 

Good electrostatic control of the channel may be achieved either by increasing the 
dielectric constant of the gate insulator, or by reducing the thickness of the gate insulator. 

A good rule of thumb is that the gate must be much closer to the channel than either the 
source or drain contacts. Fig. 5.14 shows the impact of varying CG on our C60 molecular 
transistor. Increasing CG shifts the switching gate voltage much lower. 

Interestingly, to obtain this ideal characteristic, we increased CG by three orders of 
magnitude relative to the more practical value used originally. This corresponds to 
increasing dielectric constant or reducing the gate-channel separation by three orders of 
magnitude. 

I D
S

(A
)

VGS (V)

10-13

10-12

10-11

10-10

10-9

10-8

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9

(a)

CG = 1aF
CS = 10aF
CD = 10aF

VDS = 10mV

G = 0.1meV
T = 298K

CG = 1aF
CS = 10aF
CD = 10aF

VDS = 10mV

G = 0.1meV
T = 298K

I D
S

(A
)

VGS (V)

10-13

10-12

10-11

10-10

10-9

10-8
(b)

CG = 1000aF
CS = 10aF
CD = 10aF

VDS = 10mV

G = 0.1meV
T = 298K

CG = 1000aF
CS = 10aF
CD = 10aF

VDS = 10mV

G = 0.1meV
T = 298K

0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 5.14. A comparison of two C60 FETs. In (a) the gate has poor electrostatic control 
over the channel as evidenced by the small CG. In (b) the control is better, and the 
switching voltage is much lower. 

For a molecular transistor with source-drain separation of a few nanometers, the gate 
insulator should be only a few Ångstroms – too thin to sufficiently insulate the gate. This 
represents a possibly insurmountable obstacle to 0-d channel devices such as single 
molecule FETs. 

+- +-

VDS

+
-
+
-

VGS

gate
<< 1nm

~1nm

Fig. 5.15. For high transconductance, 
the gate capacitance must be much 
higher than the source or drain 
channel capacitances. This forces 
impractically small gate-channel 
separations in molecular transistors. 
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Part 5. Field Effect Transistors 

(ii) 1d and 2d FETs 

The central equation of conduction is 
 S Dq N N

I



 (5.31) 

In 0-d the time constant, , was defined as the sum of the interfacial electron transfer time 

between the 0-d conductor and the source and drain contacts: 
S and D, which in turn can be thought of as representations of the interaction energy 

S S  G and D D  G , 
respectively. 

+- +-

VDS

source drain
+
-
+
-

VGS

gate

G

S D
= L/v

+- +-

VDS

+
-
+
-

VGS
S

S
G

 D
D

G


Fig. 5.16. (a) Electron transfer times in a 0-d conductor are related to the interaction 
energy G between the contact and the conductor. (b) In higher dimensions, we must 
determine the transit time from the electron velocity. 

In higher dimensions, however, the electron transfer times at the contacts are less 
important. Rather,  is the transit time for an electron in the conductor. It is given by 

x

x

L
v

  (5.32) 

where Lx is the length of the channel, and vx is the velocity component of the electron 
parallel to the source-drain current. It is important to note that in 1-d, 2-d and 3-d 
conductors the transit time is dependent on the energy of the electron since the electron 
velocity, vx, is dependent on energy. 

The other important change from the 0-d model concerns the density of states. In 0-d all 
states are accessible to electrons from both the source and drain contacts. But in higher 
dimensional ballistic devices, electrons injected from the source are only able to access 
states with momenta directed away from the source. We call these +k states. Similarly, 
the drain only injects electrons into –k states. Thus, we break the dispersion relation and 
density of states into two pieces, the density of +k states is given by g+(E)dE and the 
density of –k states is given by g -(E)dE. 

To summarize, in 1-d, 2-d and 3-d the fundamental equations for a transistor are: 

 
2

0
G D

ES GS DS
ES ES ES

C C qU qV qV N N
C C C

     (5.33) 
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Introduction to Nanoelectronics 

(5.34) 

(5.35) 

where 

S DN N N 

 S D
qI N N


 

   ,S SN g E U f E dE






 

   ,D DN g E U f E dE






 

(5.36) 

(5.37) 

The ballistic quantum wire FET.† 

Consider the ballistic quantum wire FET shown in Fig. 5.17. 

+-

VDS

wire

EF = -5.0eV

EC = -4.7eV

source drain

VGS+-

Fig. 5.17. A quantum wire FET. The gate is wrapped around the wire to maximize the 
capacitance between the channel and the gate. The length of the wire is L = 100nm, the 
gate capacitance is CG = 50 aF per nanometer of wire length, and the electron mass, m, 
in the wire is m = m0=9.1x10-31 kg. 

We will assume that there is only one parabolic band in the wire. 

From Eq. (2.37), the density of states in the wire is: 

Fig. 5.18. The 
bandstructure and 
density of states in a 
single mode quantum 
wire. 

University. For a complete reference see Mark Lundstrom and Jing Guo, „Nanoscale Transistors:  Physics, 
Modeling, and Simulation‟, Springer, New York, 2006. 

kz

E

EC

DOS

E

EC

† This analysis of the ballistic quantum wire FET was introduced to me by Mark Lundstrom at Purdue 
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Part 5. Field Effect Transistors 

   
2 2

C
C

L mg E dE u E E dE
h E E

 


, (5.38) 

where L is the length of the wire, and m is the electron mass in the wire. But only half of 
these states contain electrons traveling in the positive direction. Thus, we must divide Eq. 
(5.38) by two to yield: 

   
1 2 2
2 C

C

L mg E dE u E E dE
h E E

   


(5.39) 

Given the position of the Fermi Energy, this band is the conduction band. We will label 
the energy at the bottom of the conduction band, EC. Since we model electrons moving 

(5.40) 

along the wire as plane waves, within the parabolic band we have 
2 2

21
2 2C

kE E mv
m

  

We can rewrite Eq. (5.39) in terms of the velocity, v, of the electron: 

 
 

 
1 4
2 C

Lg E dE u E E dE
hv E

    (5.41) 

Now L/v is the transit time of an electron through the wire, thus 

. (5.42)  
 

 
41

2 C

E
g E dE u E E dE

h


   

We can substitute Eq. (5.42) into the expression for the current density (Eq. (5.31)) to 
obtain 

      
2 , ,C S D

qI u E E U f E f E dE
h

 




    . (5.43) 

Quantum dot models of quantum wire transistor channels 

Under bias we expect a spatial variation in the potential along a quantum wire. Current 
flow may also vary the charge density along the wire, which in turn affects the potential 
profile. Thus, the potential variation must be determined self consistently with the current 
flow. 

We have seen in Part 4 that the conduction band edge in a ballistic conductor is 
determined by the point of maximum potential in the conductor. For electrostatic 
purposes, we will approximate this point on the quantum wire as a quantum dot, and then 
employ our discrete capacitive models of potential to calculate changes in the conduction 
band edge. 

Usually the highest potential is located next to the source, because application of forward 
bias at the drain pulls the potential down along the channel. 
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Introduction to Nanoelectronics 

Fig. 5.19. An example of a typical 
potential profile along the length of a 
quantum wire as reflected by the 
bottom of the conduction band. The 
point of maximum potential acts as a 
barrier to the flow of current. As the 
gate bias increases, the barrier 
decreases, enhancing current flow. 
The point of maximum potential is 
modeled as a quantum dot with the 
same density of states as the 
quantum wire. The remainder of the 
wire is considered to be part of the 
contacts. 

Fig. 5.20. Assuming the 
channel is modeled by a 
quantum dot we model 
the electrostatics of the 
transistor using 
capacitors. 

Ballistic Quantum Wire FET Current-Voltage Characteristics at T = 0K. 

The electrostatic capacitances are shown in Fig. 5.20 using the quantum dot model of the 
quantum wire. In this example we ignore source and drain capacitances. The gate 
capacitor was defined in Fig. 5.17 as CG = 1 aF per nanometer of gate length. 

We compare quantum and electrostatic capacitances in Fig. 5.21, we find that the single 
mode wire has relatively few states, hence its quantum capacitance is small, and above 
the band edge it operates in the zero charging/insulator regime; even in the ON state 
charging effects are negligible and we can take U = -qVGS. 

-5.0 -4.9 -4.8 -4.7 -4.6 -4.5
0.01

0.1

1

10

0.01

0.1

1

10

CES

CQ

C
ap

ac
ita

nc
e 

(fF
)

Energy (eV)

Fig. 5.21. A comparison between the 
electrostatic and quantum 
capacitances shows that that CQ >> 
CES only at the conduction band 
edge. But as the channel fills with 
charge, the wire returns to the 
insulator regime. 
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Part 5. Field Effect Transistors 

In forward bias (when the drain potential is lower than the source), there are three 
regimes of operation: 

(a) OFF: VGS < VT 

Let‟s define the threshold voltage as the potential difference between the source and the 
conduction band minimum. Thus, in this example, VT = 0.3 V. Recall that the gate 
potential is relative to the source potential. So when VGS < VT, electrons cannot be 
injected from the source. Hence no current can flow for positive drain voltages. This is 
the OFF state of the FET. 

Note that source drain current can flow for T > 0K since the tail of the Fermi distribution 
for electrons in the source overlaps with states in the wire. The current follows Eq. (5.25). 

wire

EF=-5.0eV

EC=-4.7eV

source
drain

VT

Fig. 5.22. Energy line up for 
FET in the OFF state. There 
are no channel states 
between the source and 
drain chemical potentials. 

(b) The linear regime: VGS > VT, VDS < VGS-VT 

This is known as the linear regime because the current scales linearly with the drain 
source potential. Equation (5.43) reduces to 

22
DS DS

qI V
h

 (5.44) 

Note that the FET exhibits the quantum limit of conduction in this regime. Its 
transconductance, however, is zero. 

Fig. 5.23. In the linear 
regime, the current is limited 
by the source drain potential. 

wire

EF

source
drain

EC - qVGS

qVDS
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Introduction to Nanoelectronics 

(c) Saturation: VGS > VT, VDS > VGS-VT 

Once the drain potential exceeds VGS-VT, all the charge in the channel is uncompensated 
and injected into the drain. Thus, the current is limited by the gate potential. This is 
known as saturation. 

 
22

DS GS T
qI V V
h

  (5.45) 

The transconductance for a single mode wire in saturation is 

wire

EF

source

drain

qVDS
EC - qVGS

22
m

qg
h

 (5.46) 

Fig. 5.24. In the 
saturation regime, the 
current is limited by the 
gate source potential. 

Fig. 5.25 plots the forward bias characteristics of the FET both at T = 0K, and room 
temperature. At room temperature, the characteristics were determined numerically since 
the transition from linear to saturation regimes is blurred by thermal activation of 
electrons above the Fermi level. 

0 0.1 0.2 0.3 0.4 0.50 0.1 0.2 0.3 0.4 0.5
Drain Source bias (VDS) [V]

D
ra

in
 S

ou
rc

e 
cu

rr
en

t (
I D

S)
 [

A]

0

5

10

15

20

(a) T=1K VGS = 0.5V

Qua
nt

um
 lim

ite
d 

co
nd

uc
ta

nc
e

VGS = 0.45V

VGS = 0.4V

VGS = 0.35V

VGS = 0.3V

0 0.1 0.2 0.3 0.4 0.50 0.1 0.2 0.3 0.4 0.5
Drain Source bias (VDS) [V]

D
ra

in
 S

ou
rc

e 
cu

rr
en

t (
I D

S)
 [

A]

0

5

10

15

20

(b) T=298K VGS = 0.5V

Qua
nt

um
 lim

ite
d 

co
nd

uc
ta

nc
e

VGS = 0.45V

VGS = 0.4V

VGS = 0.35V

VGS = 0.3V

Fig. 5.25. Forward bias characteristics for a quantum wire FET at (a) T = 0K, and (b) 
room temperature. 
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Part 5. Field Effect Transistors 

Ballistic Quantum Well FETs 

To analyze the ballistic quantum well FET, let‟s begin with the master equation for 
current. 

   S D S D xq N N q N N v
I

L

 
  (5.47) 

We have defined conduction in the x-direction and the transit time is given by . x xL v 

Let‟s begin by considering the product g.vx, which we will integrate to get (NS - ND)vx. In 
k-space and circular coordinates, this is 

   
 

2
12

2
x

x
kg k v k kdkd kdkd
mLW

 


 (5.48) 

Simplifying further gives: 

    2
2 sin

2x
LWg k v k kdkd k dk d

m
  


 (5.49) 

Converting 
2 2 2 CE k m E U  

the variable of integration back to energy using the dispersion relation 
, and assuming conduction in just a single mode of the quantum 

well, yields 

       2 2 2 sin
2x C C
LWg k v k kdkd m E E U u E E U dE d  


     (5.50) 

Substituting back into Eq. (5.47) and integrating over the +k hemisphere (0 <  < ) gives 

        2 2 2 , ,C C S D
qWI m E E U u E E U f E f E dE 






      (5.51) 

Below threshold the density of states is zero. Thus, 
0

GSU q V  (5.52) 
where we neglect the effect of VDS, and 

0 G

S D G

C
C C C

 
 

. (5.53) 

The threshold voltage, VT, is defined as the gate-source voltage required to turn the 
transistor ON, i.e. bring the bottom of the conduction band, EC, down to the source 
workfunction. From Eq. (5.52) and requiring the EC + U = S at threshold, we get 

  0
T C SV E q   (5.54) 

Above threshold the density of states and hence the quantum capacitance is constant. 
Thus, the quantum well FET is the rare case where we can model charging phenomena 
analytically. Above threshold we have 

  0
GS T TU q V V qV     (5.55) 

where again we neglect the effect of 
G

S D G Q

C
C C C C

 
  

VDS, and 

. (5.56) 

Fom the 2-d DOS in Eq. (2.47), CQ for a single mode quantum well is 
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Introduction to Nanoelectronics 

(5.57) 

where we have only 

2
2

1
2Q

mWLC q




considered half the 

. 

usual density of states (the +k states). This is 
accurate in the saturation region because the drain cannot fill any states in the channel. 
The quantum capacitance increases in the linear region as the drain fills some –k states 
leading to errors in the calculation of the current in the linear regime. 

Noting that 0
T CV E q we can rewrite Eq. (5.55) above threshold as 

 C S GS TE U q V V     . (5.58) 

Now, we can simplify Eq. (5.51) to give us 

       
 

2 2 2 , ,
S GS T

GS T S D
q V V

qWI m E q V V f E f E dE
 

  




 

    (5.59) 

At T = 0K, we can solve Eq. (5.59) in the linear regime ( VDS < (VGS – VT) ): 

 

     

2 2

3 2 3 2 3 2
2 2

2

8
9

S

S DS

C GS
qV

GS T GS T DS

qWI m E E qV dE

qW m q V V V V V








 




  

     
 


(5.60) 

and in the saturation regime ( VDS > (VGS – VT) ): 

  
 

   

2 2

3 2 3 2
2 2

2

8
9

S

S GS T

GS T
q V V

GS T

qWI m E q V V dE

qW m q V V



 







 

  

 


. (5.61) 
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Fig. 5.26. Forward bias characteristics for a quantum well FET at (a) T = 1K, and (b) 
room temperature. The channel width is W = 120nm, and the electrostatic control over 
the channel is assumed to be ideal. Also, take m = 0.5×m0. 
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Part 5. Field Effect Transistors 

Note that the saturation current goes as ~ (VGS-VT)3/2 compared to the ballistic nanowire 
transistor, which goes as ~ (VGS-VT). As we shall see, the conventional FET has a 
saturation current dependence of ~ (VGS-VT)2. 

(iii) Conventional MOSFETs 

Finally, we turn our attention to the backbone of digital electronics, the non-ballistic 
metal oxide semiconductor field effect transistor (MOSFET). 

The channel material is a bulk semiconductor – typically silicon. Here, we will consider a 
so-called n-channel MOSFET, meaning that the channel current is carried by electrons at 
the bottom of the conduction band of the semiconductor. 

S D
G

insulator

channel

contacts
silicon

Fig. 5.27. An n-channel 
MOSET built on a silicon 
substrate. Phosphorous is 
diffused below the source 
and drain electrodes to form 
high conductivity contacts to 
the silicon channel beneath 
the insulator. 

Now, let‟s consider the various operating regimes of a conventional MOSFET. 

(a) OFF: SubthresholdVGS < VT 

Similar to the ballistic quantum wire FET, we can model channel current as injection 
over a barrier close to the source electrode. 

Once again, let‟s define the threshold voltage as the potential difference between the 
source Fermi energy and the conduction band minimum.† 

As in the ballistic example, when VGS < VT, only the tail of the Fermi distribution for 
electrons in the source overlaps with empty states in the conduction band. The current 
follows Eq. (5.25). 

0 exp GS G

ES

qV CI I
kT C

 
  

 
(5.62) 

Subthreshold characteristics determine the gate voltage required to switch the FET ON 
and OFF. From Eq. (5.27) the subthreshold slope is ideally 60mV/decade, meaning that a 
60mV change in gate potential corresponds to a decade change in channel current. 

† Actually, this is an overestimate of the threshold voltage because the density of states at the conduction 
band is so large that the transistor will often turn on when the Fermi level gets within a few kT. It also 
ignores the effect of charge trapped at the interface between the channel and the insulator. 
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Introduction to Nanoelectronics 

S D

E
Bottom of

conduction band

(a)

EF

Energy barrier 
~ VT

VDS

S

D

E

(b)

EF

Energy 
barrier

VGS = 0, VDS = 0 VGS = 0, VDS > 0

Bottom of
conduction band

Fig. 5.28. Below threshold few electrons can be injected from the source into the 
conduction band, irrespective of the drain source potential. 

(b) The linear regime: VGS > VT, VDS < VGS-VT 

As we shall see, this is known as the linear regime because the current scales linearly 
with the drain source potential. Consider a thin slice of the channel with width W, and 
length x. For this analysis to hold, the length of this slice cannot be much shorter than 
the mean free path of the electron between scattering events. In a silicon transistor, we 
have shown that x > 50 nm (see the analysis associated with Fig. 4.23). Silicon 
transistors with channel lengths shorter than this should be analyzed in the ballistic 
regime. 

Since the density of states above the conduction band is very large in a bulk 
semiconductor, a conventional MOSFET will enter the strong charging/metallic limit for 

(5.63) 

(VGS – V) > VT, i.e. the number of charges, N, in the slice is 

 G
GS T

Cq N W x V V V
A

   

where A = W.L is the surface area of the channel. 

Now the current within the slice is given by 
q NI 


 (5.64) 

where  is the lifetime of carriers within the channel slice. 

Since scattering is important, we employ the classical model of charge transport to relate 
the charge carrier lifetime to velocity, v

vI q N
x






, and the length of the slice, x. 

(5.65) 

Next we relate the charge carrier velocity to mobility 
FI q N
x





 (5.66) 
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Part 5. Field Effect Transistors 

Now, we must note that scattering causes the potential in the channel to vary with 
position. We define the channel potential V(x) as a function of position in the channel. 
Thus, expressing the source-drain electric field in terms of the channel potential we have 

VI q N
x x
 


 
 (5.67) 

Next, we substitute Eq. (5.63) into Eq. (5.67), yielding 

 G
GS T

C VI V V V
L x





   (5.68) 

We solve this under the limit that x << L, by integrating both sides with respect to x. 

