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Chapter 1 

Introduction 

1.1 Course Mission 

• Generation of ultrashort pulses: Nano-, Pico-, Femto-, Attosecond 
Pulses 

• Propagation of ultrashort pulses 

• Linear and nonlinear effects. 

• Applications in high precision measurements, nonlinear optics, optical 
signal processing, optical communications, x-ray generation,.... 

1.2 Pulse Characteristics 

Most often, there is not an isolated pulse, but rather a pulse train. 

Figure 1.1: Periodic pulse train 

1 



    

    
    

     
              

     
      

 
     

  

        
 

 
    

 

              

  

       
    
    
             

                
               

         

               
          

2 CHAPTER 1. INTRODUCTION 

TR: pulse repetition time 
W : pulse energy 
Pave = W/TR : average  power  
τFWHM is the Full Width at Half Maximum of the intensity envelope of the 
pulse in the time domain. 
The peak power is given by 

W TR
Pp = = Pave , (1.1) 

τFWHM τFWHM 

and the peak electric field is given by r 
Pp

Ep = 2ZF0 . (1.2) 
Aeff 

Aeff is the beam cross-section and ZF0 = 377  Ω is the free space impedance. 

Time scales: 

1 ns  ∼ 30 cm (high-speed electronics, GHz) 
1 ps  ∼ 300 µm 
1 fs  ∼ 300 nm 
1 as  =  10−18 s ∼ 0.3 nm  =  3 Å (typ-lattice constant in metal) 

The shortest pulses generated to date are about 4 − 5 fs  at 800 nm (λ/c = 
2.7 fs), less than two optical cycles and 250 as at 25 nm. For few-cycle pulses, 
the electric field becomes important, not only the intensity! 

Figure 1.2: Electric field waveform of a 5 fs pulse at a center wavelength of 
800 nm. The electric field depends on the carrier-envelope phase. 



   

  

         

     

  
  

       

  
    

  
     

  
        

  
 

    
 

      
         

  
    

  

      

 
      

        
     

  

         
          

        
         

           
  

1.3. APPLICATIONS 3 

average power: 

Pave ∼ 1W, up to 100 W in progress. 

kW possible, not yet pulsed 

repetition rates: 
T −1 
R = fR = mHz  − 100 GHz 

pulse energy: 
W = 1pJ  − 1kJ 

pulse width: 
5 fs  − 50 ps, modelocked 

τFWHM = 
30 ps − 100 ns, Q − switched 

peak power: 

Pp = 
1 kJ  ∼ 1PW,
1 ps  

obtained with Nd:glass (LLNL - USA, [1][2][3]). 
For a typical lab pulse, the peak power is 

10 nJ 
Pp = ∼ 1MW  

10 fs 

peak field of typical lab pulse: s 
106 × 1012 V V 10V 

Ep = 2 × 377 × ≈ 1010 = 
π × (1.5)2 m m nm 

1.3 Applications 

• High time resolution: Ultrafast Spectroscopy, tracing of ultrafast phys-
ical processes in condensed matter (see Fig. 1.3), chemical reactions, 
physical and biological processes, influence chemical reactions with fem-
tosecond pulses: Femto-Chemistry (Noble Prize, 2000 to A. Zewail), 
high speed electric circuit testing and sampling of electrical signals, see 
Fig. 1.4. 



    

           
    

            
  

4 CHAPTER 1. INTRODUCTION 

Figure 1.3: Pump-probe setup to extract time constants relevant for the 
carrier dynamics in semiconductors. 

Figure 1.4: High speed A/D conversion with a high repetition rate pico- or 
femtosecond laser. 



   

         
     

       

        

1.3. APPLICATIONS 5 

• High spatial resolution: cτFWHM; optical imaging, e.g. optical coher-
ence tomography, see Figs. 1.5-1.8). 

Figure 1.5: Setup for optical coherence tomography. 
Courtesy of James Fujimoto. Used with permission. 

Figure 1.6: Cross section through the human eye. 
Courtesy of James Fujimoto. Used with permission. 



  

   
 

 

 

 

    

          
        

      

        
         

  

        
            

 

6 CHAPTER 1. INTRODUCTION 

Figure 1.7: Comparison of retinal images taken with a superluminescence 
diode (top) versus a broadband Ti:sapphire laser (below). 

Courtesy of James Fujimoto. Used with permission. 

• Imagaing through strongly scattering media: 

Strong Transmitted laser pulse 
ScatteringLaser pulse 

Light portion withSampling Biological low scatteringTissue 
Imaging 

Figure 1.8: Imaging of the directly transmitted photons  results  in an un-
blurred picture. Substitution for x-ray imaging; however, transmission is 
very low. 

Figure by MIT OCW. 

• High bandwidth: massive WDM - optical communications, many chan-
nels from one source or massive TDM, high bit-rate stream of short 
pulses. 