(5.69) 

Since the current is uniform throughout the channel, we obtain: 

 
0

.
L

G
GS T

C dVI L V V V dx
L dx

  

where L is the length of the channel. It is convenient to change the variable of integration 
on the righthand side to voltage. In the linear regime, the maximum channel potential is 
VDS, hence: 

 2
0

DSV
G

GS T
CI V V V dV
L

   (5.70) 

The linear regime requires that the entire channel remains in the strong charging/metallic 
limit. This occurs if the gate to drain potential, 

GD TV V
VGD, also exceeds VT 

(5.71) 
or we can re-write this as 

DS GS TV V V  (5.72) 
Under this constraint, Eq. (5.70) yields 

  2
2

1
2

G
GS T DS DS

CI V V V V
L


 

   
 

(5.73) 

It is standard to express this in terms of a gate capacitance per unit channel area, COX: 

  21
2OX GS T DS DS

WI C V V V V
L


 

   
 

(5.74) 

S
EF VDSD

E
VGS > VT 

VDS < VGS - VT

S D

E
Bottom of

conduction band

(a)

EF

Energy barrier 
~ VT

VGS = 0, VDS = 0 (b)

electrons

VGS - VT

Fig. 5.29. Application of a gate source potential reduces the injection barrier between 
the source and the channel. The red shaded region represents the population of 
electrons in the conduction band. It does not represent filled states below the bottom of 
the conduction band. 
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Introduction to Nanoelectronics 

(c) Saturation: VGS > VT, VDS > VGS-VT 

If the gate to drain potential exceeds threshold then the channel region close to the drain 
enters the zero charging regime, characterized by a high electric field and low density of 
mobile charges. The channel is said to pinch off and the current saturates because it is no 
longer dependent on VDS. The strong charging/metallic region ends when the local 
channel potential V = VGS - V

 
0

GS TV V

OX GS T
WI C V V V dV
L





  

T 

(5.75) 

which gives 

 
2

2
OX

GS T
CWI V V

L
  (5.76) 

The IV characteristics of a non-ballistic MOSFET are shown in Fig. 5.31. 

SS D

E
Bottom of

conduction bandEF EF
VDS

D

E

(b)VGS > VT 
VDS = 0

VGS > VT 
VDS > VGS - VT

(a)

electrons electrons
Pinch off

VGS - VT VGS - VT

Fig. 5.30. As the drain-source potential increases, the channel near the drain enters the 
zero charging regime. The current is dependent only on the charge in the strong 
charging region, not on VDS. The red shaded region represents the population of 
electrons in the conduction band. It does not represent filled states below the bottom of 
the conduction band. 
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Fig. 5.31. The IV 
characteristics of a non-
ballistic MOSFET with 
 = 300 cm2/Vs, L = 40nm, 
W = 3 × L, VT = 0.3V, and 
CG = 0.1 fF. Note that the use 
of the classical model for a 
transistor with such a short 
channel is inappropriate. 
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Part 5. Field Effect Transistors 

Comparison of ballistic and non-ballistic MOSFETs. 

If we calculate the IV of a conventional MOSFET with a channel length in the ballistic 
regime, we obtain IV curves that are qualitatively similar to the ballistic result. For 
example, the classical model of a MOSFET with a channel length of 40 nm is shown in 
Fig. 5.31. It is qualitatively similar to Fig. 5.26. Both possess a linear and a saturation 
regime, and both exhibit identical subthreshold behavior. But the magnitude of the 
current differs quite substantially. The ballistic device exhibits larger channel currents 
due to the absence of scattering. 

Another way to compare ballistic and non-ballistic MOSFETs is to return to the water 
flow analogy.† As before, the source and drain are modeled by reservoirs. The channel 
potential is modeled by a plunger. Gate-induced changes in the channel potential cause 
the plunger to move up and down in the channel. The most important difference between 
the ballistic and non-ballistic MOSFETs is the profile of the water in the channel. The 
height of the water changes in the non-ballistic device, whereas water in the ballistic 
channel does not relax to lower energies during its passage across the channel. 

source channel drain

VS VD

source channel drain

VS VD

source channel drain

VS VD

source channel drain

VS
VD

OFF

ON

LINEAR

SAT

BALLISTIC

source channel drain

VS VD

source channel drain

VS VD

source channel drain

VS VD

source channel drain

VS
VD

CLASSICAL

Fig. 5.32. The water flow analogy for the operation of ballistic and classical MOSFETs. 
Conduction in the channel is controlled by a plunger that models the channel potential. 
The transistors are turned ON by lowering the gate potential. Then, as the height of the 
drain reservoir decreases (corresponding to increased VDS), the channel first enters the 
linear regime (where current flow is limited by VDS) and then the saturation regime where 
the current is controlled only by the gate potential. 

† For a more detailed treatment of the water analogy to conventional FETs see Tsividis, „Operation and 
Modeling of the MOS transistor‟, 2nd edition, Oxford University Press (1999). 
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Introduction to Nanoelectronics 

Problems 

1. Buckyball FETs 
Park et al. have reported measurements of a buckyball (C60) FET. An approximate 
model of their device is shown in Fig. 5.33. The measured conductance as a function of 
VDS and VGS is shown in Fig. 5.34. 

+-
VDS

source drain
+
-

VGS

gate
CG=1aF

CS=10aF CD=10aF

Fig. 5.33. The geometry of a C60 FET. In addition take the temperature to be T = 1K, 
and the molecular energy level broadening, G = 0.1eV. The LUMO is at -4.7 eV and the 
Fermi Energy at equilibrium is EF = -5.0 eV 

(a) Calculate the conductance (dIDS/dVDS) using the parameters in Fig. 5.33. Consider 
5V < VGS < 8V calculated at intervals of 0.2V and -0.2V < VDS < 0.2V calculated at 
intervals of 10mV. 

(b) Explain the X-shape of the conductance plot. 

(c) Note that Park, et al. measure a non-zero conductance in the upper and lower 
quadrants. Sketch their IDS-VDS characteristic at VGS ~ 5.9V. Compare to your calculated 
IDS-VDS characteristic at VGS ~ 5.9V. Propose an explanation for the non-zero 
conductances measured in the experiment in the upper and lower quadrants. 

5.5 6.0 6.5

15

0

-15

-30

30

VGS (V)

V D
S

(m
V

)

Fig. 5.34. The 
conductance (dIDS/dVDS) 
of a C60 FET as 
measured by Park et al. 
Ignore the three arrows 
on the plot. From Park, et 
al. “Nanomechanical 
oscillations in a single 
C60 transistor” Nature 
407 57 (2000). 

Courtesy of Nature Publishing Group. Used with permission. 
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Part 5. Field Effect Transistors 

(d) In Park et al.‟s measurement the conductance gap vanishes at VGS = 6.0V. Assuming 
that CG is incorrect in Fig. 5.33, calculate the correct value. 

Reference 
Park, et al. “Nanomechanical oscillations in a single C60 transistor” Nature 407 57 
(2000) 

2. Two mode Quantum Wire FET 

Consider the Quantum Wire FET of Fig. 5.17 in the text. 

Assume that the quantum wire has two modes at EC1 = -4.7eV, and EC2 = -4.6eV. 
Analytically determine the IDS-VDS characteristics for varying VGS at T = 0K. Sketch your 
solution for 0 < VDS < 0.5, at VGS = 0.3 V, 0.35 V, 0.4V, 0.45V and 0.5V. 

Highlight the difference in the IV characteristics due to the additional mode. 

wire

EF = -5.0eV

EC1 = -4.7eV

source drain

EC2 = -4.6eV

+-
VDS

VGS+-
+-

VDS

VGS+-

Fig. 5.35. A quantum wire FET with two modes. The length of the wire is L = 100nm, the 
gate capacitance is CG = 50 aF per nanometer of wire length, and the electron mass, m, 
in the wire is m = m0=9.1x10-31 kg. Assume CS and CD = 0. 

3. 2-d ballistic FET 

(a) Numerically calculate the current-voltage characteristics of a single mode 2-d ballistic 
FET using Eq. (5.51) and a self consistent solution for the potential, U. Plot your solution 
for T = 1K and T = 298K. In each plot, consider the voltage range 0 < VDS < 0.5, at 
VGS = 0.3 V, 0.35 V, 0.4V, 0.45V and 0.5V. In your calculation take the bottom of the 
conduction band to be -4.7 eV, the Fermi Energy at equilibrium EF = -5.0 eV, L = 40nm, 
W = 3 × L, and CG = 0.1 fF. Assume CD = CS = 0. Take the effective mass, m, as 
m = 0.5 × m0, where m0 = 9.1x10-31 kg. 

You should obtain the IV characteristics shown in Fig. 5.26. 

Continued on next page…. 
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Introduction to Nanoelectronics 

(b) Next, compare your numerical solutions to the analytic solution for the linear and 
saturation regions (Eqns (5.60) and (5.61)). Explain the discrepancies. 

(c) Numerically determine IDS vs VGS at VDS = 0.5V and T = 298K. Plot the current on a 
logarithmic scale to demonstrate that the transconductance is 60mV/decade in the 
subthreshold region. 

(d) Using your plot in (c), choose a new VT such that the analytic solution for the 
saturation region (Eq. (5.61)) provides a better fit at room temperature. Explain your 
choice. 

4. An experiment is performed on the channel conductor in a three terminal device. Both 
the source and drain are grounded, while the gate potential is varied. Assume that 
CG >> CS, CD. 

GATE

CHANNEL
DIELECTRIC

SOURCE DRAIN

GSV

U

GC

DCSC

Fig. 5.36. Measuring the surface potential of a transistor channel. 

The transistor is biased above threshold (VGS > VT). Measurement of the channel 
potential, U, shows a linear variation with increasing VGS > VT. 

Under what conditions could the conductor be: 

(i) a quantum dot (0 dimensions)? 
(ii) a quantum wire (1 dimension)? 
(iii) a quantum well (2 dimensions)? 

Explain your answers. 
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Part 5. Field Effect Transistors 

5. Consider a three terminal molecular transistor. 

(a) Assume the molecule contains only a single, unfilled molecular orbital at energy D 
above the equilibrium Fermi level. Assume also that CG >> CS, CD and D >> kT. 
Calculate the transconductance for small VDS as a function of T and VGS for VGS << D. 

Express your answer in terms of IDS. 

1 2

D

SOURCE DRAIN

GSV

DSV

1 2

D

SOURCE DRAIN

GSV

DSV

Fig. 5.37. A molecular transistor with discrete energy 
levels in the channel. 

(b) Now, assume that the density of molecular states is 

 
1( ) exp

T T

Eg E u E
E E

 D
 D 

 

where ET >> kT. Calculate the transconductance for small VDS as a function of T and VGS 

for VGS << D. Assume GC  . 

Express your answer in terms of IDS. 
 

1  2  D 

SOURCE DRAIN 

GS V 

DS V 

1  2  D 

SOURCE DRAIN 

GS V 

DS V 

Fig. 5.38. A molecular transistor with an exponential DOS 
in the channel. 

(c) Discuss the implications of your result for molecular transistors. 

166 



   

 
 

 

 
  

 
 

 
     

  
 
 
 

        
  

 
 

   
 

 
        

 
 

  

       
    

 
   

        
  

 
 

   

     
 

 

 
  

  

Introduction to Nanoelectronics 

6. Consider the conventional n-channel MOSFET illustrated below: 

- +

V2

V1
+
- Fig. 5.39. The structure of a 

conventional MOSFET. 

Assume VT = 1V and V2 = 0V. Sketch the expected IV characteristics (I vs. V1) and 
explain, with reference to band diagrams, why the IV characteristics are not symmetric. 

7. Consider a ballistic quantum well FET at T = 0K. 

S D

EC
Increasing VGS

Fig. 5.40. A quantum well FET below threshold. 

Recall that the general solution for a quantum well FET in saturation is: 

  
3 2

2 2

8
9DS GS T

qW mI q V V


 

(a) In the limit that CQ >> CES, the bottom of the conduction band, EC, is „pinned‟ to μS at 
threshold. Show that under these conditions η → 0. 

(b) Why isn‟t the conductance of the channel zero at threshold in this limit? 

(c) Given that COX = CG/(WL), where W and L are the width and length of the channel, 
respectively, show that the saturation current in this ballistic quantum well FET is given 
by 

  
3 28

3DS OX GS T
WI C V V

m q
  (5.77) 

Hint: Express the quantum capacitance in the general solution in terms of the device 
parameters m, W, and L. 
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Part 5. Field Effect Transistors 

8. A quantum well is connected to source and drain contacts. Assume identical source 
and drain contacts. 

Fig. 5.41. A quantum well with source and drain contacts. 

(a) Plot the potential profile along the well when VDS = +0.3V. 

Now a gate electrode is positioned above the well. Assume that , except very 
close to the source and drain electrodes. At the gate electrode ε = 4×8.84×10-12 F/m and 
d = 10nm. Assume the source and drain contacts are identical. 

Fig. 5.42. The quantum well with a gate electrode also. 

(b) What is the potential profile when VDS = 0.3V and VGS = 0V. 

(c) Repeat (b) for VDS = 0V  and VGS = 0.7V. Hint: Check the CQ. 

(d) Repeat (b) for VDS = 0.3V and VGS = 0.7V assuming  ballistic transport. 

(e) Repeat (b) for VDS = 0.3V  and VGS = 0.7V assuming  non-ballistic transport. 
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Introduction to Nanoelectronics 

9. This problem considers a 2-d quantum well FET. Assume the following: 

T = 0K, L = 40nm, W = 120nm, CG = 0.1fF , CS = CD = 0 

Fig. 5.43. A 2-d quantum well FET. 

(a) Compare the operation of the 2-D well in the ballistic and semi-classical regimes. 
Assume CQ→∞ >> CES in both regimes. 
Take  = 300 cm2/Vs in the semi-classical regime. 

Plot IDS vs VDS for VGS = 0.5V and VDS = 0 to 0.5V. 

(b) Explain the difference in the IV curves. Is there a problem with the theory? If so, 
what? 
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Part 6. The Electronic Structure of Materials 

Part 6. The Electronic Structure of Materials 

Atomic orbitals and molecular bonds 

The particle in the box approximation completely ignores the internal structure of 
conductors. For example, it treats an insulator such as diamond the same as a conductor 
such as gold. Despite this it can be surprisingly useful, as we have seen in the discussion 
of ballistic transistors. 

We are concerned now with more accurate calculations of electronic structure. 
Unfortunately, exact solutions are not usually possible. Determining the energies and 
wavefunctions of multiple electrons in a solid is a classic „many body problem‟. For 
example, to solve for the electrons, we must know the exact position of each atom in the 
solid, and also calculate all interactions between multiple electrons. 

Nevertheless, there is much to be learnt from a first principles analysis of electronic 
structure. We‟ll begin at the bottom, with the hydrogen atom. 

The hydrogen atom 

Hydrogen is the simplest element. There are just two components: an electron and a 
positively charged nucleus comprised of a single proton. 

The electron experiences the attractive potential of the nucleus. The nuclear potential is 
spherically symmetric and given by the Coulomb potential 

 
2

04
ZqV r

r
  (6.1) 

where r is the radial separation of the electron and the nucleus 0 is the dielectric constant 
and Z is the number of positive charges at the nucleus. For hydrogen there is one proton, 
and Z = 1. 

Recall that a general expression for the kinetic energy operator in three dimensions is: 
2

2ˆ
2 e

T
m

   (6.2) 

where 2 is the Laplacian operator. 

In rectilinear coordinates (x,y,z) 
2 2 2

2
2 2 2

d d d
dx dy dz

    (6.3) 

In spherical coordinates (r,) 
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Introduction to Nanoelectronics 

2 2
2

2 2 2 2 2

1 1 1 1 1 sin
sin sin

d d d dr
r dr r d r d d


    

    (6.4) 

Thus, the Hamiltonian for the hydrogen atom is 

(6.5) 

This takes a bit of algebra to solve for the atomic orbitals and associated energies. An 
approximate solution (assuming a box potential rather than the correct Coulomb 
potential) is contained in Appendix 2. 

The lowest energy solutions are plotted in Fig. 6.1, below. 
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Fig. 6.1. The first five orbitals of the hydrogen atom together with their radial profiles. 

Each of the solutions shown in Fig. 6.1 is labeled either s or p. These letters describe the 
angular symmetry of solution. They are the index for the orbital angular momentum of 
the electron. „s‟ orbitals exhibit even symmetry about the origin in every dimension. 
Orbitals that exhibit odd symmetry about the origin in one dimension are labeled „p‟. We 
show in Appendix 1 that the eigenfunctions of an electron restricted to the surface of a 
sphere are characterized by quantized angular momentum. We are only showing the s and 
p solutions but there are an infinite set of solutions, e.g. s, p, d, f… corresponding to 
orbital angular momenta of 0, 1, 2, 3… 

The energy of each atomic orbital is also labeled by an integer known as the principal 
quantum number. Thus, the 1s orbital is the lowest energy s orbital, 2p and 2s orbitals 
are degenerate first excited states. 
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Part 6. The Electronic Structure of Materials 

Knowledge of the exact atomic orbitals is not necessary for our purposes. Rather, we will 
use the orbitals as symbolic building blocks in the construction of molecular orbitals: 
electron wavefunctions in molecules. 

Atoms to Molecules 

We now seek to determine the electronic states of whole molecules – molecular orbitals. 
Although we will begin with relatively small molecules, the calculation techniques that 
we will introduce can be extended to larger materials that we don‟t usually think of as 
molecules: like Si crystals, for example. 

C
CH

H

H
C

H

H

H
C

H
H

H

HC

CC

C

z

x

y

Fig. 6.2. The molecule 1,3-butadiene. Clouds of electron probability density are shown 
around each atom. They combine to form molecular orbitals. 

In the previous discussion of atomic orbitals, we implicitly assumed that the nucleus is 
stationary. This is an example of the Born-Oppenheimer approximation, which notes that 
the mass of the electron, me, is much less than the mass of the nucleus, mN. Consequently, 
electrons respond almost instantly to changes in nuclear coordinates. 

In calculations of the electronic structure of molecules, we have to consider multiple 
electrons and multiple nuclei. We can simplify the calculation considerably by assuming 
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Introduction to Nanoelectronics 

that the nuclear positions are fixed. The Schrödinger equation is then solved for the 
electrons in a static potential; see Appendix 3. Different arrangements of the nuclei are 
chosen and the solution is optimized. 

Guess nuclear coordinates

Is the energy 
minimized?

Calculate electronic wavefunctions 
(molecular orbitals)

Fill orbitals with electrons.
Calculate energy.

No

Yes

Fig. 6.3. Technique for calculating the electronic structure of materials. 

Po
te

nt
ia

l e
ne

rg
y

Internuclear
spacing

Equilibrium 
bond 
length

Fig. 6.4. The equilibrium 
internuclear spacing (bond length) 
in a molecule results from 
competition between a close-
range repulsive force typically 
with exponential dependence on 
intermolecular spacing, and a 
longer-range attractive Coulomb 
force. Typically the molecular 
orbitals must be calculated for 
each internuclear spacing. The 
energy minima is the equilibrium 
bond length. Calculating the 
electronic states for fixed nuclear 
coordinates is an example of the 
Born-Oppenheimer approx-
imation. 
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Part 6. The Electronic Structure of Materials 

Molecular orbitals 

Unfortunately, even when we apply the Born-Oppenheimer approximation and hold the 
nuclear coordinates fixed, the solution to the Schrödinger equation (Eq. (6.5)) is 
extremely complex in all but the simplest molecules. Usually numerical methods are 
preferred. But some conceptual insight may be gained by assuming that the molecular 
orbitals are linear combinations of atomic orbitals, i.e., we write: 

r r
r

c  (6.6) 

where  is the molecular orbital and  is an atomic orbital. A filled molecular orbital 
with lower energy than the constituent atomic orbitals stabilizes the molecule and is 
known as a chemical bond. 

We can define two types of molecular orbitals built from s and p atomic orbitals: 

 molecular orbitals: These are localized between atoms and are invariant with respect 
to rotations about the internuclear axis. If we can take the x-axis as the internuclear axis, 
then both s and px atomic orbitals can participate in  molecular orbitals. py and pz atomic 
orbitals cannot contribute to s molecular orbitals because they each have zero probability 
density on the x-axis. 
 
 molecular orbitals: Electrons in  molecular orbitals are more easily shared between 
atoms. The probability density is not as localized as in a  molecular orbital. A  
molecular orbital is also not invariant with respect to rotations about the internuclear axis. 
linear combinations of py and pz atomic orbitals form  molecular orbitals. 

 bonds  bonds

x

z

y
x

z

y

Fig. 6.5. Examples of  and  bonds.  bonds are localized between atoms whereas  
bonds are delocalized above the internuclear axis. 
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Introduction to Nanoelectronics 

Linear combination of atomic orbitals (LCAO) 

The expansion of a molecular orbital in terms of atomic orbitals is an extremely 
important approximation, known as the Linear combination of atomic orbitals (LCAO). 
The atomic orbitals used in this expansion constitute the basis set for the calculation. 
Ideally, the number of atomic orbitals used should be infinite such that we could re-
express any given wavefunction exactly in terms of a linear combination of atomic 
orbitals. In this case, we say that the basis set is also infinite. But computational 
limitations usually force the basis set to be finite in practice. Choice of the basis set is an 
especially important consideration in numerical simulations; for example we might 
consider s, p and d orbitals, but not f or higher orbitals. 

In some cases, we can take good guesses at the weighting coefficients, cr, based on the 
likely nuclear arrangement. However, depending on the nuclear arrangement, it often 
helps to define new atomic orbitals that are linear combinations of the familiar s and p 
atomic orbitals. These are known as symmetry adapted linear combinations (SALCs) 
because they are chosen based on the nuclear symmetry. They are also known as hybrid 
atomic orbitals. We discuss SALCs in Appendix 4. 

The tight binding approximation 

Each atom in a conductor typically possesses many electrons. We can simplify molecular 
orbital calculations significantly by neglecting all but a few of the electrons. The basis for 
discriminating between the electrons is energy. The electrons occupy different atomic 
orbitals: some electrons require a lot of energy to be pulled out the atom, and others are 
more weakly bound. 

Our first assumption is that electrons in the deep atomic orbitals do not participate in 
charge transport. Recall that charge conduction only occurs though states close to the 
Fermi level. Thus, we are concerned with only the most weakly bound electrons 
occupying so-called frontier atomic orbitals. 

In this class, we will exclusively consider carbon-based materials. Furthermore, we will 
only consider carbon in the triangular geometry that yields sp2 hybridized atomic orbitals; 
see Appendix 4 for a full discussion. In these materials, each carbon atom has one 
electron in an unhybridized pz orbital. The unhybridized pz atomic orbital is the frontier 
orbital. It is the most weakly bound and also contributes to  molecular orbitals that 
provide a convenient conduction path for electrons along the molecule. We will assume 
that the molecular orbitals of the conductor relevant to charge transport are linear 
combinations of frontier atomic orbitals. 
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Part 6. The Electronic Structure of Materials 

For example, let‟s consider the central carbon atom in Fig. 6.6. Assume that the atom is 
part of a triangular network and that consequently it contains one electron in a frontier pz 
atomic orbital. Let‟s consider the effect of the neighboring carbon atom to the right of the 
central atom. 

neighbor

Central atom with 
electron in frontier 
pz orbital

Fig. 6.6. One carbon atom with a 
single frontier electron and its 
neighboring nucleus. The 
Hamiltonian of the system 
contains potential terms for each 
of the two nuclei. 

Assuming the positions of the atoms are fixed, the Hamiltonian of the system consists of 
a kinetic energy operator, and two Coulombic potential terms: one for the central atom 
and one for its neighbor: 

1 2H T V V   (6.7) 
Now, consider an integral of the form: 

r rH E    (6.8) 
Following Eq. (6.6), the wavefunction in this two atom system can be written as 

1 1 2 2c c    (6.9) 
We can expand the LHS of Eq. (6.8) as follows: 

1 1 1 1 2 1 2 2 2 2 1 2r r r r rH c T V c V c T V c V               (6.10) 

The RHS expands as 
1 1 2 2r r rE c E c E       (6.11) 

The terms in these expansions are not equally important. We can considerably simplify 
the calculation by categorizing the various interactions and ignoring the least important. 

(a) Overlap integrals 

First of all, let‟s define the overlap integral between frontier orbitals on atomic sites s and 
r: 

sr s rS   . (6.12) 
These integrals yield the overlap between atomic orbitals at different sites in the solid. 
Spatial separation usually ensures that Ssr << 1 for s ≠ r. Of course, for normalized atomic 
orbitals Ssr = 1 for s = r. 

176 



   

 
 

 

 

 

 
    

    
  

   
    

 
 
 

 
 

   
   

   
   

       
     

 
 
 

     
   

 
 
 
 
 
 
 

 
 

    
   

        
 

 
 

    
 
  

   

 

 

Introduction to Nanoelectronics 

Fig. 6.7. The overlap between two 
adjacent atomic orbitals is shaded in 
yellow. In the tight binding 
approximation we will assume that 
the overlap between frontier atomic 
orbitals on different sites is zero. 

(b) The self-energy 

Next, let‟s define the self-energy. At a particular atomic site, we have 
r r r rT V     (6.13) 

where r is the self energy, i.e.: 
r r r rT V    . (6.14) 

The self energy, , is defined to be negative for an electron in a positively charge nuclear 
potential. Note that if the interaction between the atoms is weak then the self energy is 
similar to the energy, E, of the combined system. 

Fig. 6.8. The interaction between a nucleus and 
its frontier atomic orbital is known as the self 
energy. 

(c) Hopping interactions 

Let‟s define the hopping interaction between different sites s and r: 
sr s s rV   (6.15) 

The hopping interaction, , is defined to be negative for an electron in a positively charge 
nuclear potential. 

Fig. 6.9. The interaction between a 
nucleus and the neighboring 
frontier atomic orbital is known as 
the hopping interaction. 
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Part 6. The Electronic Structure of Materials 

(d) The remaining interactions 

The remaining interaction considers the interaction of a frontier orbital on one site with 
the potential on another site. It has the form 

r s rV  (6.16) 
where s ≠ r. It may not be immediately evident that this interaction is usually much 
weaker than the hopping interaction of Eq. (6.15). But if the individual frontier orbitals 
decay exponentially with distance as exp[-ka] where a is the spacing between the atoms, 
then this terms behaves as exp[-2ka] whereas the hopping term and overlap integral Ssr 
for s ≠ r both follow exp[-ka]. 

Consequently, we will neglect this interaction. 

(6.17) 

Thus, Eq. (6.8) can be re-written for r = 1 and r = 2 as 
1 1 2 12 2 2 12 1 2 12

1 21 1 1 21 2 2 1 21 2

c c c S c E c ES
c c S c c ES c E
  

  

   

   

Terms containing only the self energy or energy, E, of the combined system are large. 
The small terms are highlighted below in red: 

 

 

2 12 2 21 1 1

2 2

12

1 2 1 1 21 21

c c E S

c c E S

c c E

c c E

 

 





 

 

 


(6.18) 

Next, we note that the difference between the self energies, 1 and 2, and the energy, E, 
of the combined system may be small. Under this limit, we can reduce the equations 
further to 

Written as a matrix, we get 

1 1 2 12 1

1 21 2 2 2

c c c E
c c c E
 

 

 

 

1 12 1 1

21 2 2 2

c c
E

c c
 

 

    
    

    

(6.19) 

(6.20) 

Thus, we can ignore the overlap integrals of separated atoms. 

In summary, tight binding theory makes the following approximations: 

1. Consider only frontier atomic orbitals 
2. Consider only interactions between the frontier atomic orbitals of nearest 

neighbors. This is the tight binding approximation. 
3. Ignore the overlap integrals of separated atoms, i.e. Ssr = sr. This is valid only 

when 1 ≈ 2 ≈ E. We will assume Ssr = sr generally to simplify the mathematics. 

The self energy, , and the hopping interaction, , could be calculated numerically given 
the potential and the frontier atomic orbital. But, in this class, we will not actually 
determine  and . Rather we are interested in the form of the molecular wavefunctions 
and the dispersion relations for their energies. With this information we can determine 
whether the conductor is a metal or an insulator, and its density of states. 
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Introduction to Nanoelectronics 

Solving for the energy 

Considering the tight binding matrix of Eq. (6.20), non trivial solutions for the weighting 
factors, c1 and c2 are obtained from 

1 12

21 2

det 0
E

E
 

 





(6.21) 

Let‟s assume that the hopping interactions are equal 12 = 21 = . We‟ll consider two 
cases for equal and different self energies. 

(a) Equal self energies 1 = 2 =  

When 1 = 2 = , the energy is 
(6.22) E   

Substituting the energy back into Eq. (6.20) to obtain the coefficients c1 and c2 yields two 
normalized solutions: 

1 2

2
 




 . (6.23) 

These two orbitals can be defined by their parity: their symmetry if their position vectors 
are rotated. For example, we could exchange their coordinates. In this example the 
molecular orbital: 

1 2

2
 




 (6.24) 

does not change sign under exchange of electrons. It is classified as having gerade 
symmetry, denoted by g, where gerade is German for even. In contrast, the other orbital: 

1 2

2
 




 (6.25) 

does change sign under exchange of electrons. It is classified with ungerade symmetry, 
denoted by u, where ungerade is German for odd. 

Fig. 6.10. The probability density plotted for the two linear combinations of two frontier 
orbitals. Due to the increased electron density between the nuclei, the Φ1+ Φ2 has lower 
energy. 
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Part 6. The Electronic Structure of Materials 

Since the molecular orbital: 

(6.26) 1 2

2
 






has energy, E =  + , below that of the self energy, , of each atomic orbital, the 
molecule is stabilized in this configuration. This is known as a bonding orbital because it 
describes a stable chemical bond. Recall that  and  are defined to be negative for an 
electron in a positively charge nuclear potential. 

The other molecular orbital 
1 2

2
 




 (6.27) 

has energy, E =  - , greater than that of the self energy, , of each atomic orbital. 
Thus, this configuration is not stable. It is known as an antibonding orbital. 
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Internuclear
spacing

antibonding

bonding

Fig. 6.11. Antibonding and bonding molecular potential energy curves. Note that the 
antibonding energy is typically substantially larger than shown. 
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Introduction to Nanoelectronics 

(b) Different self energies 

If 1 2    and 1 > 2 then the solutions are: 
2 2

1 2
1 2 1 2

,E E 
 

   
   

 
(6.28) 

ϕ1

ϕ2

antibonding

bonding

En
er

gy

Similar Energies Different Energies

ϕ1 ϕ2

antibonding

bonding

En
er

gy

Fig. 6.12. The strongest bonds are formed from atomic orbitals with similar energies. In 
these diagrams the constituent atomic orbitals are shown at left and right. The molecular 
orbitals are in the center. 

Thus, the splitting increases with the similarity in energy of the participating atomic 
orbitals, i.e. the bonding orbital becomes more stable. This is a general attribute of the 
interaction between two quantum states. The more similar their intial energies, the 
stronger the interaction. 

Examples of tight binding calculations 

Let‟s consider a conductor consisting of four atoms, each of which provides a frontier 
atomic orbital containing a single electron. A molecular equivalent to this model 
conductor is 1,3-butadiene; see Fig. 6.13. Here each carbon atom contributes one electron 
in a frontier atomic orbital. 

C
C

C
C H

H
H

H

H

H

e- e- e- e-

Fig. 6.13. (left) A model four atom conductor, where each atom contributes a single 
electron in a frontier atomic orbital. (right) An approximate chemical equivalent is 1,3-
butadiene, where the carbon atoms provide the frontier orbitals. 

181 



   

 
 

 
         

 
 

 
   

   
 

 
   

      

   

   
  

     
 

            
       

 
                 

 
       

 

   

  
   

    
 

   

 
    

      

         

 

    

     

Part 6. The Electronic Structure of Materials 

We‟ll ignore the hydrogen atoms, since the frontier electrons are donated by the carbon 
atoms. Let‟s label the four carbon frontier atomic orbitals 1, 2, 3, and 4. 

(6.29) 
Following Eq. (6.6), we let the molecular orbitals be 

1 1 2 2 3 3 4 4c c c c       

where the c coefficients are yet to be determined. 

Let‟s next consider integrals of the form: 
m m mH E E      

Considering m = 1, 2, 3 and 4 in turn, we get four equations: 
1 1 1 2 12 1

2 2 2 1 21 3 23 2

3 3 3 2 32 4 34 3

4 4 4 3 43 4

H c c c E

H c c c c E

H c c c c E

H c c c E

   

    

    

   

  

   

   

  

(6.30) 

(6.31) 

You can think of each equation as describing the interactions between a particular carbon 
atom, and itself and its neighbors. Solving these equations gives the coefficients c1, c2, c3, 
and c4. To simplify, we will assume that the self energy at each carbon atom is the same, 
i.e. 

 =  1 =  2 =  3 = 4. 
In addition, we will assume that the hopping interactions between neighboring carbon 
atoms are the same, i.e. 

 =  12 =  21 =  23 = 32 =  34 = 43. 

Perhaps the best way to solve the equations systematically is via a matrix. The equations 
can be re-written: 

1 1

2 2

3 3

4 4

0 0
0

0
0 0

c c
c c

E
c c
c c

 

  

  

 

    
    
     
    
        

    

This equation is of the familiar form 
H E 

(6.32) 

(6.33) 
where the Hamiltonian is in the form of a matrix, and the wavefunction is a column 
vector containing the coefficients that weight the atomic orbitals: 

1

2

3

4

0 0
0

,   
0
0 0

c
c

H
c
c

 

  


  

 

  
  
   
  
     

   

(6.34) 

Expressing the Hamiltonian and wavefunction in this form is an example of matrix 
mechanics, a version of quantum mechanics formulated by Werner Heisenberg that is 
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Introduction to Nanoelectronics 

convenient for many problems. Apart from this example, we won‟t pursue matrix 
mechanics in this class. 

But it‟s worth taking a moment to examine the structure of the Hamiltonian matrix. Each 
row now describes the interactions between frontier orbitals on a carbon atom, and itself 
and its neighbors. The diagonal of the matrix contains the self-energies, and the off-
diagonal elements are the hopping interactions. This particular example is tridiagonal, 
i.e. the matrix elements are zero, except for the diagonal, and its immediately adjacent 
matrix elements. Linear molecules with alternating single and double bonds always 
possess tridiagonal matrices. 

After a bit of practice with tight binding calculations you should be able to skip directly 
to writing down the Hamiltonian matrix. For example, consider cyclobutadiene; shown 
below. 

C C

H

C C
H

H

H

e- e-

e- e-

Fig. 6.14. A cyclic four atom molecule and its chemical equivalent, cyclo-butadiene. 

Because of its ring structure, cyclobutadiene has additional hopping interactions between 
the carbons #1 and #4 that were on the ends of the chain in 1,3-butadiene. These 

(6.35) 

interactions at the 1,4 and 4,1 positions are labeled in red in Eq. (6.35) below. 
0

0
0

0

H

 

  

  





 

 
 
 
 
  
 

As you can probably imagine, for all but the simplest molecules, these matrices can get 
extremely large and unwieldy. And solving them can be extremely computationally 
intensive. In fact, tight binding calculations are almost never done by hand. But some 
insight can be gained by analytically solving simple linear molecules. 

Returning to 1,3-butadiene, rearranging Eq. (6.32), we get: 
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Part 6. The Electronic Structure of Materials 

(6.36) 

1

2

3

4

0 0
0

0
0
0 0

cE
cE
cE
cE

 

  

  

 

   
  

    
  
      

To find the non-trivial solution (i.e. solutions other than c1 = c2 = c3 = c4 =0) we take the 
determinant: 

The solutions are: 

And the eigenfunctions are: 

0 0
0

0
0
0 0

E
E

E
E

 

  

  

 










3 5
2 2

E    

sin ,      , 1,2,3,4.
5jc jn j n 

  
 

(6.37) 

(6.38) 

(6.39) 

These solutions are summarized in Fig. 6.15. The molecular orbitals are similar to the 
standing waves expected for a particle in a box. 

3 5
2 2

E    

3 5
2 2

E    

3 5
2 2

E    

3 5
2 2

E    

WavefunctionEnergy

j = 1 2 3 4j = 1 2 3 4

j = 1 2 3 4j = 1 2 3 4

j = 1 2 3 4j = 1 2 3 4

j = 1 2 3 4j = 1 2 3 4

c1 c2 c3 c4

n = 1

n = 2

n = 3

n = 4

Fig. 6.15. The molecular orbitals and their energies for 1,3-butadiene. After „Molecular 
Quantum Mechanics‟, by Atkins and Friedman, 3rd edition, Cambridge University Press, 
1997. 
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Introduction to Nanoelectronics 

Polyacetylene 

Next, let‟s consider a longer chain of carbon atoms. Very long molecules are known as 
polymers, and a polymer equivalent of the idealized conductor in Fig. 6.16 is known as 
polyacetylene. 

Specifically, let‟s solve for a carbon chain of N atoms. Equation (6.37) is an example of a 
tridiagonal determinant. In general, 

2 cos ,      1,2,...
1n

nE n N
N


 
 

   
 

an N × N tridiagonal determinant has eigenvalues:† 

. (6.40) 

and eigenvectors: 

sin ,      , 1,2,...
1jc jn j n N

N
 

  
 

. (6.41) 

Note that Eqns. (6.40)-(6.41) reduce to Eqns. (6.38)-(6.39) by using the identity: 
   cos 2 5 1 4 1 5   

Thus, we have solved for the molecular orbitals in a molecule modeled by an arbitrarily 
long chain of frontier atomic orbitals, each containing a single electron. 

2(N-1)
C

H

C
H

H
C

H

H

C
H

H
C

H

H
C

H

e- e- e- e-

Fig. 6.16. (left) An infinite chain of atoms each contributing a single electron in a frontier 
orbital. (right) The equivalent polymer polyacetylene. 

Next, let‟s re-express our solutions for polyacetylene in terms of a wavevector, k. Note 
that because the atoms are discretely positioned in a chain, k is also discrete. There are 
only N allowed values of k. 

Given x = ja0, where a0 is the spacing between carbon atoms, we get: 

and 

where 

   sinc x kx

 02 cosnE ka  

0

,      1,2,...
1

nk n N
a N


 


(6.42) 

(6.43) 

(6.44) 

† If you are interested and have a few spare hours you can try to prove this. After evaluating the first few 
determinants of simple triadiagonal matrices, N=1, N=2, N=3, etc.. find and solve a difference equation for 
the determinants as a function of the matrix dimension, N. 
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Part 6. The Electronic Structure of Materials 

The dispersion relation of polyacetylene is plotted in Fig. 6.17. The energy states are 
restricted to energies E =  ± 2, forming a band, of width 4, centered at . The 
bandwidth (4) is directly related to the hopping interaction between neighboring carbon 
atoms. This is a general property: the stronger the interaction between an electron and the 
neighboring atoms, the larger the bandwidth. And as we shall, the broader the electronic 
bandwidth, the better the electron conduction within the material. 