 
   

 

 

 

 

      

           
        

      

     

    

           
        

          
      

 
     

1.4. REVIEW OF LASER ESSENTIALS 7 

• High intensities: Large intensities at low average power ⇒ Nonlinear 
frequency conversion, laser material processing, surgery, high intensity 
physics: x-ray generation, particle acceleration, ... 

1.4 Review of Laser Essentials 

Linear and ring cavities: 

Laser 
a 

Gain 

2 
High Reflector 

(r1~ ~100%) 

1 
Output Coupler 

(r2) 

z 

High 
Reflector 

Output 
Coupler 

Output Beam 

1 

b 

Gain 

High Reflector 

Figure 1.9: Possible cavity configurations. (a) Schematic of a linear cavity 
laser. (b) Schematic of a ring laser. [1] 

Figure by MIT OCW. 

Steady-state operation: Electric field must repeat itself after one roundtrip. 
Consider a monochromatic, linearly polarized field © ª 

j(ωt−kz)E(z, t) = < E0e , (1.3) 



    

 
 

    
 

           
            

            
  

 
   

     
           

             
               

               
 

          

 
      

               

             

 
  

 

        

 
   

 

 
 

    
 

        

 
      

 

             
          

8 CHAPTER 1. INTRODUCTION 

where 
ω 

k = n (1.4) 
c 

is the propagation constant in a medium with refractive index n. 
Consider linear resonator in Fig. 1.9a. Propagation from (1) to (2) is 

determined by n = n0 +jn00 (complex refractive index), with the electric field 
given by n o 

ω 00 0ng cg jωt −j ω (ng cg +ca)E = < E0e c e e c , (1.5) 

where ng is the complex refractive index of the gain medium (outside the 
gain medium n = 1 is assumed), cg is the length of the gain medium, ca is 
the outside gain medium, and c = ngcg + ca is the optical path length in the 
resonator. 
Propagation back to (1), i.e. one full roundtrip results in n o 

2 ω 00 2 ω 00n cg E0e
jωt−j2 ω c n cgg gc c cE = < r1r2e ⇒ r1r2e = 1, (1.6) 

i.e. the gain equals the loss, and furthermore, we obtain the phase condition 

2ωc 
= 2mπ. (1.7) 

c 

The phase condition determines the resonance frequencies, i.e. 

mπc 
ωm = (1.8) 

c 

and 
mc 

fm = . (1.9) 
2c 

The mode spacing of the longitudinal modes is 

c 
∆f = fm − fm−1 = (1.10) 

2c 

(only true if there is no dispersion, i.e. n 6= n(ω)). Assume frequency 
independent cavity loss and bell shaped gain (see Fig. 1.10). 



  

 
 

 

 

 

 

  

 

 

  

  

      

           
       

           
      

         
         

           

1.4. REVIEW OF LASER ESSENTIALS 9 

Δf = c/2l 

Laser Gain 
Cavity loss 

Longitudinal 
modes 

Laser output 
Frequency 

Figure 1.10: Laser gain and cavity loss spectra, longitudinal mode location, 
and laser output for multimode laser operation. 

Figure by MIT OCW. 

Cavity loss 

Small signal gain 

Saturated gain 
Due to filter 

Longitudinal 
modes 

Δf = c/2l 

Laser output 

Frequency 

Figure 1.11: Gain and loss spectra, longitudinal mode locations, and laser 
output for single mode laser operation. 

Figure by MIT OCW. 

To assure single frequency operation use filter (etalon); distinguish be-
tween homogeneously and inhomogeneously broadened gain media, effects of 
spectral hole burning! Distinguish between small signal gain g0 per roundtrip, 



    

                

      
 

            
           

 
           

             
        

 
 

     
 

 
       

 
 

    
 

         
    

 
 

    

   
     

    
           

 
 

 
           

           
    

  
     

 
      

 

10 CHAPTER 1. INTRODUCTION 

i.e. gain for laser intensity I → 0, and large signal gain, most often given by 

g0 
g = , (1.11) 

1 + I 
Isat 

where Isat is the saturation intensity. Gain saturation is responsible for the 
steady state gain (see Fig. 1.11), and homogeneously broadened gain is 
assumed. 
To generate short pulses, i.e. shorter than the cavity roundtrip time, 

we wish to have many longitudinal modes runing in steady state. For a 
multimode laser the laser field is given by " #X 

j(ωmt−kmz+φ )mE(z, t) = < Ê 
me , (1.12a) 

m 
mπc 

ωm = ω0 +m∆ω = ω0 + , (1.12b) 
c 

ωm
km = , (1.12c) 

c 

where the symbol ̂ denotesa frequency domain quantity. Equation (1.12a) 
can be rewritten as ( )X 

jω0(t−z/c) j(m∆ω(t−z/c)+φ )mE(z, t) = < e Ê 
me (1.13a) £ m ¤ 

jω0(t−z/c)= < A(t − z/c)e (1.13b) 

with the complex envelope ³ ´ Xz j(m∆ω(t−z/c)+φ )mA t − = Eme = complex envelope (slowly varying). 
c 

m 
(1.14) 

jω0(t−z/c)e is the carrier wave (fast oscillation). Both carrier and envelope 
travel with the same speed (no dispersion assumed). The envelope function 
is periodic with period 

2π 2c L 
T = = = . (1.15) 

∆ω c c 
L is the roundtrip length (optical)! 