There are N states in the band, each separated by 

. (6.45) 
 0 1

k
a N


D 



Note that the length of the chain is L = (N-1)a0. Thus for long chains the separation 
between states in the band is approximately 

(6.46) 

Now each carbon atom contributes a single electron in the frontier atomic orbitals that 
comprise the molecular orbitals. Thus for a N-repeat polymer, there are N electrons. But 
each state holds two electrons, one of each spin. Filling the lowest energy states first, 
only the first N/2 k states are filled; see Fig. 6.17. Thus, the band is only half full, and so, 
if the polymer was connected to contacts we might expect polyacetylene to be a metal. 

k
L


D 

/2a0 a00
k

E
ne

rg
y

 4


a0 (N+1)


a0 (N+1)

filled
states

Fig. 6.17. The disp-
ersion relation of 
polyacetylene as 
determined by a 
tight binding 
analysis. For N 
atoms, each 
donating a single 
electron in a frontier 
atomic orbital, there 
are N molecular 
orbitals with 
energies arranged 
in a band. Since the 
band of states is 
only half full this 
material might be 
expected to be a 
metal. 
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Introduction to Nanoelectronics 

Crystals and periodic molecules 

The particle in a box approximation is too crude for most problems. Tight binding, on the 
other hand, is often quite computationally intensive. But fortunately, we can make 
simplifications when the material is periodic. In this lecture, we are interested in first 
describing 1d, 2d and 3d periodic materials, and then calculating their wavefunctions. 
We‟ll begin with some definitions. 

The Primitive Unit Cell 

A primitive unit cell of a periodic material is the smallest possible arrangement of atoms  
that can be copied to construct the entire material. 

Primitive Lattice Vectors 

Given a primitive unit cell, we can construct the periodic material by translating the unit 
cell by multiples of the primitive lattice vectors. 

Some examples may help 

Polyacetylene (average bond model) 

The carbon backbone of polyacetylene consists of alternating single and double bonds. 
Thus, there are two possible configurations: single-double-single-double or double-
single-double-single. 
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Fig. 6.18. The simplest model for polyacetylene is an average of the two possible 
alternating single-double bond configurations. 

The simplest model assumes that every carbon atom in polyacetylene is identical. The 
carbon-carbon bonds are then an average of single and double, and the unit cell is a single 
carbon atom and its associated hydrogen atom. Under this model, to construct a 
polyacetylene chain, we should 

0a1a x
translate the primitive unit cell a distance a0. Thus the 

primitive lattice vector is , where we arbitrarily positioned the chain parallel to 
the x-axis. 
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Part 6. The Electronic Structure of Materials 

Polyacetylene (alternating bond model) 

A more accurate model of polyacetylene includes the effects of alternating single and 
double carbon-carbon bonds on the polymer backbone. Since double bonds contain a 
slightly higher electron density than single bonds, they are slightly shorter. Thus, the 
single-double bond alternation establishes a static deformation with twice the period, a0, 
of the average bond model for polyacteylene. The periodic charge density established by 

The primitive lattice vector isthe deformation is known as a charge density wave. 
02a1a x . 

C

H

C

H

C
C

H

C

H

C

H

C

H

C

H

C

H

C

H

C

H

C

H

C

H

1
2

unit cell

H

2a0

Fig. 6.19. A more accurate model for polyacetylene, including the alternating single and 
double bonds. 

Graphene 

Polyacetylene is a 1d chain of carbon atoms, each contributing one electron in a frontier 
atomic orbital. It is also possible to form 2d sheets of carbon atoms with a single electron 
in their frontier atomic orbitals. See for example graphene in Fig. 6.20.† 

Fig. 6.20. Graphene is a 2d sheet of hexagonal carbon atoms. Electrons in frontier 
atomic orbitals are found above and below the plane. 

† In graphene extended  orbitals are formed above and below the plane of a sheet of 
hexagonal carbon atoms, increasing the rigidity of the structure and enhancing charge 
transport. 
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Introduction to Nanoelectronics 

Graphene may also be rolled up into cylinders to form carbon nanotubes – unique 
structures that we will consider in detail later on in the class. 

The unit cell of graphene contains two carbon atoms labeled 1 and 2 in Fig. 6.21. The 
lattice is generated by shifting the unit cell with the primitive lattice vectors 

 0 3 2,3 2a 1a and  0 3 2,3 2a2a , where a0 is the carbon-carbon bond 

length. 

1

2

a1
~a1
~ a2

~a2
~

x

y

Fig. 6.21. A graphene lattice showing the unit cell and primitive lattice vectors. 

Simple cubic, face centered cubic and diamond lattices 

lattice vectors are a0 is the spacing between 
Fig. 6.22 shows the simplest 3-d crystal structure – the simple cubic lattice. The primitive 

, where 0 ˆa1a x , 2 0 ˆaa y , 3 0 ˆaa z
neighboring atoms. Very few materials, however, exhibit the simple cubic structure. The 
major semiconductors, including silicon and gallium arsenide, possess the same structure 
as diamond. 

As also shown in Fig. 6.22, to describe the diamond structure, we first define the face 
centered cubic (FCC) lattice. Here the simple cubic structure is augmented by an atom in 
each of the faces of the cube. The primitive lattice vectors are: 

 0 ˆ ˆ
2
a

 1a x z ,  0
2 ˆ ˆ

2
a

 a y z ,  0
3 ˆ ˆ

2
a

 a x y , 

where a0 is now the cube edge length. 

In the diamond lattice, each atom is sp3-hybridized. Thus, every atom is at the center of a 
tetrahedron. We can construct the diamond lattice from a face centered cubic lattice with 
a two atom unit cell. For example, in Fig. 6.22, our unit cell has one atom at (0,0,0), and 
another at a0/4.(1,1,1). 
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Part 6. The Electronic Structure of Materials 

a1 a2
a3

a1

a2

a3

x y

z

a2a3

a1

x y

z
x y

z

Simple cubic lattice Face centered cubic lattice Diamond lattice

Fig. 6.22. A diamond lattice is simply a face-centered cubic lattice with a two atom unit 
cell (outlined in red). 

Bloch functions: wavefunctions in periodic molecules 

Wavefunctions in periodic materials are described by Bloch functions. To better 
understand their properties, it is instructive for us to derive Bloch functions.† 

First, let‟s consider a periodic molecule, comprised of unit cells translated by multiples of 
the primitive lattice vectors. Let the wavefunction of the unit cell be 0. Under the tight 

Molecular orbital

c10

c20

c30

c40

a

L

lattice vector

1
2

3
4

Periodic molecule

Unit cell Wavefunction of unit cell

0

Fig. 6.23. The molecular orbitals of periodic molecules are linear combinations of the 
wavefunctions of the unit cells. 

† Our method follows the derivation of Kittel in „Introduction to Solid State Physics‟, Wiley, 7th Edition, 
1996. 
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Introduction to Nanoelectronics 

binding approximation, the wavefunction of the unit cell is itself constructed from a 
linear combination of frontier atomic orbitals. 

Now, the molecular orbitals will be composed of linear combinations of the wavefunction 
of the unit cell, i.e. 

0r
r

c  (6.47) 

where once again cr is a set of coefficients. Note that, unlike approximations of molecular 
orbitals using linear combinations of frontier atomic orbitals, Eq. (6.47) is exact. We 
emphasize that 0 in Eq. (6.47) is the exact wavefunction of a unit cell of the complete 
molecule. In molecular orbital calculations 0 is typically calculated using tight binding, 
or another approximate technique. But for the moment we will assume that we know it 
exactly. 

The aim of this derivation is to determine the coefficients cr given that the material is 
periodic. Quite generally, we can relate the two coefficients c1 and c2 of the first two unit 
cells by 

2 1c c (6.48) 
where  is some constant. 

The symmetry of the material allows us to translate indistinguishably and consequently, 
1r rc c  (6.49) 

where 0 < r < N, where N is the number of unit cells in the material. 

Now if we assume periodic boundary conditions, we can compare the identical unit cells 
at r and r + N: 

L

apply periodic 
boundary 
conditions

translate with 
lattice vectors

Unit cell

a

Wavefunction of periodic molecule

L

c10

c20

c30

c40

a

Wavefunction of periodic molecule

L

c10

c20

c30

c40

c10

c20

c30

c40

c10
c20

c30
c40

c10
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c30
c40
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c20
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Fig. 6.24. The application of periodic boundary conditions to an already periodic 
molecule. 
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Part 6. The Electronic Structure of Materials 

But since cN+1 

1 1
N

Nc c  (6.50) 
= c1,  must be one of N roots of unity, i.e.  exp 2i n N  , where n is 

an integer. Thus, the coefficients are phase factors; the wavefunction corresponding to 
each unit cell is modulated by a phase factor in a periodic molecule. Consequently, if we 
set cN = 1 (which we can do since absolute phase is arbitrary): 

(6.51) 
Alternately, approximating the coefficients by a continuous function, we can write: 

2

e
ni r

N
rc



 . 

  eikxc x  (6.52) 
where 

2 nk
L


 . (6.53) 

Once again, only certain k values are allowed by the application of periodic boundary 
conditions. After all, standing waves in the molecule can possess only certain 
wavelengths. Recall also that Fourier transforms of periodic signals are discrete; see Fig. 
6.25. Thus, it follows from a Fourier analysis of the coefficients that k must be discrete. 
In addition, the Fourier transform of the coefficients is itself periodic since the 
coefficients are discrete (recall discrete time Fourier series - DTFS). 

The first Brillouin zone 

Since there are only N distinct values of the coefficients (corresponding to one period of 
the N values in the range 

(6.54) 

This is known as the first Brillouin zone. Other values of k are either not permitted by 
periodic boundary conditions, or c(x) = exp[ikx] reduces to one of the N solutions. For 
example, consider k = 2(n+N)/L: 

(6.55) 
where a0 is the spacing between unit cells. 

the Fourier transform), we typically restrict k to 
2 2N n N   , i.e. 

0 0

k
a a
 

   . 
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c10

c20
c30 c40

c10

c20
c30 c40

c10

c20
c30 c40

x
a0

L LL

k0 2


2
 

2
3

2
3

N
2

Fourier transform

r

c1

c2
c3 c4

c1

c2
c3 c4

c1
c3 c4c2c2

1 2 3 4 5 6 7 8-3 -2 -1 0

N=4 N=4N=4

Take coefficients

1st Brillouin zone

Molecular orbital

c10

c20
c30 c40

x
a0

L
Apply periodic boundary conditions

Periodic 1-d molecule

Fig. 6.25. A molecular orbital is described by linear combinations of the wavefunction of 
the unit cell. The coefficients, cr, are phase factors. The phase coefficients are discrete – 
there are only N of them. Thus, the Fourier transform of the coefficients contains only N 
unique values (it is periodic). We can restrict the range of k values without losing 
information. Typically, we chose k values in the first Brillouin zone (-/a0 < k ≤ /a0). Note 
also that the application of periodic boundary conditions fixes the spacing between k 
values at 2/L. 
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Part 6. The Electronic Structure of Materials 

2-d and 3-d periodic materials 

Applying Bloch functions to periodic 2d and 3d molecules follows the same principles as 
in 1d; see Fig. 6.26. 

The molecular orbitals in 2-d and 3-d periodic materials are still composed of linear 
combinations of the wavefunction of the unit cell, 0, i.e. 

0r
r

c  . (6.56) 

Once again, when we apply periodic boundary conditions the area occupied in k-space 
per k-state is: (for 2-d and 3-d, respectively) 

(6.57) 

where A is the area of the molecule, and V is its volume. 

3-d periodic materials are usually known as crystals. Si and the rest of the common 
semiconductor materials fall into the category of 3-d periodic materials. 

a2
a1

Bloch function

translate with 
lattice vectors

Wavefunction of a unit cell

Ly

Lx

apply periodic 
boundary 
conditions

Ly
Lx

c1,10

c1,20

c1,30

c1,40

c2,10

c2,20

c2,30

c2,40

c3,10

c3,20

c3,30

c3,40

c4,10

c4,20

c4,30

c4,40

Fig. 6.26. An example of a 2-d periodic material. 
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Introduction to Nanoelectronics 

Tight Binding Calculations in Periodic molecules and crystals 

Polyacetylene (average bond model) 

We now repeat the polyacetylene calculation, but this time we impose periodic boundary 
conditions and assume molecular wavefunctions of the Bloch form. The solutions are 
almost identical to the previous calculation in the absence of periodic boundary 
conditions, but there are some subtle yet important differences in the dispersion relation. 

The unit cell of polyacetylene under the average bond model has only a single carbon 
atom. Let the wavefunction of the jth unit cell be (j), defined as the frontier atomic 
orbital of carbon. Since polyacetylene is periodic, we use a Bloch function to describe the 
molecular orbitals 

   
2

0

ni j
N

j
x e x ja



  

 j H x  . Now, 

   j jH x x    

To derive the energy levels consider 

(6.58) 

(6.59) 
Under the tight binding approximation, this simplifies to 

   
2 2 2 2exp 1 exp exp 1 expn n n ni j i j i j i j
N N N N
   

   
       

           
       

(6.60) 

where 1j jH    and j jH   . 

Simplifying gives (compare Eq. (6.43)) 
22 cosn

n
N


    . (6.61) 

Re-writing Eq. (6.61) gives 
02 cosk ka    (6.62) 

where 

0

2 2n nk
Na L
 

  (6.63) 

Once again, we note that each carbon atom contributes a single electron to its frontier 
orbital, thus for a N-repeat polymer, there are N electrons. 

We can determine whether polyacetylene is a metal or insulator by counting k states. The 
spacing between k states is 2/L. Thus in the first Brillouin zone, there must be 
2/a0 / 2/L = L/a0 = N states. But each molecular orbital holds two electrons, one of 
each spin. Filling the lowest energy states first, only the first N/2 k states are filled; see 
Fig. 6.27. With only half its k states filled, polyacetylene might be expected to be a metal. 
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Part 6. The Electronic Structure of Materials 
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Fig. 6.27. Energy states in polyacetylene as determined by a tight binding analysis. 
Since the band of states is only half full this material might be expected to be a metal. 

Question: Why does the spacing between k states under periodic boundary conditions 
differ from that calculated for an isolated strand of polyacetylene – see Eq.(6.46)? 

Answer: In the previous section, we analyzed the allowed k states in a periodic linear 
molecule, polyacetylene. We did not employ periodic boundary conditions, thus we 
would expect that the solutions would only be comparable as the number, N, of unit cells 
increases, proportionately reducing the impact of the differing boundary conditions. But 
for N→∞ we still find Dk(isolated polyacetylene) = ½ Dk(polyacetylene in periodic 
boundary conditions). 

The answer to this conundrum is that isolated polacetylene (i.e. actual polyacetylene – 
not polyacetylene with infinite copies to the left and right) can only support standing 
waves; there are no contacts that can inject charge, hence no solely left or right-
propagating waves. Thus, considering both positive and negative values of k in isolated 
polyacetylene makes no sense. Rather, k ranges from 0 to /a0. There must be N states in 
this range, and we obtain Dk=/L. 

Given periodic boundary conditions, the polymer has infinite length. A wave could 
propagate to the left or right indefinitely. So we must consider both positive and negative 
values of k, i.e. k ranges from –/a0 to /a0. There must be N states in this range, and we 
obtain Dk=2/L. 
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Introduction to Nanoelectronics 

Interestingly, we are almost never interested in a completely isolated electronic material. 
For example, practical systems must have contacts to inject charge! Thus, periodic 
boundary conditions that allow for propagating waves often come closer to modeling 
practical systems. 

Polacetylene (alternating bond model) 

Next, let‟s see what happens to the dispersion relation under the alternating bond model. 
Now each unit cell has two carbon atoms; see Fig. 6.19. We‟ll model the unit cell with a 
linear combination of two frontier atomic orbitals because the contributions of each 
atomic orbital to the unit cell could vary. 

Let the wavefunction of the jth unit cell be 
     1 1 2 2j c j c j    (6.64) 

where 1(j) and 2(j) are the frontier atomic orbitals of the first and second carbon atom 
in the jth unit cell, respectively. 

We must define two hopping integrals. For single bonds we have 
   1 21S j H j    (6.65) 

and for double bonds 
. (6.66) 

As before,        1 1 2 2j H j j H j      . 

Assuming a wavefunction of the Bloch form (Eq. (6.58)) we take 

, 

where we note that the spacing between unit cells is now 2a0. 

(6.67) 

Under the tight binding approximations, the LHS of Eq. (6.68) expands to 

(6.68) 

Let‟s now consider two overlap equations 

. 

 

 

1 2 1 2

2 2 1 1

2 2exp exp

2 2exp exp

S D

D S

n nj H c i c c i j
N N

n nj H c c c i i j
N N

 
    

 
    

    
       

    

    
      

    

(6.69) 

The RHS of Eq. (6.68) expands to 
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(6.70) 
 

 

1 1

2 2

2exp

2exp

nj c i j
N

nj c i j
N


   


   

 
  

 

 
  

 

The solution for non-trivial c1, c2 is given by 
2exp

0
2exp

S D

S D

ni
N

ni
N


   


   

 
   

 


 
  

 

(6.71) 

i.e. 
2 2

02 cos2S D S D ka         (6.72) 

In the alternating bond model, the period of polyacetylene is 2a0. Thus the number of 
distinct k values is 2/2a0 / 2/L = N/2, where N is the number of carbon atoms in the 
polymer backbone. 

But there are two solutions for the energy at each k value (i.e. there are two energy 
bands), so the total number of states is N. Since each state holds two electrons, we find 
that the bottom band is completely full and the top band is completely empty. Thus, the 
periodic potential formed by alternating single and double bonds opens a band gap at 
k = /2a0, completing transforming the material from a metal to an 
insulator/semiconductor! Obviously, the accuracy of the DOS calculation is critical. 

/2a0 a00/2a0/a0

k

En
er

gy

filled
states

First 
Brillouin

zone

Fig. 6.28. A periodic perturbation with twice the interatomic spacing introduces a gap at 
the Fermi energy, transforming a metal into an insulator (wide bandgap semiconductor). 
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Introduction to Nanoelectronics 

Graphene 

Like polyacetylene in the alternating bond model, in graphene we have a unit cell with 
two carbon atoms. Let the wavefunction of the unit cell be 

1 1 2 2c c    (6.73) 
where 1 and 2 are the frontier atomic orbitals of the first and second carbon atom in the 
unit cell, respectively. 

We assume a wavefunction of the Bloch form (Eq. (6.58)) but we re-write it in terms of a 
sum over all lattice vectors R: 

   ie   k R

R
x x R . (6.74) 

Next we define the hopping integral 
1 2H   (6.75) 

As before, . 

Let‟s now consider two overlap equations 

j jH  

       

       

1 1

2 2

H

H

    

    





R x R x

R x R x
. (6.76) 

Under the Hückel/tight binding approximations, the LHS of Eq. (6.76)expands to 
      
      

1 1 2

2 2 1

1

1

i i i

i i i

H c c e e e

H c c e e e

   

   

 
   

   

1 2

1 2

k a k a k R

k a k a k R

R x

R x
. (6.77) 

The RHS of Eq. (6.76) expands to 
   

   

1 1

2 2

i

i

c e

c e

   

   





k R

k R

R x

R x
(6.78) 

The solution for non-trivial c1, c2 is given by 

i.e. 

 

 

1
0

1

i i

i i

e e

e e

  

  

 
  


  

1 2

1 2

k a k a

k a k a
(6.79) 

      2 23 2cos 2cos 2cos       1 1k a k a k a a (6.80) 

This is plotted in Fig. 6.29, where we have arbitrarily set  = 0. 
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Fig. 6.29. The bandstructure of graphene. 

Each unit cell contributes an orbital to a band; given N unit cells, each band has N states, 
or including spin, 2N states. Graphene, with two electrons per unit cell has two bands and 
2N electrons. Thus, the lower band of graphene is completely filled. 

We might therefore expect that graphene is an insulator, but the lower band touches the 
upper band at values of k known as the K points 

00 0

4 2 2,0 , ,
33 3 3 3 aa a

     
         
   

K

Thus, in these particular directions graphene conducts like a metal. 
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Fig. 6.30. The K points in graphene. 
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Introduction to Nanoelectronics 

Carbon Nanotubes 

Carbon nanotubes are remarkable materials. They are perhaps the most rigid materials 
known, and they have excellent charge transport properties. 

Fig. 6.31. An example of a carbon nanotube – composed of a rolled up graphene sheet. 
This particular tube is known as an armchair – you may be able to identify armchairs in 
the hexagonal lattice. 

We will treat carbon nanotubes as rolled-up graphene sheets. The construction of a 
nanotube from a sheet of graphene can be imagined as in Fig. 6.32. We first draw the 
wrapping vector from one unit cell to another. When the tube is formed both ends of the 
wrapping vector will be connected. The wrapping vector is written 

 ,n m n m  1 2w a a (6.81) 
The length of the wrapping vector determines the circumference of the tube, and as we 
shall see the vector (n,m) characterizes its electronic properties. 

Next two parallel cuts are made perpendicular to the wrapping vector and the remaining 
piece is rolled up; see Fig. 6.33.† 

x

y

x

y
1

2

a1
~ a2

~

1

2

a1
~a1
~ a2

~a2
~ w

Fig. 6.32. Carbon nanotubes can be imagined to be constructed from rolled up pieces of 
graphene. In the example above, a wrapping vector, w, is drawn between two unit cells 
that will be connected when the tube is rolled up. The graphene sheet is cut 
perpendicular to w. 

† Of course, carbon nanotubes are not actually made from graphene like this. There are many techniques 
including chemical vapor deposition using a catalyst particle that defines the width of the tube. 
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Part 6. The Electronic Structure of Materials 

After the tube is rolled up, periodic boundary conditions are established on the 
circumference of the tube. Thus, only certain values of the wavevector, k, are allowed 
perpendicular to the tube axis, i.e. 

(6.82) 2 ,l l k w

If the allowed k-states include the K points of graphene then the carbon nanotube will be 
a metal, otherwise it is a semiconductor. For example, consider a (4,4) armchair nanotube 
as shown below. We also plot the K points for graphene in k space. 
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Fig. 6.33. Three types of nanotubes. The first two, armchair and zigzag are special 
cases with wrapping vectors (N,N) and (N,0) or (0,N), respectively. The third is the 
general case or chiral form with wrapping vector (n,m). 
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Fig. 6.34. At left, a (4,4) armchair nanotube. At right, the K points of graphene. 

Let‟s begin by decomposing k into a component perpendicular to the tube axis, k , and a 
component parallel to the tube axis, k . For a (4,4) tube 0 ˆ12aw y . Thus, the allowed 
values of k are given by 

06y
lk

a


 . (6.83) 

As shown in Fig. 6.34, this set of allowed k values includes the K points. Thus (4,4) 
tubes are metallic. 

Next, let‟s examine a (0,4) zigzag tube. 

x

y

x

y

w

1

2

a1
~ a2

~

1

2

a1
~a1
~ a2

~a2
~

0

4 ,0
3 3a

 
  
 0

4 ,0
3 3a

 
  
 

00

2 2,
33 3 aa

  
  
 00

2 2,
33 3 aa

  
  
 

00

2 2,
33 3 aa

  
  

 00

2 2,
33 3 aa

  
   
 

kx

ky

For a (0,4) tube 0 0ˆ ˆ2 3 6a a w x y . Thus, the allowed values of are given by 
Fig. 6.35. At left, a (0,4) zigzag nanotube. At right, the K points of graphene. 
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Part 6. The Electronic Structure of Materials 

. (6.84) 
0

22 3 6x y
lk k

a


 

As shown in Fig. 6.35, this set of allowed k values does not include the K points. Thus 
(0,4) tubes are insulating/semiconducting. 

Analytic approximations for the bandstructure of graphene and carbon nanotubes 

Since the conduction properties of graphene are dominated by electrons 
 κ k K

occupying states 
at or near the K points, it is convenient to linearize the energy at . 

The exact tight binding solution from Eq. (6.80)is: 

      2 23 2cos 2cos 2cos       1 1k a k a k a a (6.85) 

We substitute  k K κ and expand the cos(K+) terms as a Taylor series to second 
order in . This yields: 

      

        

             

2 2

1 2 2 2 2

22 2

1 2 2 2 2

3 2cos 2cos 2cos

2 sin 2 sin 2 sin

cos cos cos

  

   

    

    

 

1 1

1 1 1

1 1 1

K a K a K a a

κ a K a κ a K a κ a a K a a

κ a K a κ a K a κ a a K a a

(6.86) 

Next, we note some identities: 

      2 1 2
1cos cos cos
2

    1K a K a K a a (6.87) 

      2 1 2sin sin sin    1K a K a K a a (6.88) 
From these identities Eq. (6.86) reduces to 

      
22 2

1 2 2
1 1 1
2 2 2

      1κ a κ a κ a a (6.89) 

Solving this (see the Problem Set) gives the approximate dispersion relation for graphene: 

0
3
2

a    κ (6.90) 

Since the speed of the charge carrier is given by the group velocity: 1v k   , we get 

(6.91) 03
2

av 


For a0 = 1.42Å and  = 2.5 eV, v = 106 m/s. 
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(6.92) 

Let‟s consider each K point in turn: 

For 
0

4 ,0
3 3a

 
   
 

K

Now, for carbon nanotubes, the periodic boundary condition on the circumfrence is 
  2 ,l l  κ K w

   2

0 0 0 0
3 3 3 3, ,

2 2 2 2

2 ( )
3

n m

n a a m a a

m n

   

   
         

   

  

1κ K w κ w K a a

κ w K K

κ w

(6.93) 

Rearranging gives: 
 2 2

3
n m

l 


 κ w (6.94) 

For 

For 

00

2 2,
33 3 aa

  
   
 

K

 

  

 

2
2 2

3
3

2 2
3

2 2
3

n m
l

n n m
l

n m
l

 

 

 


 

 
 


 

κ w

00

2 2,
33 3 aa

  
   
 

K

 

  

 

2
2 2

3
3

2 2
3

2 2
3

n m
l

n m m
l

n m
l

 

 

 


 

 
 


 

κ w

(6.95) 

(6.96) 

The other K points follow by symmetry, and we can conclude that 
 2

3
n m

l


 
  

 
κ

w
(6.97) 

where we have separated  into two components parallel, κ , and perpendicular, κ to 
the tube axis. From Eq. (6.90) we get 
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(6.98) 
22

03
3 2

da n ml
d


 
    

       
    

κ
. 

where the tube circumference is dw . Interestingly, Eq. (6.98) predicts that tubes are 

metallic when   3n m    . Assuming that n and m are generated randomly, we 
expect that 1/3 of tubes should be metallic. Indeed, this seems to be the case in practice. 
Note also that for semiconducting tubes the band gap is inversely proportional to the tube 
diameter. 

-/d -/2d /2d /d

-2

-1.5

-1

-0.5

0.5

1

1.5

2

 (eV)



(10,0)

-/d -/2d /2d /d

-2

-1.5

-1

-0.5

0.5

1

1.5

2

 (eV)



(9,0)

metallic semiconducting

Fig. 6.36. Approximate band structures for metallic and semiconducting zigzag tubes. 
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Introduction to Nanoelectronics 

Bandstructure of bulk semiconductors 

As stated above, most of the common semiconductors are constructed from sp3-
hybridized atoms assembled in the diamond crystal structure. 

Unfortunately, sp3-hybridization makes the bandstructure calculation much harder. In our 
earlier sp2-hybridized examples, we were able to ignore all of the atomic orbitals 
involved in  bonds, and we considered only the -bonding electrons from the 
unhybridized p atomic orbital. Since sp3-hybridized materials only contain  bonds, we 
can no longer employ this approximation and our calculation must include all four sp3-
hybridized atomic orbitals. In fact, to obtain reasonable accuracy, bandstructure 
calculations usually include the next highest unfilled orbital also. 

For a diamond structure, with a two atom unit cell, this means that we must consider 10 
atomic orbitals per unit cell (one set of five per atom in the unit cell). 

The calculation itself follows the procedures we described for graphene. But now we 
must solve a 10x10 matrix. We will draw the line here in this class. 

Band Gaps and Conduction and Valence bands 

As shown in Fig. 6.37, if the Fermi energy separates two bands of allowed electron states, 
the upper band is empty and the lower band is full. The energy difference between the top 
of the filled band and the bottom of the empty band is known as the band gap. Empty 
bands that lie above the Fermi energy are known as conduction bands. Filled bands that 
lie below the Fermi energy are known as valence bands. In this class, we have mostly 
considered charge transport through the conduction band. Charge may also move through 
vacancies in the normally full valence band. These vacancies are known as holes. Holes 
are effectively positively charged 
because the semiconductor no longer has 
its full complement of electrons. 
Consequently, a MOSFET that conducts 
through its valence band is known as p-
channel MOSFET. It requires a negative 
VGS to turn on. 

Fig. 6.37. The energy difference 
between the top of a filled (valence) 
band and the bottom of an empty 
(conduction) band is known as the band 
gap. 

kz

EF

E

Band gap

Valence 
band (filled)

Conduction
band (empty)
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Part 6. The Electronic Structure of Materials 

Band diagrams 

Often the dispersion relation is simplified to show just the bottom of the conduction band, 
and the top of the valence band. This simplification is useful because usually the density 
of states is sufficiently large in a bulk semiconductor that the gate is prevented from 
pushing the Fermi level into the band. Plots showing the band edges as a function of 
position are known as a band diagrams. 

Positionkz

Constant EF in equilibrium

E

Small 
band gap

E
ne

rg
y

kz

E

Large 
band gap

material 1 material 2

Bottom of 
conduction band #1

Bottom of 
conduction band #2

Top of valence 
band #1 Top of valence 

band #2

Fig. 6.38. An example of a band diagram. Here two insulators with different band gaps 
are connected. Note that the Fermi level must be constant in the two materials in 
equilibrium. 

Semiconductors and Insulators 

We have seen that insulators do not conduct because there are no uncompensated 
electrons. Considering both the conduction and valence band in the form shown in Fig. 
6.38, it is evident that the material is an insulator when the Fermi energy lies in the 
bandgap. But if we introduce electrons to the conduction band, or remove electrons from 
the valence band, what was once an insulator can be transformed into a conductor. In fact 
if the Fermi energy is close to either band edge, then even a small movement in the Fermi 
energy can significantly modulate the conductivity. Such materials are known as 
semiconductors because it is easy to modulate them between the metallic and insulating 
regimes. 

Sometimes, it can be difficult to distinguish between insulators and semiconductors. But 
insulators tend to have band gaps exceeding several electron-Volts and a Fermi energy 
close to the center of the band gap. 
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Introduction to Nanoelectronics 

Problems 

1. Consider the interaction of two carbon atoms each with one electron in a frontier 2pz 
atomic orbital. Assuming the positions of the atoms are fixed, the Hamiltonian of the 
system consists of a kinetic energy operator, and two Coulombic potential terms: one for 
the central atom and one for its neighbor: 

1 2H T V V  

Assume the wavefunction in this two atom system can be written as 

1 1 2 2c c   

where 1 and 2 are the 2pz atomic orbitals on the first and second carbon atoms, 
respectively, and c1 and c2 are constants. 

The self energy is defined as 

r r r rT V   

The hopping interactions are defined as 

sr s s rV  

Earlier, we assumed that the overlap integral between frontier orbitals on atomic sites s 
and r could be approximated as 

. 

Do not make that assumption here and show that the electron energies of the system 
satisfy 

 det 0H ES  (6.99) 

where H is a 2×2 Hamiltonian matrix and S is a 2×2 overlap matrix and E is a constant. 

(a) Write each matrix in Eq. (6.99) in terms of the self energies, hopping integrals and 
overlap integrals. 

(b) Under what conditions can you safely ignore the overlap integrals? 
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Part 6. The Electronic Structure of Materials 

2. (a) Consider the potential    0V x V x  , sketched below.   

 V x

x
0

 0V xFig. 6.39. A delta function potential. 

(i) Show that the wavefunction is given by 

(ii) Show that the energy of the bound states (E<0) is 

1( ) k xx ke


 where 0
2

mVk 
2

0
1 22

mVE   . 

(b) Now add a second delta function potential at x = a. 

i.e. if the previous Hamiltonian was  
2 2

1 022
dH V x

m dx
   , the new Hamiltonian is 

1H H V  where  0V V x a  

 0V x  0V x a 

 V x

x

a 
Fig. 6.40. Two delta function potentials. 

Let the wavefunction of the new system be approximated by 1 1 2 2c c    where 
 2 1 x a   and c1 and c2 are constants. 

The self energy is 1 1 1H  

The hopping interaction is 2 1V  

In addition, define the overlap integral 1 2S   , and 1 1V  

By evaluating the expressions 
1 1H E   

2 2H E   

and 
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show that 
1 1

2 2

1
1

c cS S
E

c cS S
   

   

        
      

       

Now show that , , 
2

0
2

kamV e 
 , and (1 ) kaS ka e 

2
20

2
kamV e 



E   Dropping terms containing e-2ka, show that the matrix reduces to 

2
0

22
mV






   

 
 

 

 

 

 

  
 
 

 
 

 

 
 

    

   

     
 

 
  

 

 
   

 

 
       

 

 

 
3. For molecules where each carbon atom contributes at least one delocalized electron to 
a  orbital, we can use the perimeter free electron orbital theory approximation, which is 
described below. 

Assume that the molecule in question is a circular ring of atoms and assume an infinite 
square well potential. 

(a) Show that the energy levels of a molecule under this approximation are 

where where ml is an integer, and L is the perimeter of the molecule. 

Hint: The Hamiltonian in polar coordinates is given by: 

2 2

22
l

e

h mE
m L

 , 

2 2 2

2 2 2

1 1ˆ
2 e

d d dH
m dr r dr r d

 
   

 

(b) According to the perimeter free electron orbital theory approximation, the energy 
level structure of anthracene is shown in Fig. 6.41, below. 

ml = 0

ml = -1

ml = -2

ml = -3

ml = -4

ml = 1

ml = 2

ml = 3

ml = 4

E
ne

rg
y 

(n
ot

 to
 s

ca
le

)

anthracene

Fig. 6.41. The molecular and energetic structure of anthracene. 
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Continued on next page…. 
(i) Why is there a solution for ml = 0 in anthracene but no solution for n = 0 in the infinite 
quantum well? 
(ii) Why are there solutions for negative ml in anthracene but no solutions for negative n 
in the infinite quantum well? Hint: consider the Pauli exclusion principle. 

(c) Calculate the molecular orbitals and HOMO-LUMO gap of anthracene. Take 
a = 1.38Å as the C-C bond length. Assume each C atom donates 1 electron to the 
frontier orbitals. 

4. Consider the periodic molecule consisting of two different alternating atom types 
illustrated below (frontier orbitals are shown).  

a0 
2s 2s2s

1s 1s 1s 

   

 
 

 
           

 
          

    
 

     
      

 
 
 

  
 

 

 
  

      
 

      
  

 
 

  
 
 

  
 

        
 

 
     

  
 

 
     

  
 
 

      
    

 
 

   
   

 

 

      

 

Fig. 6.42. A periodic array of two different atoms. 

(a) How many atoms are in the unit cell in this molecule?   Using periodic boundary 
conditions and assuming molecular wavefunctions of the Bloch form, find the energy 
levels. 

(b) Find the density of states. 

5. The band structure of molecular crystals 

Let   r be the HOMO of a typical molecule. As in most stable molecules,   r is fully 
occupied and contains two electrons. 

Unlike conventional crystalline semiconductors such as Si, the unit cells in a molecular 
crystal are held together by weak van der Waals forces. A typical value for the interaction 
between nearest neighbors in a van der Waals bonded solid is 

    10 meVH     r R r
where H is the Hamiltonian for the interaction between nearest neighbors and R is the set 
of lattice vectors connecting the molecule at r to its nearest neighbors. 

(a) Calculate the „valence‟ band structure of a cubic molecular crystal of this molecule. 
Let    H  r r . (See Fig. 6.43 below). 

Continued on next page…. 
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Introduction to Nanoelectronics 

Fig. 6.43. The structure of a simple cubic molecular crystal 

(b) Show that all molecular crystals with filled HOMOs are insulators. 

6. Consider the following polymer: 

1

2
a0

Fig. 6.44. A polymer. 

Assume the spacing between atoms on the linear backbone is a0, as shown. Also, assume 
all atoms are the same element, β1 and β2 are the hopping interactions between atoms as 
shown, the self energy at each atom is α, and assume each atom contributes one electron. 

(a) What is the primitive unit cell and primitive lattice vector? 

(b) Show that the dispersion relation is given by 

      2 2 2
2 0 2 0 1 0cos cos 2 1 cosE ka ka ka        . 

(c) Is the polymer metallic or insulating? 
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Part 6. The Electronic Structure of Materials 

7. Graphene and carbon nanotube transistors 

(a) With reference to the bandstructure of graphene shown below, explain why graphene 
when rolled up into nanotubes can be either metallic or semiconducting? 

(b) Using the k-space plot shown below, determine whether the following (n,m) 
nanotubes are metallic or semiconducting. Recall that nanotubes are rolled-up graphene 
sheets with wrapping vector  1 2 ,w na ma n m   . 

i) (0,6) 

ii) (N,N) 

iii) (3,9) 

iv) (3,5) 

0

4 ,0
3 3a

 
  
 0

4 ,0
3 3a

 
  
 

00

2 2,
33 3 aa

  
  
 00

2 2,
33 3 aa

  
  
 

00

2 2,
33 3 aa

  
  

 00

2 2,
33 3 aa

  
   
 

kx

ky

0

4 ,0
3 3a

 
  
 0

4 ,0
3 3a

 
  
 

00

2 2,
33 3 aa

  
  
 00

2 2,
33 3 aa

  
  
 

00

2 2,
33 3 aa

  
  

 00

2 2,
33 3 aa

  
   
 

kx

ky

Fig. 6.45. The K points in graphene. 

(c) At present, there is much interest in using graphene (as opposed to carbon nanotubes) 
as the channel material for field effect transistors. The idea is to fabricate entire chips on 
a single sheet of graphene. 

First the graphene is deposited somehow (this is a technological challenge at present). 
Next, the graphene is cut up. 
Finally, contacts and gate insulators are deposited. 

Why is the graphene cut up? Explain with reference to particle in a box models of 
conductors. 
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Introduction to Nanoelectronics 

8. Carbon Nanotubes 

(a) Prove the identities in Eq. (6.87) and Eq. (6.88). 

(b) Derive Eq. (6.90) from Eq. (6.89). 

9. This question relates to the molecule shown below. 

a) Write the Hamiltonian matrix for this molecule in terms of the tight binding 
parameters α, and β. 

b) Write the energy for this molecular orbital in terms of α and β. 

c) Compare the density of states of the HOMO and LUMO of the previous molecule to 
the one below. 
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Part 7. Fundamental Limits in Computation 

Part 7. Fundamental Limits in Computation 

This course has been concerned with the future of electronics, and especially digital 
electronics. At present digital electronics is dominated by a single architecture, 
Complementary Metal Oxide Semiconductor (CMOS), which is built on planar silicon 
field effect transistors. Steady improvements in the performance of CMOS circuits have 
been achieved by shrinking the feature sizes of the component transistors. This 
remarkable progress in electronics achieved over a period of > 30 years has come to 
underpin much of our economic life. 