Examples: 



      

 

             

         

 

     
 

 
    

     
   

 

   
     

         
     

  

             
       

 
 

 
 

       
 

 

           
      

1.4. REVIEW OF LASER ESSENTIALS 11 

Examples: 

We assume N modes with equal amplitudes Em = E0 and equal phases 
φ = 0, and thus the envelope is given by m 

(NX−1)/2 

A(z, t) =  E0 
j(m∆ω(t−z/c))e . (1.16) 

m=−(N−1)/2 

With 
q−1X q1 − a m a = ,

1 − a 
(1.17) 

m=0 

we obtain £ ¡ ¢¤ 
N∆ωsin t − z £ 2 cA(z, t) =  E0 ¡ ¢¤ .
∆ωsin t − z 
2 c 

(1.18) 

The laser intensity I is proportional to E(z, t)2 , averaged over one optical 
cycle: I ∼ |A(z, t)|2. At  z = 0, we obtain  ¡ ¢ 

N∆ωtsin2
2I(t) ∼ |E0|2 ¡

∆ωt 
¢ . (1.19) 

sin2
2 

Time 

Time 

Intensity 

Intensity 

~N2 

~N 

a 

b 

Figure 1.12: (a) mode-locked laser output with constant mode phase. (b) 
Laser output with randomly phased modes. 

Figure by MIT OCW. 



    

           

   
 

  
 

 
 

 
 

     

            
  

            

         
    

       
 

         

         

  

      

      

           
         

         
  

           
      

         

        

          

12 CHAPTER 1. INTRODUCTION 

(a) Periodic pulses given by Eq. (1.19), period T = 1/∆f = L/c 

• pulse duration 
2π 

∆t = 
N∆ω 

1 
= 

N∆f 
(1.20) 

• peak intensity ∼ N2|E0|2 

• average intensity ∼ N |E0|2 ⇒ peak intensity is enhanced by a 
factor N . 

(b) If phases of modes are not locked, i.e. φm random sequence 

• Intensity fluctuates randomly about average value (∼ N |E0|2), 
same as modelocked case 

• correlation time is ∆tc ≈ 1 
N ·∆f 

• Fluctuations are still periodic with period T = 1/∆f . 

In a usual multimode laser, φm varies over t. 

1.5 History 

1960: First laser, ruby, Maiman [4]. 

1961: Proposal for Q-switching, Hellwarth [5]. 

1963: First indications of mode locking in ruby lasers, Guers and 
Mueller [6],[7], Statz and Tang [8]. on He-Ne lasers. 

1964: Activemodelocking (HeNe, Ar, etc.), DiDomenico [9], [10] and 
Yariv [11]. 

1966: Passive modelocking with saturable dye absorber in ruby by A. 
J. Dellaria, Mocker and Collins [12]. 

1966: Dye laser, F. P. Schäfer, et al. [13]. 

1968: mode-locking (Q-Switching) of dye-lasers, Schmidt, Schäfer [14]. 

1972: cw-passive modelocking of dye laser, Ippen, Shank, Dienes [15]. 



   

        

     

           
       

      

    

     

        

        

            

       

           

        

        

      

          

         

1.5. HISTORY 13 

1972: Analytic theories on active modelocking [21, 22]. 

1974: Sub-ps-pulses, Shank, Ippen [16]. 

1975: Theories for passive modelocking with slow [1], [24] and fast 
saturable absorbers [25] predicted hyperbolic secant pulse. 

1981: Colliding-pulse mode-locked laser (CPM), [17]. 

1982: Pulse compression [20]. 

1984: Soliton Laser, Mollenauer, [26]. 

1985: Chirped pulse amplification, Strickland and Morou, [27]. 

1986: Ti:sapphire (solid-state laser), P. F. Moulton [28]. 

1987: 6 fs  at 600 nm, external compression, Fork et al. [18, 19]. 

1988: Additive Pulse Modelocking (APM),[29, 30, 31]. 

1991: Kerr-lens modelocking, Spence et al. [32, 33, 34, 35, 36]. 

1993: Streched pulse laser, Tamura et al [37]. 

1994: Chirped mirrors, Szipoecs et al. [38, 39] 

1997: Double-chirped mirrors, Kaertner et al.[40] 

2001: 5 fs, sub-two cycle pulses, octave spanning, Ell at. al.[42] 

2001: 250 as by High-Harmonic Generation, Krausz et al.[43] 
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Figure 1.13: Pulse width of different laser systems by year. 
Courtesy of Erich Ippen. Used with permission. 