In this section, we address both practical and thermodynamic limits to silicon CMOS 
electronics. It is likely that these limits will dominate the future of the electronics 
industry. 

Speed and power in CMOS circuits 

As you should remember from 6.002, the archetype CMOS circuit is shown in Fig. 7.1. It 
is composed of two complementary FETs: the upper MOSFET is off for a high voltage 
input, and the lower MOSFET is off given a low input. The circuit is an inverter. 

VDD

VINVINVIN VOUTVOUT
VOUTVOUT

Fig. 7.1. A CMOS inverter consists of two complementary MOSFETs in series. 

For constant voltage input, the circuit has two stable states, as shown in Fig. 7.2. Because 
one of the transistors is always off in steady state, the circuit ideally has no static power 
dissipation. 
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VDD

VIN

VOUTVOUT = 0

high
VDD

VIN

VOUTVOUT = VDD

low
VDD

VIN VOUTVOUT

Fig. 7.2. The two steady state configurations of the inverter. No power is dissipated in 
either. 

But when the input voltage switches the circuit briefly dissipates power. This is known as 
the dynamic power. We model the dynamics of a CMOS circuit as shown in Fig. 7.3. In 
this archetype CMOS circuit one inverter is used to drive more CMOS gates. To turn 
subsequent gates on an off the inverter must charge and discharge gate capacitors. Thus, 
we model the output load of the first inverter by a capacitor. 

VDD

VIN

VDD

VIN

VOUTVOUT

VDD

VINVIN
VOUTVOUT

#1
#2

VOUTVOUT
#1VOUTVOUT

#1 VOUTVOUT
#2

Fig. 7.3. Cascaded CMOS inverters. The first inverter drives the gate capacitors of the 
second inverter. To examine the switching dynamics of the first inverter, we model the 
second inverter by a capacitor. 
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Part 7. Fundamental Limits in Computation 

We now consider the key performance characteristics of CMOS electronics. 

The Power-Delay Product (PDP) 

The power-delay product measures the energy dissipated in a CMOS circuit per 
switching operation. Since the energy per switching event is fixed, the PDP describes a 
fundamental tradeoff between speed and power dissipation – if we operate at high speeds, 
we will dissipate a lot of power. 

Imagine an input transition from high to low to the inverter of Fig. 7.1. 

VDD

VIN
VOUTVOUT

VDD

VIN VOUTVOUT

I

I

Fig. 7.4. Changes in the input voltage cause the output capacitor to charge or discharge 
dissipating power in the inverter. 

If the output capacitor is initially uncharged, the energy dissipated in the PMOS FET is 
given by: 

 
2

0
DD OUTW dt V V I



  (7.1) 

The current into the capacitor is given by: 
OUTdVI C

dt
 , (7.2) 

Combining these expressions: 

   
2

2

0 0

1
2

DDV
OUT

DD OUT OUT DD OUT DD
dVW C dt V V C dV V V CV

dt



      . (7.3) 

Similarly, in the second half of the cycle, when the capacitor is discharged through the 
NMOS FET, it is straightforward to show that again 21

2 DDW CV . Thus, the energy 
dissipated per cycle is: 

2
DDPDP CV . (7.4) 
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Introduction to Nanoelectronics 

Switching Speed 

The dynamic model of Fig. 7.4 relates the switching speed to the charging and 
discharging time of the gate capacitor. 

(7.5) max
DD

If
CV



Thus, switching speed can be improved by 
(i) increasing the on current of the transistors 
(ii) decreasing the gate capacitance by scaling to smaller sizes 
(iii) decreasing the supply voltage (thereby decreasing the voltage swing during 

charge/discharge cycles 

Scaling Limits in CMOS 

Equation (7.4) demonstrates the importance of the gate capacitance. The capacitance 

ox

AC
t




is 

(7.6) 

where A is the cross sectional area of the capacitor, tox is the thickness of the gate 
insulator and  is its dielectric constant. 

semiconductor

insulator
gate

tox

Area: A = Lx x Ly

Lx Ly

Fig. 7.5. The dimensions of a gate capacitor. 

Now, if we scale all dimensions down by a factor s (s < 1), the capacitance decreases: 

 
2

0
ox

s AC s sC
st


  (7.7) 

From Eq. (7.4), reductions in C reduce the PDP, allowing circuits to run faster for a given 
power dissipation. Indeed, advances in the performance of electronics have come in large 
part through a continued effort of engineers to reduce the size of transistors, thereby 
reducing the capacitance and the PDP; see Fig. 7.6. 
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DRAM ½ pitch

Processor printed gate length

Fig. 7.6. The semiconductor roadmap predicts that feature sizes will approach 10 nm 
within 10 years. Data is taken from the 2002 International Technology Roadmap for 
Semiconductors update. 

At present, however, there are increasing concerns that we are approaching the end of our 
ability to scale electronic components. There are at least two looming problems in 
electronics: 

(i) Poor electrostatic control. 

We saw in part 5 that gate control over charge in the channel requires tox << L, where L is 
the channel length. Now as the channel length, L → 10 nm, tox → 1 nm, i.e. the gate 
insulator is only several atoms thick! But the electric field across the gate must remain 
high to induce charge in the channel. Thus, reductions in feature sizes will eventually 
place severe demands on the gate insulator. 

(ii) Power density 

The electrostatic problem is fundamental, but it is possible that power concerns may 
obstruct the scaling of CMOS circuits prior to the onset of electrostatic issues. Power 
density is a particular concern since it does not benefit from continued reductions in 
component size. 
C s

If the dimensions of a MOSFET are scaled down by a factor s (s < 1), 
(recall that capacitance is proportional to cross sectional area, and inversely 
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Introduction to Nanoelectronics 

proportional to the spacing between the charges). But even if the PDP scales as s, the 
power density may increase because the number of devices per unit area increases as 1/s2. 

The power densities of typical integrated circuits are approaching those of a light bulb 
filament ( ~ 100 W/cm2). For comparison, the power density of the surface of the sun is 
~ 6000 W/cm2. Removal of the heat generated by an integrated circuit has become 
perhaps the crucial constraint on the performance of modern electronics. Indeed, the 
fundamental limit to power density appears to be approximately 1000 W/cm2. In practice, 
using water cooling of a uniformly heated Si substrate with embedded micro channels, a 
power density of 790 W/cm2 has been achieved with a substrate temperature near room 
temperature. 

2000 2005 2010 2015 2020

Year
2000 2005 2010 2015 2020

Year

P
ow

er dissipation (W
)

60

80
100
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1000
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1

2

S
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)

Fig. 7.7. The semiconductor roadmap predicts that supply voltages will drop to nearly 
0.4V within 10 years. Power dissipation per chip is expected to increase to above 200W 
by 2008. It is expected that power dissipation in the shaded region will require 
significantly more expensive cooling systems. Data is taken from the 2002 International 
Technology Roadmap for Semi-conductors update. 

As is evident from Eq. (7.4) above, the PDP also depends on the supply voltage VDD. 
Ensuring that the total power dissipated per chip << 200 W has driven VDD from 5V in 
early CMOS circuits to nearly 1V today. If the industry conforms to roadmap predictions, 
the supply voltage will eventually reach 0.4V by 2016. 

But what is the ultimate limit to the PDP? 
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Part 7. Fundamental Limits in Computation 

Brief notes on information theory and the thermodynamics of computation 

We now examine the thermodynamics of computation. 

(i) Minimum energy dissipated per bit 
Assume we have a system, perhaps a computer, with a number of possible states. The 
uncertainty, or entropy of the computer is a measure of the number of states. Recall from 
thermodynamics that the Boltzmann-Gibbs entropy of a physical system is defined as 

1
ln

N

B i i
i

S k p p


   , (7.8) 

where the system has N possible states, each with probability pi, and kB is the Boltzmann 
constant. 

The opposite of entropy and uncertainty is information. When the uncertainty of the 
system decreases, it gains information. 

Now, the second law of thermodynamics can be restated as “all physical processes 
increase the total entropy of the universe”. Let‟s separate the universe into the computer, 

. (7.9) 
and everything else. The corresponding entropy of each system is given by 

universe computer everythingelseS S S 

Thus, thermodynamics requires 
0universeSD  . 

everythingelse computerS SD  D , 

(7.10) 
It follows that 

(7.11) 
i.e. if the information within a computer increases during a computation, then the entropy 
decreases. This change in entropy within the computer must be at least balanced by an 
increase in the entropy of the remainder of the universe. The increase in entropy in the 
remainder of the universe is obtained by dissipating heat, DQ, from the computer. 

According to thermodynamics the heat dissipated is 
everythingelse computerQ T S T SD  D   D (7.12) 

Uncertainty and entropy can also be measured in bits. For example, how many bits are 
required to describe the computer with N 

2H N

states? 
. (7.13) 

Here, H is known as the Shannon entropy. If the states are equally probable, with 
probability 1p N , then the uncertainty reduces to: 

2 2log logH N p   . (7.14) 
Or more generally, if each state of the computer has probability pi. 

2 2
1

log log
N

i i i
i

H p p p


    (7.15) 

Comparing Eq. (7.8) with Eq. (7.15) and noting that   2ln ln 2 logi ip p gives 
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Introduction to Nanoelectronics 

 ln 2B computerQ k T HD   D (7.16) 
The heat must ultimately come from the power supply. Thus, the minimum energy 

. (7.17) 
required per generation of one bit of information is: 

ln(2)min BE k T

This minimum is known as the Shannon-von Neumann-Landauer (SNL) limit. 

(ii) Energy required for signal transmission 
Recall Shannon‟s theorem for the capacity, c, in bits per second, of a channel in the 
presence of noise. 

(7.18) 

where s and n are the signal and noise power, respectively, and b is the bandwidth of the 
channel. The noise in the channel is at least 

2log 1 sc b
n

 
  

 
, 

Bn bk T . 

The energy required per bit transmitted is: 

 0 0
2

lim lim
log 1min s s

s sE
c b s n 

   
    

    
. (7.19) 

L‟Hôpital‟s rule gives 
ln(2)min BE k T . (7.20) 

consistent with the previous calculation of Emin. 

(iii) Consequences of Emin 
It has been argued that since the uncertainty in energy, DE, within an individual logic 
element can be no greater than Emin, we can apply the Heisenberg uncertainty relations to 
a system operating at the SNL limit to determine the minimum switching time, i.e.† 

(7.21) 

(7.22) 

E tD D 

Eq. (7.21) gives a minimum switching time of 

 
0.04ps

ln 2min
BE k T

   
D

Assuming that the maximum power density that we can cool is Pmax ~ 100W/cm2, the 
maximum integration density is 

(7.23) 

At room temperature, we get to a switch size of 
100 x 100 nm. This is very close to the roadmap value for 2016. 

At lower temperatures, the power dissipation on chip is decreased, but the overall power 
dissipation actually increases due to the requirement for refrigeration.4 Since the 

† This argument, due to Zhirnov, et al. "Limits to Binary Logic Switch Scaling - A Gedanken Model", 
Proceedings of the IEEE 91, 1934 (2003), has been used to argue that end of the roadmap Si CMOS is as 
good as charge based computing can get. 

2
max max

max
min min min

P Pn
E E

 

10 -2 nmax ~< 10 cm , equivalent 
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Part 7. Fundamental Limits in Computation 

engineering constraint is likely to be on chip power dissipation – refrigeration may be one 
method for further increasing the density of electronic components. 

Reversible computers 

In the previous section, we defined computation as a process that increases information 
and decreases uncertainty. But if uncertainty (i.e. entropy) decreases within the computer, 
entropy must increase outside the computer. This is an application of the second law of 
thermodynamics, which states that all physical systems can only increase entropy over 
time. 

Of all physical laws, the second law of thermodynamics is famous for defining the „arrow 
of time‟. The implication of the second law is that computation is irreversible, at least if 
the computation changes uncertainty. 

For example, let‟s consider a two input AND gate. If one of the inputs to the AND gate is 
a zero, then the information in the other input is thrown away. Thus, the total number of 
states decreases when the inputs propagate to the output of an AND gate. Consequently, 
entropy decreases, heat is dissipated and AND gates are not reversible. 

A
B

X

A B X
0 0 00 0 0
1 0 01 0 0
0 1 00 1 0
1 1 11 1 1

Fig. 7.8. AND gates are not reversible. If the output is zero, the inputs cannot be 
reconstructed. 

The heat dissipated in the AND gate is calculated as follows. There are four possible 
input states. Assuming each is equi-probable the Shannon entropy is 

2
1log 2 bits4inH    (7.24) 

There are two possible output states. The probability of the output X = 0 is ¾ and the 
probability of X = 1 is ¼. 

2 2
3 13 1log log 0.811bits4 44 4outH     (7.25) 

Thus, 
  21ln 2 3.4 10 JBE k T H D   D   (7.26) 

But what if we designed a gate that did not throw away states during the computation? 
Such a system would be reversible, and more importantly it would not need to dissipate 
energy. 

In fact, several reversible logic elements have been proposed. Perhaps the best known 
irreversible computer is the billiard ball computer pioneered by Fredkin. 
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Introduction to Nanoelectronics 

An example of a billiard ball logic gate is shown in Fig. 7.9. Billiard balls are fired into 
the logic gate from positions A and B. If there is a collision, the balls are deflected to 
positions W and Z. If one ball is absent, however, an output at either X or Y is generated. 
We also need to assume that the balls obey the laws of classical mechanics; there is no 
friction and the collisions are perfectly elastic. Note that the number of states in a billiard 
ball logic elements does not change – the billiard balls are neither created nor destroyed. 

A

B

W
X

Y
Z

Fig. 7.9. A two ball collision gate. After Feynman, Lectures on Computation. Editors 
A.J.G. Hey and R.W. Allen, Addison-Wesley 1996. 

More complex devices are possible by adding „redirection gates‟ (walls). For example, 
Fig. 7.10 shows a switch made from collision and redirection gates. 

A

B

AB
AB

A
Fig. 7.10. A billiard ball switch. After Feynman, Lectures on Computation. Editors A.J.G. 
Hey and R.W. Allen, Addison-Wesley 1996. 

But given that many logic gates such as the AND gate are inherently non-reversible, the 
question arises: Can an arbitrary algorithm be implemented entirely from reversible 
elements? The answer is yes. Reversible computers can be constructed entirely of a 
fundamental reversible element known as the Fredkin gate, shown in Fig. 7.11. 

A

B

C

A‟=A

B‟

C‟

A B C
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0

1 1 0
1 1 1

1 0 1

A‟ B‟ C‟
0 0 0
0 1 0
0 0 1
0 1 1
1 0 0

1 1 0
1 1 1

1 0 1

B‟

Fig. 7.11. The symbol for the Fredkin gate. A is unchanged. If A = 0 then B and C 
switch. If A = 1 then B and C remain unchanged. All logic elements may be formulated 
from reversible Fredkin gates. After Feynman, Lectures on Computation. Editors A.J.G. 
Hey and R.W. Allen, Addison-Wesley 1996. 
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Part 7. Fundamental Limits in Computation 

An implementation of a Fredkin gate with billiard balls is shown in Fig. 7.12. 

A

A

AB

AB

AC

C
C

B

B‟

C‟

A‟

ACAC

A

B

AB

A

ABAB

Fig. 7.12. A Fredkin gate constructed from four billiard ball switches. After Feynman, 
Lectures on Computation. Editors A.J.G. Hey and R.W. Allen, Addison-Wesley 1996. 

Reversible computers and noise 

Reversible computers, however, remain extremely controversial in engineering circles. 
The catch is noise. Shannon‟s theorem, for example, requires Emin = kBT ln(2) for the 
transmission of one bit of information in a noisy channel. This applies even in a 
reversible system such as the billiard ball collision gate. In fact, billiard ball gates are 
extremely sensitive to errors. Given a slight error in the trajectory or timing of one ball 
and a billiard ball computer would accrue a large number of errors. 

A billiard ball computer could be made more robust and noise resistant by including 
trenches to guide the balls. But the trench guides the balls by dissipating that component 
of the ball‟s momentum that would otherwise drive it off its designed trajectory. Thus, 
the trenches inevitably lead to energy dissipation. 

In contrast, let‟s briefly look at noise in CMOS circuits. The transfer function of a CMOS 
inverter is shown in Fig. 7.13. We see that close to the switching voltage, the inverter has 
very large gain, AV: 

1out
V

in

dVA
dV

 (7.27) 

The gain protects the inverter against noise. For example, consider two cascaded 
inverters. Assume some noise is added to the output of the first inverter. The noise 
margin tells us the minimum amount of noise required to cause an error at the output of 
the second inverter; see Fig. 7.14. 
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Introduction to Nanoelectronics 

Thus, many device engineers argue that without gain no computation system is practical. 
And since reversible computers do not dissipate power it is not clear how they can 
amplify a signal, rendering them always subject to the adverse effects of noise. 

O
ut

pu
t

InputVIL VIH

VOL

VOH

Fig. 7.13. Transfer characteristics of a CMOS inverter. VIL and VIH are defined as the 
threshold of low and high inputs, respectively. Note that the large gain means that VOL < 
VIL and VOH > VIH, helping protect signal integrity against the effects of noise. 

Output #1 Input #2
Logical High
Output Range

Logical Low
Output Range

Logical High
Input Range

Logical Low
Input Range

Indeterminate 
Region

Indeterminate 
Region VIL

VIH

VOL

VOH

Noise Margins

noise

Fig. 7.14. The noise margin in a digital circuit is the minimum input noise voltage 
required to cause an error at the output of the next gate. The greater the gain, the 
greater the noise margin. 
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Part 7. Fundamental Limits in Computation 

The future of electronics? 

The immediate path is clear: we have not yet reached the limits of scaling, or the 
fundamental limits of field effect transistors. The electronics industry will push to smaller 
length scales to minimize the power delay product. It will also seek to exploit ballistic 
conduction in low dimensional materials, thereby increasing switching speeds. 

It is realistic to expect that a future MOSFET might possess: 

(i) ballistic transport and operation at the quantum limit of conductance 
(ii) switching on and off at the optimum FET subthreshold slope of kT/q 
(iii) scaling of all dimensions with a gate insulator thickness of ~ 1 nanometer 

Traditionally, substantial materials development efforts have been devoted to improving 
the mobility of transistor channels. But because devices are already at the ballistic limit, 
the electrostatic design of nanotransistors will be a likely focus of materials development. 
We have seen that good electrostatic control of the channel can be achieved by 
maximizing the gate capacitance. For example, with a nanowire channel, the gate could 
be implemented as a concentric ring. Or a channel that consists of a single atomic layer 
(such as a grapheme sheet) might be preferable from the electrostatic viewpoint to a 
thicker layer of silicon, even though both will operate at the ballistic limit. Manufacturing 
such advanced structures may require a substantial amount of further development. 

Beyond this, there appears to be only one major weakness of conventional FET 
technologies. There is a strong possibility that new technologies will demonstrate 
subthreshold slope far superior to kT/q. As we have seen, this will allow for dramatic 
reductions in operating voltage, and hence significantly lower power dissipation. 