    

         

   
 

 
 
 

 
  

 
 

 
 

         
         
         

         
          
          
          
          
         

          
          

      
  

      
   

1.6. LASER MATERIALS 15 

Figure 1.14: Pulse width of Ti:sapphire lasers by year. 

1.6 Laser Materials 
Laser 
Material 

Absorption 
Wavelength 

Average 
Emission λ 

Band 
Width 

Pulse 
Width 

Nd:YAG 808 nm 1064 nm 0.45 nm ∼ 6 ps  
Nd:YLF 797 nm 1047 nm 1.3 nm ∼ 3 ps  
Nd:LSB 808 nm 1062 nm 4 nm  ∼ 1.6 ps 
Nd:YVO4 808 nm 1064 nm 2 nm  ∼ 4.6 ps 
Nd:fiber 804 nm 1053 nm 22-28 nm ∼ 33 fs 
Nd:glass 804 nm 1053 nm 22-28 nm ∼ 60 fs 
Yb:YAG 940, 968 nm 1030 nm 6 nm  ∼ 300 fs 
Yb:glass 975 nm 1030 nm 30 nm ∼ 90 fs 
Ti:Al2O3 480-540 nm 796 nm 200 nm ∼ 5 fs  
Cr4+:Mg2SiO4: 900-1100 nm 1260 nm 200 nm ∼ 14 fs 
Cr4+:YAG 900-1100 nm 1430 nm 180 nm ∼ 19 fs 

Transition metals: (Cr3+, Ti3+, Ni2+, CO2+ , etc.) (outer 3d-electrons) 
→ broadband 

Rare earth: (Nd3+, Tm3+, Ho3+, Er3+ , etc.) (shielded 4f -electrons) 
→ narrow band. 
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Chapter 2 

Maxwell-Bloch Equations 

2.1 Maxwell’s Equations 

Maxwell’s equations are given by 

� 
∇� ×H� = �j + 

∂D 
, (2.1a) 

∂t 
� 

∇� ×E� = −∂B 
, (2.1b) 

∂t 
∇� · D� = ρ, (2.1c) 

∇� · B� = 0. (2.1d) 

The material equations accompanying Maxwell’s equations are: 

� � �D = �0E + P,  (2.2a) 
� � �B = µ0H +M.  (2.2b) 

Here, E� and H� are the electric and magnetic field, D� the dielectric flux, B� 

the magnetic flux, �j the current density of free carriers, ρ is  the free charge  
density, P� is the polarization, and M� the magnetization. By taking the curl ³ ´ ³ ´ 
of Eq. (2.1b) and considering ∇� × ∇� ×E� = ∇� ∇� E� − ∆E� , we obtain  Ã ! 

� � ³ ´ ∂ ∂E ∂P 
∆E� − µ0 

�j + �0 + = 
∂ ∇� ×M� +∇� ∇� · E� (2.3) 

∂t ∂t ∂t ∂t 

21 



     

  
        

           
 

    

      
 

 
    

 

      
 

            
               

  

    

             
    

    
       

 
  

             
             

         

  

   
 

  
 

    
 

    
 

  
 

  
 

22 CHAPTER 2. MAXWELL-BLOCH EQUATIONS 

and hence Ã !µ ¶ ³ ´ 1 ∂2 ∂�j ∂2 ∂ �∆ − E� = µ0 + P� + ∇×M� +∇� ∇� · E� . (2.4) 
c20 ∂t

2 ∂t ∂t2 ∂t 

The vacuum velocity of light is s 
1 

c0 = . (2.5) 
µ0�0 

2.2 Linear Pulse Propagation in Isotropic Me-
dia 

For dielectric non magnetic media, with no free charges and currents due 
� � � � �to free charges, there is M = 0, j = 0, ρ = 0. We  obtain  with  D = 

� �� (�r)E=�0�r (�r)E 
∇� · (� (�r)E� ) = 0. (2.6) 

In addition for homogeneous media, we obtain ∇� · E� = 0  and the wave 
equation (2.4) greatly simplifies µ ¶

∂2 ∂2 

∆ − 
1 � P.� (2.7) 
2 E = µ0 c0 ∂t

2 ∂t2 

This is the wave equation driven by the polarization in the medium. If 
the medium is linear and has only an induced polarization described by the 
susceptibility χ(ω) = �r(ω)− 1, we obtain in the frequency domain b ˆ

P� (ω) = �0χ(ω)E� (ω). (2.8) 

Substituted in (2.7) µ 
ω2 ¶ 

∆ + 
c20 

E�̂ (ω) = −ω2 µ0�0χ(ω)E�̂ (ω), (2.9) 

b ˆwhere D� = �0�r(ω)E� (ω), and  thus  µ 
2 ¶

ω ˆ
∆ + 

2 (1 + χ(ω) E� (ω) = 0, (2.10) 
c0 



        

       

 

  
 

  
 

           

    

          

         

 
 

    
 

       

 
   

 

             

     

 
   

               
            

    

     

 
         

 

 

  
 

   
 

2.2. LINEAR PULSE PROPAGATION IN ISOTROPIC MEDIA 23 

with the refractive index n and 1 + χ(ω) = n2 µ 
ω2 ¶ 

∆ + E�̂ (ω) = 0, (2.11) 
c2 

where c = c0/n is the velocity of light in the medium. 