From a fundamental viewpoint, all transistors that operate in thermodynamic equilibrium, 
must exhibit an energy difference between their ON and OFF states. For example, the 
potential energy difference between the ON and OFF states of a FET is DE = ½CV2, 
which can also be expressed as DE = ½QV, where Q is the total charge on the gate 
capacitor and V is the supply voltage. The fundamental limit in the OFF state current is 
the probability of thermal excitation from the OFF state to the ON state. That is: 

1
2expOFF ONI I QV kT    (7.28) 

where ION is the maximum current associated with the ON state. But as we have seen, 
modern FETs do not operate at this limit because each electron in the channel is 
independent. In contrast to Eq. (7.28), the FET follows: 

 expOFF ONI I qV kT  (7.29) 
Except for a FET that operates with a single electron in the channel, the difference is 
substantial: a subthreshold slope of kT/Q versus kT/q. Indeed, at present transistor 
dimensions Q >> 103 q. 
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Introduction to Nanoelectronics 

So how can we approach the subthreshold limit? 

It is thought that if all the charge in the channel behaves collectively, (i.e. all or none of 
the charge contributes to current) then it might be possible to switch closer to the limit. 
Perhaps the best examples of this principle are the voltage-dependent ion channels of 
biology, in which conformation changes may enable subthreshold slopes as sharp 
≈ 10 mV/decade.† 

Fig. 7.15. The switching 
characteristics of voltage 
gated sodium ion channels 
from the giant squid axon. 
Note the extremely sharp 
switching characteristics. 
Reproduced from Hodgkin and 
Huxley‟s classic 1952 series of 
papers. 

Below, we show the structure and mechanism of the mechanical change in a voltage 
dependent K+ ion channel, as determined by MacKinnon, et al.§ The channels sit in a 
membrane; when open they allow the diffusion of ions from one side of the membrane to 
the other. 

Fig. 7.16. The voltage dependent K+ ion channel has 4 charged paddles that rotate in an 
electric field, opening and closing a mechanical gate at the base of the channel. 
Reproduced from MacKinnon, et al. 

† Hodgkin and Huxley, J. Physiol. 116, 449 (1952a) 
§ Y. Jiang, A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait and R. MacKinnon. Nature. 423. 33-41 (2003) 
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Part 7. Fundamental Limits in Computation 

Consider a membrane where there are N closed channels and N* open channels. The ratio 
of open to closed channels is determined by the Boltzmann relation: 

*

exp open closedU UN
N kT

 
  

 
(7.30) 

where Uopen and Uclosed are the energies of the open and closed conformations 
respectively. Under an electric field, we assume that Z charges move through a potential 
of DV, i.e.: 

open closedU U Zq V  D . (7.31) 
The current through the ion channel is proportional to the number of open channels, N*. 

Since N + N* is a constant 
*I N

* *

* expN N Zq VI
N N N kT

D 
      

(7.32) 

(7.33) 

That is, the subthreshold slope is sharpened by a factor, Z, the effective† number of 
charges on the movable paddles. 

10 10

1 60  mV/decade
log log e

V kT
I Ze Z

D
  . (7.34) 

Fig. 7.17. Ion channels modulate the diffusion of ions through a membrane. The 
direction of ion current is determined by the concentration gradient. Typically, the ion 
channel preferentially passes ions of a particular size and charge. When it is open, the 
channel illustrated above selectively allows K+ ions to diffuse. 

† Note that the effective number of charges is usually less than the actual number of charges on the movable 
structures in the ion channel because the charges are not usually free to move through the full potential DV 
across the membrane (the motion of the paddles is somewhat restricted). 
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Introduction to Nanoelectronics 

The conclusion is that transistors are possible with subthreshold characteristics superior 
to those of conventional FETs. The ion channel shows that mechanically-coupling the 
charges together is one path to achieving the collective behavior that we desire. But the 
reliability of mechanical devices is questionable. Instead, it is possible that another 
collective phenomenon, like the switching of a magnetic domain in a ferromagnet, may 
be exploited to improve switching. 

And beyond? 

Researchers are currently pursuing a few ideas: 

1. Reversible computing 
The absence of power dissipation makes this a big prize, but concerns remain as to its 
noise immunity and fundamental practicality. 

2. New information tokens 
Transistors today use electrons to carry information. Instead, we might seek to use a 
different information token such as the spin of an electron or position in a mechanical 
switch. A change in information token could revolutionize electronics. But at present it is 
not clear what, for example, a spin-in spin-out transistor might look like, nor do we have 
a clear idea of the potential benefits of spin-based technology. For example, could it 
escape the Shannon-Von Neumann- Landauer limit? 

3. Integration 
More transistors per chip have traditionally meant more computing power. If we can‟t 
make transistors any smaller, perhaps we could shift to three dimensional circuits? A 
transition from two to three dimensional circuits could massively increase integration 
densities. But apart from the difficulty of fabricating such structures, we must also figure 
out how to cool them. 

4. Architecture 
The computing power of the brain clearly demonstrates the virtue of different approaches 
to certain problems such as pattern recognition. But it is not clear that our current model 
of electronics is suited to say, a shift to a neural network type architecture. 

Whatever happens the stakes are high. As we approach the limits of CMOS, slow 
technological progress may reduce the need to update computers every few years. But the 
economic model of the electronics industry has come to rely on rapid technological 
change. Consequently, the rewards may be especially great for the next revolution in 
electronics technology. 
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Part 7. Fundamental Limits in Computation 

Problems 

Q1. Adiabatic Transistors 

Consider the inverter shown below. 

VR(t)

VIN VOUT

VDD

VDD



0

0 t

t

VIN

VR

Fig. 7.18. An adiabatically-driven inverter. 

Unlike in a conventional CMOS inverter, in this device, the supply voltage, VR, adjusts 
during the switching operation. Initially the voltage on the output capacitor is zero, but at 
t = 0 the input voltage drops to zero. Also at t = 0, the supply voltage ramps from zero to 
the logic high voltage, VDD. 

Assume that the PMOS FET is modeled by a resistor, R. 

(a) Show that the energy dissipated during the switching operation is 
2

DD
RCE CV


 for  >> RC. 

This is known as an adiabatic switch, since switching occurs (in the limit) with no energy 
dissipation, i.e. we are adding charge to a capacitor using a vanishingly small excess 
voltage. 
[Hint: You may assume VOUT of the form VOUT = a + bexp[-t/RC] + ct where a, b, and c 
are constants to be determined.] 

(b) Show also that the energy dissipated reduces to the standard CMOS switching energy 
2

DDCVE = 
2

for  << RC. 

(c) The above example shows adiabatic switching when the capacitor voltage changes 
from low to high. Can it be implemented generally? i.e. consider the case when the 
capacitor voltage changes from high to low. And what happens when the capacitor does 
not change voltage during a cycle? 
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Introduction to Nanoelectronics 

Q2. Cellular Automata 

This question refers to a proposed architecture for molecular electronics: Molecular 
Quantum-Dot Cellular Automata. The figures are drawn from the reference. 

In this architecture information is stored in bistable cells. An example cell is shown 
below: 

00 11

Fig. 7.19. A bistable cell for use in a cellular automata computer. 

This cell consists of four electron traps positioned at the corners of a square. Only two of 
the traps are filled. From electrostatics, there are two stable states with the electrons at 
opposing corners of the square. 

To transmit information, the cells are placed in a line. Information then propagates 
electrostatically, without current flow. It is argued that power dissipation is therefore 
eliminated and no interconnecting wires are required. 

Fig. 7.20. A cellular automata wire. 

By changing the topology, it is possible to make logic gates. For example, below we 
show an inverter. 

Fig. 7.21. A cellular automata inverter. 

Question continued on next page…. 
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Part 7. Fundamental Limits in Computation 

(a) A proposed „majority gate‟ is shown below. The output Z is the majority of the inputs, 
A, B and C. i.e. if there are more 1 inputs than zero inputs then Z = 1, otherwise Z = 0. 
Use this gate to design a two input AND gate. 

A

C

B Z

Fig. 7.22. A proposed majority gate. 

(b) Is the majority gate truly dissipationless? Hint: calculate the entropy before and after 
a majority decision. 

Reference: Lent, “Bypassing the transistor paradigm” Science 288 1597 (2004) 

Q3. Power delay products at the nanoscale 

The power delay product is the minimum energy dissipated per bit of information 
processed. For a CMOS inverter the PDP is: 

2PDP CV

where V is the supply voltage and C is the load capacitance as seen by the inverter. In this 
question, we will assume that the supply voltage is fixed. 

(a) Determine the load capacitance as a function of the gate and quantum capacitances. 
Assume we can neglect all other capacitances. 

(b) Consider a 2d field effect transistor (where CQ → ∞). If its dimensions are scaled by a 
factor s, how does the PDP scale? 

(c) Now consider a quantum wire field effect transistor with CQ << CG. Its gate 
capacitance is given by 

 0

2
logG

lC
r a



where  is the dielectic constant of the gate insulator, l is the gate length, r is the gate 
radius and a0 is the 1d wire radius. 
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Introduction to Nanoelectronics 

Assume that l and r are scaled by a factor s, how does the gate capacitance for a quantum 
wire field effect transistor scale? 

(d) Now consider the impact of the quantum capacitance on the PDP on the quantum 
wire field effect transistor. How does the overall PDP scale? Is the scaling faster or 
slower than the equivalent PDP using large quantum well field effect transistors? 

Q4. Mechanical transistors 

Consider a mechanical switch. 

Fig. 7.23. A mechanical switch. 

The conductor is pulled towards the gate electrode when GS TSV V

GS TSV V

, switching the 

switching the device device on, and towards the threshold electrode when 
off. Assume two switches are wired together in a complementary logic circuit that drives 
a capacitive load as shown below. 

VTS = -4V

5V

S

D

VTS = +1V

0V

S

D
VIN

0V

G

G

VOUT

C

Fig. 7.24. A complementary logic circuit featuring mechanical switches. 

(i) Plot steady state VOUT versus VIN, where VIN ranges from 0 to 5V. Show that the circuit 
is complementary. 
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Part 7. Fundamental Limits in Computation 

(ii) Assume VIN is switched from 0V to 5V and then back to 0V. How much energy is 
dissipated? 

ON ON(iii) Consider one of the switches. Let CT and CG be the threshold-conductor 
capacitance, and the gate-conductor capacitance, respectively, in the ON state, and let 

OFF OFF CT and  CG be the capacitances, respectively, in the OFF state.  See the figure below. 

Fig. 7.25. Capacitive models of the switch in the ON and OFF configuration. 

What is the energy stored in these capacitors in the (a) ON and in the (b) OFF positions 
as a function of VGS and VTS? 

Now connect N switches all wired in parallel. 

Fig. 7.26. N switches all wired in parallel. 

Each switch has VTS = +1V and resistance, R = 100Ω. Assume all the gate electrodes are
ON ONwired together at a potential VGS. To simplify the analysis assume that CG >> CT and 

OFF OFF ON OFF also that CT >> CG . Furthermore, take CG = CT = C. 

(iv) Considering Boltzmann statistics, and the potential energy difference between the 
OFF and ON states, out of the N switches, what is the probable number of switches that 
are ON as a function of C, VGS and VTS when GS TSV V ? 
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Introduction to Nanoelectronics 

Continued… 

(v) Find I for the N switches as a function of VGS and VTS for 0 < VGS < 5V (for VTS = 1V). 

(vi) Does the mechanical switch exhibit any benefit over conventional CMOS? 

Q5. (a) Consider two identical balls each 
1cm in diameter and of mass m = 1g. 
One is kept fixed, and the second is 
dropped directly on it from a height of 
d = 10cm. From the uncertainty principle 
alone, what is the expected number of 
times the moving ball bounces on the 
stationary ball before it misses the latter 
ball altogether? Assume the ball is 
dropped from an optimal initial state. 

Hint: some parts of this problem can be 
solved classically. 

(b) Discuss the implications of (i) for 
billiard ball computers. 

Fig. 7.27. An off-center collision 
between the fixed ball and the bouncing 
ball. 

Dx

fixedpx

pz

z

x

bouncing

2R

Q6. The following question refers to ion channel mechanical switches at T = 300K. 

a) Assume that any given ion channel is either open with conductance G = G0, or closed 
with conductance G = 0. Using Boltzmann statistics, write an expression for the 
conductance of a giant squid axon (with N ion channels in parallel) as a function of the 
applied membrane potential, V. Assume that the number of open channels at V = 0 is N0. 

Hint: Given Boltzmann statistics, the relative populations N1 and N2 of two states 
separated by energy dU are N1/N2 = exp(-dU/kT). 

b) Where possible given the data in Fig. 7.15, evaluate your parameters. 

c) Sketch a representative IV of a single ion channel. 
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Introduction to Nanoelectronics 

Appendix 1. Electron Wavepacket Propagation 

Stationary states and eigenfunctions 

Until now, we have not considered the velocity of electrons because we have not 
considered the time dependence of solutions to the Schrödinger equation. In Part 1, we 
broke the full Schrödinger Equation into two coupled equations: an equation in time, and 
another in space. The separation is possible when the potential energy is constant in time. 
Then the spatial and time dependencies of the solution can be separated, i.e. 

     ,x t x t   (A.1.1) 
The time dependence is described by: 

   
dE t i t
dt

  (A.1.2) 

and the spatial dependence is given by 

       
2 2

22
dE x x V x x

m dx
     . (A.1.3) 

Solutions to these coupled equations are characterized by a time-independent probability 

(A.1.4) 

and the probability density is: 

density. The general solution to Eq. (A.1.2) is 

   0 exp Et i t 
 

  
 

         
2 2 2 2

, 0x t x t x      (A.1.5) 
Because the solution does not evolve with time, it is said to be „stationary‟. These 
solutions are important and are known as „eigenfunctions‟. Eigenfunctions are extremely 
important in quantum mechanics. You can think of them as the natural functions for a 
particular system. Each eigenfunction is associated with a constant, known as the 
eigenvalue: in this case the constant energy, E. 

An arbitrary wavefunction, however, will not necessarily be an eigenfunction or 
stationary.  For example, consider a wavefunction constructed from two eigenfunctions: 

     1 1 2 2x a x a x    (A.1.6) 
where a and b are constants. This is known as a linear combination of eigenfunctions. 
The full solution is 

     
1 2

1 1 2 2,
E Ei t i t

x t a x e a x e 
 

   (A.1.7) 
Substituting into the Schrödinger Equation gives 

       
1 2 1 2

1 1 2 2 1 1 1 2 2 2

E E E Ei t i t i t i t
H a x e a x e a E x e a E x e   

   

   (A.1.8) 

i.e., the linear combination is not necessarily itself an eigenfunction. It is not stationary: 
the phase of each eigenfunction component evolves at a different rate. The probability 
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Appendix 1. Electron Wavepacket Propagation 

density shows time dependent interference between each rotating phase term. For 
example, assuming that a1, a2, ψ1 and ψ2 are real: 

           
2 2 2 2 2

1 1 2 2 1 2 1 2 2 1, 2 cos tx t a x a x a a x x E E   
 

     
 

. (A.1.9) 

Completeness 

We will not prove completeness in the class. Instead we merely state that the 
completeness property of eigenfunctions allows us to express any well-behaved function 
in terms of a linear combination of eigenfunctions. i.e. if n is an eigenfunction, then an 
arbitrary well-behaved wavefunction can be written 

n n
n

a  (A.1.10) 

Completeness also requires that the potential be finite within the region of interest. For 
example, no combination of eigenfunctions of the infinite square well can ever describe a 
non-zero wavefunction amplitude at the walls. 

Re-expressing the wavefunction in terms of a weighted sum of eigenfunctions is a little 
like doing a Fourier transform, except that instead of re-expressing the wavefunction in 
terms of a linear combination of exp[ikx] factors, we are using the eigenfunctions.† 

The problem now is the determination of the weighting constants, an. 

For this we need the next property of eigenfunctions: 

Orthogonality 

Eigenfunctions with different eigenvalues are orthogonal. i.e. the bracket of 
eigenfunctions corresponding to different eigenvalues is zero: 

0, ,j i i jfor i j E E     (A.1.11) 
If different eigenfunctions have identical eigenvalues (i.e. same energy) they are known 
as degenerate. 

Calculation of coefficients 

Starting from Eq. (A.1.10) we have 

n n
n

a  (A.1.12) 

Now, let‟s take the bracket with an eigenfunction k

k k n n n k n
n n

a a        (A.1.13) 

From the statement of orthogonality in Eq. (A.1.11) we have 

† Note that exp[ikx] provides a continuous set of eigenfunctions for unbound states, i.e., the expansion in 
terms of eigenfunctions is the Fourier transform. 
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Introduction to Nanoelectronics 

k n nk   (A.1.14) 
where nk is the Kronecker delta function, i.e. nk = 1 only when n = k. 

Thus, 
. (A.1.15) 

These coefficients are very important. 

Since the eigenfunctions are usually known, often the set of coefficients provides the 
interesting information in a particular problem. This may be clear from an example. 

An example: the expanding square well 

Consider an electron occupying the ground state of an infinite square well of length L. As 
shown in Fig. A 1.1, at time t = 0, the well suddenly triples in size. What happens to the 
electron? 

L0 x

En
er

gy

L x 3L0

En
er

gy

2L

t = 0

Fig. A 1.1. An electron is 
in the ground state of an 
infinite potential well. 
Suddenly the infinite well 
expands instantaneously 
to three times its previous 
size. 

Let‟s begin to answer this question by considering the wavefunction prior to the 
expansion of the well:† 

   
2 sin , 0x x L x L
L

    (A.1.16) 

If we substitute this back into the Schrödinger Equation we can easily confirm that the 
effect of operating on this wavefunction with the Hamiltonian is the same as multiplying 
the wavefunction by a constant. i.e. 

   
2 2sin sinH x L E x L
L L

  (A.1.17) 

† Note that relative the previous square well analysis (see Fig. 1.21) we have shifted the x-axis here such 
that the left wall is at x = 0. 
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Appendix 1. Electron Wavepacket Propagation 

Thus, this wavefunction is an eigenfunction of the original square well, and the constant, 
E, the energy, is the eigenvalue corresponding to the eigenfunction. 

Now, Eq. (A.1.16) is the lowest energy eigenfunction for the time independent infinite 

(A.1.18) 

square well potential. The wavefunction evolves in time according to 

   
dE t i t
dt

 

Solving Eq. (A.1.2) gives: 

       
2, sin exp Ex t x t x L i t
L

  
 

    
 

(A.1.19) 

where 
2 2

22LE E
mL


  . (A.1.20) 

The probability density, however, is time independent: 

   
2 22, sin , 0x t x L x L

L
    (A.1.21) 

We have verified that the eigenfunction is stationary, as it must be. 

Now, when the well expands, the wavefunction cannot change instantaneously. To 
confirm this, consider a step change in the wavefunction in Eq. (A.1.2) – the energy 
would tend to ∞. 

But the stationary states of the new well are 

   
2 sin 3 , 0 3

3
x n x L x L

L
    (A.1.22) 

i.e. the wavefunction of the electron at t = 0 is not a stationary state in the expanded well. 
To determine the evolution of the electron wavefunction in time, we must re-express the 
wavefunction in terms of the eigenfunctions of the expanded well. We can then calculate 
the evolution of each eigenfunction from Eq. (A.1.2). 

The wavefunction is now described as a linear combination of eigenfunctions: 

   

 

2 sin , 0

2 sin 3 , 0 3
3n

n

x x L x L
L

a n x L x L
L

 



  

  

(A.1.23) 

where an is a set of constants, that weight the contributions from each eigenfunction. 

We express the wavefunction as a linear combination of the eigenfunctions of the 
expanded well. From Eq. (A.1.15) we have 

   
2 sin 3 , 0 3

3n
n

x a n x L x L
L

    (A.1.24) 

Thus, the coefficients are 
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Introduction to Nanoelectronics 

Solving gives 

(A.1.25)    
0

2 2sin sin 3
3

L

n na x L n x L dx
L L

     

 
2

1 3
3

sin 36 3 3
9

n

n
a

n
n

n








 
 
 

(A.1.26) 

In Fig. A 1.2 we plot the cumulative effect of adding the weighted eigenfunctions. After 
about 10 eigenfunctions, the linear combination is a close approximation to the initial 
wavefunction. 
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Initial wavefunction

Ground state 
component

Fig. A 1.2. Here we show various approximations for the initial wavefunction. We need 
about 10 weighted eigenfunctions for a close match. The agreement gets better with 
addition eigenfunctions. 
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Appendix 1. Electron Wavepacket Propagation 

Next, we calculate the evolution of the wavefunction. From Eq. (A.1.24), we get 

   
2, sin 3 exp , 0 3

3
n

n
n

Ex t a n x L i t x L
L


 

     
 

 (A.1.27) 

where 

 

2 2 2

22 3n
nE
m L


 (A.1.28) 

The evolution of the wavefunction with time is shown in Fig. A 1.3, below. 
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Fig. A 1.3. The evolution of the wavefunction after the expansion of the walls at t = 0. 
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Introduction to Nanoelectronics 

Propagation of a Gaussian Wavepacket 

Next we will examine the propagation of a Gaussian wavepacket in free space. Again, we 
will expand the wavefunction in terms of its eigenfunctions. 

Consider an electron in free space. Let the initial wavepacket be a Gaussian. 

     
21 42

02,0 exp exp
2
xx L ik x
L

 
  

  
 

(A.1.29) 

Note that we have introduced a phase factor exp[ik0x]. Recall that multiplying the real 
space wavefunction by the phase factor exp[ik0x], is equivalent to shifting the k-space 
wavefunction by k0. Since the Fourier transform was centered at k = 0 prior to the shift, 
the phase factor shifts the expectation value of k to k0. Hence the factor exp[ik0x] gives 
the wavepacket has a non-zero average momentum. 

Now, the eigenfunctions of the Schrödinger Equation in free space are the complex 
exponentials 

   expk ikx  (A.1.30) 
where k is continuous. 

Each eigenfunction evolves with time as 

   , exp exp Ek t ikx i t
 

  
 

(A.1.31) 

Expanding the wavefunction as a linear combination of these eigenfunctions we have 

     
1, ,

2
x t A k k t dk 







 

     
1, exp exp

2
Ex t A k ikx i t dk







 
  

 


(A.1.32) 

(A.1.33) 

where A(k)/2 describes the weighting of each complex exponential eigenfunction. 

, Eq. (A.1.32) evaluated at t = 0 is simply the inverse Fourier 
transform: 
Since    expk ikx 

     
1 exp

2
x A k ikx dk







  (A.1.34) 

Thus, A(k) is determined from the Fourier transform of the wavefunction 

         
 

22
1 4 02,0 ,0 4 exp

2
ikx L k k

A k k x x e dx L   






 
    

  
 (A.1.35) 

Now, before we can substitute A(k) back into Eq. (A.1.32) to get the time evolution of 
ψ(x,t) we need to consider the possible k dependence of energy, E. 

In general the relation between E and k is known as the dispersion relation. 
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Appendix 1. Electron Wavepacket Propagation 

The dispersion relation is important because propagation of an electron in free space, or 
in a particular material is determined by the dispersion relation. Let‟s consider some 
examples. 

(i) Linear dispersion relation 

instead of an electron we were considering a photon with 
relation is linear and the photon does not spread as it propagates. 

The dispersion relation determines how the wavepacket spreads in time. For example, if 
E ck  , the dispersion 

E

k

Fig. A 1.4. A linear dispersion relation. 

The time dependent factor is 

   exp exp expEi t i t ickt
 
     
 

(A.1.36) 

Solving Eq. (A.1.32) gives 

 
 

 
 

2

01 4 22

1, exp exp
2

x ct
x t ik x ct

LL




 
      

  

. (A.1.37) 

Thus, the probability density is simply the original function shifted linearly in time: 

 
 

 
2

2

1 2 22

1, exp
x ct

x t
LL




 
  

  

(A.1.38) 

(ii) Quadratic dispersion relation 

For plane wave eigenfunctions, however, the dispersion relation is quadratic and we have 
2 2

2
kE
m

 (1.39) 

E

k

Fig. A 1.5. A quadratic dispersion relation. 
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Introduction to Nanoelectronics 

As we have seen, particles in a box also have quadratic dispersion relations. 

Thus the time dependent factor is 

Solving Eq. (A.1.32) gives 

(A.1.40) 

 
 

 

 

22
00

01 4 2 222

1 1, exp exp
2 2 11

x k t mk tx t i k x
m L i t mLi t mLL




    
     

      

(A.1.41) 

and 

(A.1.42) 

where 

 
22

2

21
2
L tx t

mL
  

D           

(A.1.43) 
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Appendix 1. Electron Wavepacket Propagation 

Fig. A 1.6. The evolution of a Gaussian wavepacket for linear and quadratic dispersion 
relations. 

Group Velocity 

As with a classical wave, the average velocity of the wavepacket is the group velocity, 
defined as the time derivative of the expectation value of position: 

(A.1.44) 

(A.1.45) 

1
g

d dE dv x
dt dk dk


  

If the wavepacket is highly peaked in k-space it is possible to simplify Eq. (A.1.44) by 
evaluating d/dk at the expectation value of k: 

g
k

d dv
dk dk
 

 

For the linear dispersion relation, d/dk is constant so we don‟t need the approximation: 

g
dv c
dk


 

i.e. the photon moves along at the speed of light, as expected. 

(A.1.46) 

For the quadratic dispersion relation, we have 
0

g
kd kv

dk m m


   (A.1.47) 

Since 0k is the expectation value of momentum, this is indeed the average velocity. 
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Introduction to Nanoelectronics 

Problems 

1. Consider the electron in the expanded well discussed in the notes. Numerically 
simulate the wave function as a function of time. Using the simulation or otherwise, 
determine the expectation value of energy before and after the well expands? Predict the 
behavior of the expectation values of position and momentum as a function of time. 

Fig. A 1.7. The expanding well. 

2. Consider the wave function in an infinite square well of width L illustrated below at 
time t = 0. How will the wavefunction evolve for t > 0. Will the wave function ever 
return to its original position?  If so, at what time t = T will this occur? 

 

0 L L/2 

En
er

gy
 

x 

Fig. A 1.8. An initial state within a quantum well. 
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E ck  . 

Appendix 1. Electron Wavepacket Propagation 

3. Derive the expression for the propagation of a Gaussian wavepacket with the linear 
dispersion relation (Equation (A.1.37))  
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Introduction to Nanoelectronics 

Appendix 2. The hydrogen atom 

The box model of the hydrogen atom 

Hydrogen is the simplest element. There are just two components: an electron, and a 
positively charged nucleus comprised of a single proton. 

Perhaps the simplest model of the hydrogen atom employs our now familiar square 
potential wells. This approximation cannot be taken very far, but it does illustrate the 
origin of the shapes of some of the orbitals. 

If we compare the smooth, spherically symmetric Coulomb potential to our box model of 
an atom, it is clear that the box approximation will give up a lot of accuracy in the 
calculation of atomic orbitals and energy. The box, however, does yield insights into the 
shape of the various possible atomic orbitals. 

The box is a separable potential. Thus, the atomic orbitals can be described by a product: 
       , , x y zx y z x y z    (A.2.1) 

If the wall have infinite potential, the possible energies of the electron are given by 
22 22 2

, , 2 2 22x y z

yx z
n n n

x y z

nn nE
m L L L
  

    
 

(A.2.2) 

where the dimensions of the box are Lx × Ly × Lz and nx, ny and nz are integers that 
correspond to the state of the electron within the box. 

For example, consider the ground state of a box with infinite potential walls. 
(nx,ny,nz) = (1,1,1) 

x
y

z

Fig. A 2.1. The ground state of a 
3 dimensional box. 
(nx,ny,nz) = (1,1,1) 
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Appendix 2. The hydrogen atom 

Now, consider the orbital‟s shape if either ψx(x) or ψy(y) or ψz(z) is in the first excited 
state: (nx,ny,nz) = (2,1,1), (nx,ny,nz) = (1,2,1) or (nx,ny,nz) = (1,1,2) 

The 1s orbital is similar to (nx,ny,nz) = (1,1,1). The p orbitals are similar to the first 
excited state of the box, i.e. (nx,ny,nz) = (2,1,1) is similar to a px orbital, (nx,ny,nz) = (1,2,1) 
is similar to a py orbital and (nx,ny,nz) = (1,1,2) is similar to a pz orbital. 

x
y

z

x
y

z

x
y

z

(a) (nx,ny,nz) = (2,1,1) (b) (nx,ny,nz) = (1,2,1) (c) (nx,ny,nz) = (1,1,2) 

+-
-

-
+

+

Fig. A 2.2. The first excited states of a 3 dimensional box. (a) (nx,ny,nz) = (2,1,1), (b) 
(nx,ny,nz) = (1,2,1), (c) (nx,ny,nz) = (1,1,2). 

The approximation soon breaks down, however. The 2s orbital, which has the same 
energy as the 2p orbitals is most similar to the box orbital (nx,ny,nz) = (3,3,3), which has 
significantly higher energy. Nevertheless, the box does illustrate the alignment of the 
three p orbitals with the x, y and z axes. 
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Introduction to Nanoelectronics 

Appendix 3. The Born-Oppenheimer approximation† 

Consider the hydrogen atom Hamiltonian. Let the electron coordinate be x, and the 
nuclear coordinate be X. We will assume that the system is one dimensional for the 

(A.3.1) 

purposes of explaining the approximation. 
2 2 2 2 2

2 2
0

ˆ
2 2 4e N

d d eH
m dx m dX x X

   


Now let‟s separate the solution, ψ, into an electron-only factor , and the nuclear-
dependent factor : 

     , ,x X x X X   . (A.3.2) 
Substituting into Eq. (A.3.1) gives: 

 
2 2 2 2 2

2 2 22 ,
2 2e N

d d d d dH V x X
m dx m dX dX dX dX

    
    

 
      

 
(A.3.3) 

where we have replaced the Coulomb potential by V. 

Now using the Born-Oppenheimer approximation, i.e. me << mN, we approximate Eq. 
(A.3.3) by: 

. (A.3.4)  
2 2

2 ,
2 e

dH V x X
m dx


    

Next, canceling the nuclear-dependent factor  : 

 
2 2

2 ,
2 e

dH V x X
m dx


    . (A.3.5) 

This equation is used to solve for the electron coordinates in a given nuclear 
configuration. The nuclear configuration is then optimized. 

† This Appendix is adapted in part from Molecular Quantum Mechanics by Atkins and Friedman 
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Appendix 4. Hybrid Orbitals 

Appendix 4. Hybrid Orbitals 

Linear alignment with two neighbors (sp hybridization) 

Consider three atoms in a line, as shown in Fig. A 4.1. Arbitrarily we align the atoms 
with the x-axis. 

x

z

y
 1,0,0

 1,0,0

Fig. A 4.1. Three atoms in a line. 

We wish to determine the contribution of the central atom‟s orbitals to  bonds. Recall 
that bonds have electron density on the axis between the atoms. 

Now, if the basis set consists of s and p orbitals, only s and px orbitals can contribute to  
bonds on the x-axis. py and pz orbitals have zero density on the x-axis and therefore 
cannot contribute to the  bonds. They may contribute to  bonds however. 

Let‟s define the symmetry adapted atomic orbitals that contribute to  bonds generally 
as: 

z zs s p pc c    (A.4.1) 
where cs and cpx are the weighting coefficients for the s and px orbitals respectively. 
There are two  bonds: one to the left, and one to the right. We‟ll define the two 
symmetry adapted atomic orbitals that contribute to these  bonds as ζ

1 and ζ
2 

respectively. 

(A.4.2) 

The s orbital contributes equally to both symmetry adapted atomic orbitals. i.e. 
2 1 1,

2 2s sc c 

Since the px orbital is aligned with the x-axis, we can weight the px orbital components by 
the coordinates of the two neighboring atoms at x = +1 and x = -1, 
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Introduction to Nanoelectronics 

1

2
x

x

s s p p

s s p p

c c

c c




  

  

 

 
(A.4.3) 

In the first orbital, we are adding the s and px orbitals in-phase. Consequently, we have 
maximum electron density in the positive x-direction. In the second, we are adding the s 
and px orbitals out of phase, yielding a maximum electron density in the negative x-
direction. 

Normalizing each orbital gives 
2 1 1,

2 2p pc c  (A.4.4) 

Thus, the first symmetry adapted atomic orbital is 

x

z

y

 1 1
2 xs p    (A.4.5) 

Fig. A 4.2. The sp hybrid-ized 
atomic orbital in the +x 
direction. 

Similarly, the second symmetry adapted atomic orbital is 

 2 1
2 xs p    . (A.4.6) 

x

z

Fig. A 4.3. The sp hybrid-
ized atomic orbital in the –x 
direction. 

Thus, based purely on symmetry arguments, in a linear chain of atoms it is convenient to 
re-express the four atomic orbitals s, px, py and pz, as 

,  1
2 xs p    (A.4.7) 
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Appendix 4. Hybrid Orbitals 

where py and pz remain unaffected. This is known as sp hybridization since we have 
combined one s atomic orbital, and one p atomic orbital to create two atomic orbitals that 
contribute to  bonds. 

x

z

Fig. A 4.4. We plot both sp hybridized 
atomic orbitals. They point along the x-
axis. 

The remaining py and pz atomic orbitals may combine in molecular orbitals with higher 
energy. The highest occupied molecular orbital (HOMO) is also known as the frontier 
molecular orbital. In an sp-hybridized material, the frontier molecular orbital will be a 
linear combination of py and pz atomic orbitals. The frontier molecular orbital is relevant 
to us, because it more likely than deeper levels to be partially filled. Consequently, 
conduction is more likely to occur through the HOMO than deeper orbitals. 

Now,  bonds possess electron densities localized between atoms. But  bonds composed 
of linear combinations of p orbitals can be delocalized along a chain or sheet of atoms. 
Thus, if the HOMO is a  bond, it is much easier to push an electron through it; we‟ll see 
some examples of this in the next section. 

Planar alignment with three neighbors (sp2 hybridization) 

Consider a central atom with three equispaced neighbors at the points of a triangle; as 
shown in Fig. A 4.5. Arbitrarily we align the atoms on the x-y plane. 
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z

x
y

 1,0,0

 31
2 2, ,0 

 31
2 2, ,0 

Fig. A 4.5. A 
central atom and 
its neighbors. 
Electrostatic repul-
sion can force the 
neighbors to the 
points of an 
equilateral tri-
angle. 



   

 
 

 

 
     

      
 

         
 

   
     

   

     
 

   

 
 

   

 

   

 
      

      
 

 
 
 

      
     

 

 

  

  

 

Introduction to Nanoelectronics 

Once again, we wish to determine the contribution of the central atom‟s orbitals to  
bonds. If the basis set consists of s and p orbitals, only s, px and py atomic orbitals can 
contribute to  bonds in the x-y plane. pz orbitals can only contribute to  bonds. 

Let‟s define the symmetry adapted atomic orbitals that contribute individually to  bonds 
generally as: 

(A.4.8) 
x x y ys s p p p pc c c     

The s orbital contributes equally to all three symmetry adapted atomic orbitals. i.e. 
2 1 1,

3 3s sc c  (A.4.9) 

Since the px orbital is aligned with the x-axis, and py with the y-axis, we can weight the p 
orbital components by the coordinates of the triangle of neighboring atoms 

 

 

 

1

2 31
2 2

3 31
2 2

1 0
x y

x y

x y

s s p p p

s s p p p

s s p p p

c c

c c

c c







   

   

   

   

   

   

(A.4.10) 

Normalizing each orbital gives 

Thus, 

2 2 2,
3 3p pc c 

1

2

3

1 2 0.
33

1 1 1
3 6 2

1 1 1
3 6 2

x y

x y

x y

s p p

s p p

s p p







   

   

   

  

  

  

(A.4.11) 

(A.4.12) 

This is known as sp2 hybridization since we have combined one s atomic orbital, and two 
p atomic orbitals to create three atomic orbitals that contribute individually to  bonds. 
The bond angle is 120º. 

z

x
y

Fig. A 4.6. sp2 hybridized molecular orbitals 
point to the vertices of a triangle. 
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Appendix 4. Hybrid Orbitals 

The remaining pz atomic orbitals will contribute to the frontier molecular orbitals of an 
sp2 hybridized material; see for example ethene in Fig. A 4.7. 

sp2 hybridized orbitals

pz orbital

 bond

C
CH

H

H

H

H

H

H

C

C

z

x
y

Fig. A 4.7. Ethene contains two sp2 hybridized carbon atoms. The unhybridized pz 

orbitals of carbon form  bonds. 

As in the sp hybridized case, electrons in these  molecular orbitals may be delocalized. 
If electrons are delocalized over several neighboring atoms, then the molecule is said to 
be conjugated. Another sp2 hybridized material was shown in Fig. 6.2. This is 1,3-
butadiene, a chain of 4 × sp2 hybridized carbon atoms. Note the extensive electron 
delocalization in the  bonds. 

Some archetypal conjugated carbon-based molecules are shown in Fig. A 4.8. In each 
material the carbon atoms are sp2 hybridized (surrounded by three neighbors at points of 
an equilateral triangle). Note that another typical characteristic of sp2 hybridized 
materials is alternating single and double bonds. 
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Introduction to Nanoelectronics 

acenes

benzene

naphthalene

anthracene

tetracene

pentacene

4.9 eV

3.9 eV

3.3 eV

2.6 eV

2.1 eV

Approx. HOMO-LUMO gap

n
polyacetylene

Fig. A 4.8. Examples of conjugated materials frequently employed in electronic devices. 
Note that the spacing between the HOMO and LUMO energy levels of electrons 
decrease as the molecules get bigger, consistent with particle in a box predictions of 
energy level spacing. Adapted from „Electronic Processes in Organic Crystals‟ by Pope 
and Swenberg, First Edition, Oxford University Press, 1982. 

Tetrahedral alignment with four neighbors (sp3 hybridization) 

Consider a central atom with four equispaced neighbors. Repulsion between these atoms 
will push them to the points of a tetrahedron; see Fig. A 4.9. 

z

x
y

(+1,+1,+1)

(-1,-1,+1)

(-1,+1,-1)
(+1,-1,-1)

Now, all atomic orbitals will contribute to  bonds. There are no  bonds. 

Fig. A 4.9. Electro-static 
repulsion forces four atoms 
surround-ing a central atom to 
the points of a tetrahedron. 
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Appendix 4. Hybrid Orbitals 

Let‟s define the symmetry adapted atomic orbitals that contribute individually to  bonds 
generally as: 

x x y y z zs s p p p p p pc c c c        (A.4.13) 
Once again, the s orbital contributes equally to all four symmetry adapted atomic orbitals. 
i.e. 

2 1 1,
4 2s sc c  (A.4.14) 

Since the px orbital is aligned with the x-axis, py with the y-axis and pz with the z-axis, we 
can weight the p orbital components by the coordinates of the triangle of neighboring 
atoms 
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(A.4.15) 

Normalizing each orbital gives 
2 1 1,

4 2p pc c  (A.4.16) 

Thus, 
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(A.4.17) 

This is known as sp3 hybridization since we have combined one s atomic orbital, and 
three p atomic orbitals to create four possible atomic orbitals that contribute individually 
to  bonds. The bond angle is 109.5º. 

z

x
y

Fig. A 4.10. sp3 hybridized orbitals 
point to the vertices of a tetraheron. 
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