2.2.1 Plane-Wave Solutions (TEM-Waves) 

The complex plane-wave solution of Eq. (2.11) is given by 

ˆ ˆ(+)(ω) −j
�k·�r −j�k·�rE� (+)(ω, �r) = E� e = E0e · �e (2.12) 

with 

|�k|2 = 
ω 
2

2 

= k2 . (2.13) 
c 

Thus, the dispersion relation is given by 

ω 
k(ω) =  n(ω). (2.14) 

c0 

From ∇� · E� = 0, we see  that  �k ⊥ �e. In time domain, we obtain 

E� (+)( jωt−j�k·�r�r, t) = E0�e · e (2.15) 

with 
k = 2π/λ, (2.16) 

where λ is the wavelength, ω the angular frequency, �k the wave vector, �e the 
polarization vector, and f = ω/2π the frequency. From Eq. (2.1b), we get 
for the magnetic field 

� j(ωt−�k�r) H(+)−jk × E0�ee = −jµ0ω � , (2.17) 

or 
� (+) E0 j(ωt−�k�r)� k�r)H = e k × �e = H0 

�hej(ωt−
� 

(2.18) 
µ0ω 

with 
� 

�h = 
k × �e (2.19) |k| 



     

 
  

      
 

    
 

  
     

  

  
 

 
    

 

             
 

 
  

 
    

 

            

          

   

     
  

      
 

              
    

    
     

  

       
  

       
 

            
         

  

 
  

 

   
 

24 CHAPTER 2. MAXWELL-BLOCH EQUATIONS 

and |k| 1 
H0 = E0 = E0. (2.20) 

µ0ω ZF 

The natural impedance is r 
µ0 1 

ZF = µ0c = = ZF0 (2.21) 
�0�r n 

with  the free space impedance  r 
µ0ZF0 = = 377Ω. (2.22) 
�0 

� (+)( jωt+j�k·�rFor a backward propagating wave with E �r, t) =  E0�e · e there is 
� (+) �hej(ωt−

�k�H = H0 
r) with 

|k|
H0 = − E0. (2.23) 

µ0ω 

Note that the vectors �e, �h and �k form an orthogonal trihedral, 

�e ⊥ �h, �k ⊥ �e, �k ⊥ �h. (2.24) 

2.2.2 Complex Notations 

Physical E� , H� fields are real: ³ ´ 
E� (�r, t) =  

1 
E� (+)(�r, t) +E� (−)(�r, t) (2.25) 

2 
� (−)( E(+)( ∗with E �r, t) =  � �r, t) . A general temporal shape can be obtained by 

adding different spectral components, 
(+) 

� (+)( 
Z ∞ dω b� j(ωt−�k·�r)E �r, t) =  E (ω)e . (2.26) 

2π0 

Correspondingly, the magnetic field is given by ³ ´ 1 
H(+)( � (−)(H� (�r, t) =  � �r, t) +H �r, t) (2.27) 

2 
� (−)( H(+)( ∗with H �r, t) =  � �r, t) . The general solution is given by 

(+) 
� (+)( 

Z ∞ dω b� j(ωt−�k·�r)H �r, t) =  H (ω)e (2.28)
2π0 

with b (+) 
H� (ω) =  

E0 �h. (2.29) 
ZF 

http:�)e(2.28


        

       
    

          

     
 

 
  

  
 
 
 

 
 

 
 

 
 
 

 

 
     

 

    
            

     
 
 

 
 

 
 

 
     

      
    

        

 
     

 

   
 

    
 

   
 

     
   

  

   

     

 
  

    
 

              
     

    

            
       

  
       

   

2.2. LINEAR PULSE PROPAGATION IN ISOTROPIC MEDIA 25 

2.2.3 Poynting Vectors, Energy Density and Intensity 
for Plane Wave Fields 

Quantity Real fields Complex fields hit ¯⎛ ⎞¯ 
Energy density 1 � �w = E2 + µ0µ H2�0�r2 r 

´³ ¯ ¯ ¯ 
¯2 ¯�E(+)�0�r ¯ ¯ ¯ 1 

¯ ¯ ⎝ ⎠w = 
4 2 

�H(+) ³+µ0µr ´ ∗ 
Poynting vector � �S = E× �H � 1 �E(+)× �H(+)T = 

2 

Intensity �I = S = cw 
¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯�I = T = cw 

Energy Cons. ∂w + �∇�S = 0
∂t 

∂w + �∇�T = 0
∂t 

E(+)( j(ωt−kz)For � �r, t) = E0�exe we obtain the energy density 

1 
w = �r�0|E0|2 , (2.30) 

2 

the poynting vector 
1�T = |E0|2�ez (2.31) 
2ZF 

and the intensity 
1 1 

I = |E0|2 = ZF |H0|2 . (2.32) 
2ZF 2 

2.2.4 Dielectric Susceptibility 

The polarization is given by 

dipole moment 
P� (+)(ω) =  (+)(ω)i = �0χ(ω)E� (+)(ω)= N · hp� , (2.33) 

volume 

where N is density of elementary units and h�pi is the average dipole moment 
of unit (atom, molecule, ...). 

Classical harmonic oscillator model 

The damped harmonic oscillator driven by an electric force in one dimension, 
x, is described by the differential equation 

d2x ω0 dx 2 m + 2  m +mω0x = e0E(t), (2.34) 
dt2 Q dt 
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26 CHAPTER 2. MAXWELL-BLOCH EQUATIONS 

Eejωt jωtwhere E(t) =  ˆ . By using the ansatz x (t) = x̂e , we obtain for the 
complex amplitude of the dipole moment p = e0x(t) = p̂ejωt 

e 

p̂ = m E.ˆ (2.35) 
(ω20 − ω2) + 2jω

Q 
0 ω 

For the susceptibility, we get 

2
0 

N e 1 
m �0 

2
0 

(2.36) χ(ω) =  
(ω20 − ω2) + 2jω ω

Q 
0 

and thus 
ω2 
p (2.37) χ(ω) =  ,

(ω20 − ω2) + 2jω ω
Q 
0 

with the plasma frequency ωp, determined by ω2 
p = Ne20/m�0. Figure  2.1  

shows the real part and imaginary part of the classical susceptiblity (2.37). 

1.0 

0.5 

0.0 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.4 

2 
Q 

Q=10 

0.0 0.5 1.0 1.5 2.0 
ω / ω 0 

Figure 2.1: Real part and imaginary part of the susceptibility of the classical 
oscillator model for the electric polarizability. 

Note, there is a small resonance shift due to the loss. Off resonance, 
the imaginary part approaches very quickly zero. Not so the real part, it 
approaches a constant value ω2 

p/ω
2
0 below resonance, and approaches zero for 

above resonance, but slower than the real part, i.e. off resonance there is still 
a contribution to the index but practically no loss. 



    

   

             
          

            
          

        
           

             
           
             

            
             

              
             

       

    

            
           
         

       

    

           

2.3. BLOCH EQUATIONS 27 

2.3 Bloch Equations 

Atoms in low concentration show line spectra as found in gas-, dye- and some 
solid-state laser media. Usually, there are infinitely many energy eigenstates 
in an atomic, molecular or solid-state medium and the spectral lines are 
associated with allowed transitions between two of these energy eigenstates. 
For many physical considerations it is already sufficient to take only two of  
the possible energy eigenstates into account, for example those which are 
related to the laser transition. The pumping of the laser can be described 
by phenomenological relaxation processes into the upper laser level and out 
of the lower laser level. The resulting simple model is often called a two-
level atom, which is mathematically also equivalent to a spin 1/2 particle 
in an external magnetic field, because the spin can only be parallel or anti-
parallel to the field, i.e. it has two energy levels and energy eigenstates. The 
interaction of the two-level atom or the spin with the electric or magnetic 
field is described by the Bloch equations. 

2.3.1 The Two-Level Model 

An atom having only two energy eigenvalues is described by a two-dimensional 
state space spanned by the two energy eigenstates |e > and |g >. The  two  
states constitute a complete orthonormal system. The corresponding energy 
eigenvalues are Ee and Eg (Fig. 2.2). 

Figure 2.2: Two-level atom 

In the position-, i.e. x-representation, these states correspond to the wave 



     

 
    

        

    

         
              

     

      
    
    

          
  

      

      

             
       

  

  

   

   

   

             
                

           
  

     

              
          

28 CHAPTER 2. MAXWELL-BLOCH EQUATIONS 

functions 
ψe(x) =< x|e >,  and ψg(x) =< x|g > .  (2.38) 

The Hamiltonian of the atom is given by 

HA = Ee|e >< e| +Eg|g >< g|. (2.39) 

In this two-dimensional state space only 2×2 = 4 linearly independent linear 
operators are possible. A possible choice for an operator base in this space is 

1 = |e >< e| + |g >< g|, (2.40) 

σz = |e >< e| − |g >< g|, (2.41) 

σ+ = |e >< g|, (2.42) 

σ− = |g >< e|. (2.43) 

The non-Hermitian operators σ± could be replaced by the Hermitian oper-
ators σx,y 

σx = σ+ + σ− , (2.44) 

σy = −jσ+ + jσ− . (2.45) 

The physical meaning of these operators becomes obvious, if we look at the 
action when applied to an arbitrary state 

|ψ >= cg|g > + ce|e > .  (2.46) 

We obtain 

σ+|ψ >  = cg|e >,  (2.47) 

σ−|ψ >  = ce|g >,  (2.48) 

σz|ψ >  = ce|e > −cg|g > .  (2.49) 

The operator σ+ generates a transition from the ground to the excited state, 
and σ− does the opposite. In contrast to σ+ and σ− , σz is a Hermitian 
operator, and its expectation value is an observable physical quantity with 
expectation value 

< ψ|σz|ψ >= |ce|2 − |cg|2 = w, (2.50) 

the inversion w of the atom, since |ce|2 and |cg|2 are the probabilities for 
finding the atom in state |e > or |g > upon a corresponding measurement. 
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If we consider an ensemble of N atoms the total inversion would be σ = 
N < ψ|σz|ψ >. If we separate from the Hamiltonian (2.38) the term (Ee + 
Eg)/2 ·1, where  1 denotes the unity matrix, we rescale the energy values 
correspondingly and obtain for the Hamiltonian of the two-level system 

1 
HA = ~ωegσz, (2.51) 

2 

with the transition frequency 

ωeg = 
1
(Ee − Eg). (2.52) 
~ 

This form of the Hamiltonian is favorable. There are the following commu-
tator relations between operators (2.41) to (2.43) 

[σ+ ,σ−] = σz, (2.53) 

[σ+ ,σz] = −2σ+ , (2.54) 

[σ− ,σz] = 2σ− , (2.55) 

and anti-commutator relations, respectively 

[σ+ ,σ−]+ = 1, (2.56) 

[σ+ ,σz]+ = 0, (2.57) 

[σ− ,σz]+ = 0, (2.58) 

[σ− ,σ−]+ = [σ+, σ+]+ = 0. (2.59) 

The operators σx, σy, σz fulfill the angular momentum commutator relations 

[σx,σy] = 2jσz, (2.60) 

[σy,σz] = 2jσx, (2.61) 

[σz,σx] = 2jσy. (2.62) 

The two-dimensional state space can be represented as vectors in C2 accord-
ing to the rule: µ ¶ 

c|ψ >= ce|e > + cg|g >  → e . (2.63) 
cg 



     

       
 

  
 

  
 

  
 

  
 

  
 

  
 

  
 

  

      
 

       
   

    

              
 

    
   

     

              
         
      

          

             
                

             
           

           
             

              
    

              
  

30 CHAPTER 2. MAXWELL-BLOCH EQUATIONS 

The operators are then represented by matrices µ ¶ 

σ+ → 
0 1  

, (2.64) µ 
0 0 ¶ 

σ− → 
0 0  

, (2.65) µ 
1 0  ¶ 

σz → 
1 0 

, (2.66) 
0 −1 µ ¶ 

1 → 
1 0  

. (2.67) 
0 1  

2.3.2 The Atom-Field Interaction In Dipole Approxi-
mation 

The dipole moment of an atom  p̃ is essentially determined by the position 
operator �x via 

�p = −e0 �x. (2.68) 

Then the expectation value for the dipole moment of an atom in state (2.46) 
is 

|2 ∗ < ψ|�p|ψ >  = −e0(|ce < e|�x|e > +cecg < g|�x|e >  (2.69) 
∗ |2+ cgc < e|�x|g > +|cg < g|�x|g >).e 

For simplicity, we may assume that that the medium is an atomic gas. The 
atoms posses inversion symmetry, therefore, energy eigenstates must be sym-
metric or anti-symmetric, i.e. < e|�x|e >=< g|�x|g >= 0. We obtain 

< ψ|�p|ψ >= −e0 (cec ∗ 
g < g|�x|e > +cgc ∗ 

e < g|�x|e >  ∗ ). (2.70) 

(Note, this means, there is no permanent dipole moment in an atom, which 
is in an energy eigenstate. Note, this might not be the case in a solid. The 
atoms consituting the solid are oriented in a lattice, which may break the 
symmetry. If so, there are permanent dipole moments and consequently the 
matrix elements < e|�x|e >  and < g|�x|g >  would not vanish. If so, there 
are also crystal fields, which then imply level shifts, via the linear Stark 
effect.) Thus an atom does only exhibit a dipole moment in the average, if 
the product cec ∗ 

g 6 , i.e. the state of the atom is in a superposition of states = 0  
|e > and |g >. 

http:e|�x|e>=<g|�x|g>=0.We


    

     

   

           

           

             
  

             

            
      

      

     

              

             
 

            
           

            
          

   

      

      
 

  
 

             
  

 
      

 
      

2.3. BLOCH EQUATIONS 31 

With the dipole matrix elements 

M� = e0 < g|�x|e >  (2.71) 

the expectation value for the dipole moment can be written as 

∗ ∗ ∗ < ψ|�p|ψ >= −(c c M� + c c M� ∗ ) = − < ψ|(σ+M� + σ−M� )|ψ > .  (2.72) e g g e 

Since this is true for an arbitrary state, the dipole operator (2.68) is repre-
sented by 

+ − � σ−�p = �p + �p = −M� ∗ σ+ − M . (2.73) 

Therefore, the operators σ+ and σ− are proportional to the complex dipole 
moment operators �p+ and �p− , respectively. 
The energy of an  electric dipole in  an  electric  field is 

HA−F = −�p · E� (�xA, t). (2.74) 

The electric field at the position of the atom, �xA, can be written as ³ ´ ³ ´ 
(+) (−) ˆ (+) jωt ˆ (−) −jωtE� (�xA, t) =

1 
E� (t) +E� (t) =

1 
E� (t) e +E� (t) e , (2.75) 

2 2 

where E�̂ (t)(+) denotes the slowly varying complex field envelope with ω ≈ 
ωeg. In the Rotating-Wave Approximation (RWA), we only keep the slowly 
varying components in the interaction Hamiltonian. As we will see later, if 
there is no  field the operator σ+ evolves like σ+(t) = σ+(0)ejωeg t, thus  we  
obtain in RWA 

HA−F = −�p · E� (�xA, t) ≈ (2.76) 

HRW A 1 � ∗ E� ( (−)σ+≈ A−F = M t) + h.c.. (2.77) 
2 

The Schrödinger Equation for the two-level atom in a classical field is then 
given by 

d 
j~ |ψ >  = (HA +HA−F )|ψ >  (2.78) 
dt 

(HA +H
RW A ≈ )|ψ > .  (2.79) A−F 



     

       

 
        

  
 

       
  

     

 

    
 

               
             

             
  

  

             
             

           
   

   
   

 
     

  
  

   
       

           

 
     

 
 

     
 

             
           

32 CHAPTER 2. MAXWELL-BLOCH EQUATIONS 

Written in the energy representation, we obtain 

d ωeg
ce = −j ce − jΩre −jωt cg, (2.80) 

dt 2 
d ωeg
cg = +j  cg − jΩre

+jωt ce, (2.81) 
dt 2 

with the Rabi-frequency defined as 

ˆ� ∗E�M 
Ωr = . (2.82) 

2~ 

For the time being, we assume that the the Rabi-frequency is real. If this is 
not the case, a transformation including a phase shift in the amplitudes ca,b 
would be necessary to eliminate this phase. As expected the field couples the 
energy eigenstates. 

2.3.3 Rabi-Oscillations 

If the incident light has a constant field amplitude E�̂ Eqs. (2.80) and (2.81) 
can be solved and we observe an oscillation in the population difference, the 
Rabi-oscillation [1]. To show this we introduce the detuning between field 
and atomic resonance 

ωab − ω 
∆ = (2.83) 

2 
and the new probability amplitudes 

j ω 
2Ce = cee t , (2.84) 
−j ω t

2Cg = cge . (2.85) 

This leads to the new system of equations with constant coefficients 

d
Ce = −j∆Ce − jΩrCg, (2.86) 

dt 
d
Cg = +j∆Cg − jΩrCe. (2.87) 

dt 

Note, these are coupling of mode equations in time. Now, the modes are 
electronic ones instead of photonic modes. But otherwise everything is the 



    

             
     

 

   
  

 

 

     
 

               
                  

    

  

   

             
 

     
    

              
             

    
     

    

2.3. BLOCH EQUATIONS 33 

same. For the case of vanishing detuning it is especially easy to eliminate 
one of the  variables and  we  arrive  at  

d2 

Ce = −Ω2 
rCe (2.88) 

dt2 

d2 

Cg = −Ω2Cg. (2.89) 
dt2 r 

The solution to this set of equations are the oscillations we are looking for. If 
the atom is at time t = 0  in the ground-state, i.e. Cg(0) = 1 and Ce(0) = 0, 
respectively, we arrive at 

Cg(t) = cos (Ωrt) (2.90) 

Ce(t) =  −j sin (Ωrt) . (2.91) 

Then, the probabilities for finding the atom in the ground or excited state 
are 

|cb(t)|2 = cos  2 (Ωrt) (2.92) 

|ca(t)|2 = sin2 (Ωrt) , (2.93) 

as shown in Fig. 2.3. For the expectation value of the dipole operator under 
� � ∗the assumption of a real dipole matrix element M =M we obtain 

< �p > = Mcecg 
∗ + c.c.− � (2.94) 

= −M� sin (2Ωrt) sin (ωegt) . (2.95) 



     

           
            
     

           
              

              
          

          
             

            
               

           
             

            
           

              
            

             

34 CHAPTER 2. MAXWELL-BLOCH EQUATIONS 

Figure 2.3: Evolution of occupation probabilities of ground and excited state 
and the average dipole moment of a two-level atom in resonant interaction 
with a coherent classical field. 

The coherent external field drives the population of the atomic system 
between the two available states with a period Tr = π/Ωr. Applying the field 
only over half of this period leads to a complete inversion of the population. 
These Rabi-oscillations have been observed in various systems ranging from 
gases to semiconductors. Interestingly, the light emitted from the coherently 
driven two-level atom is not identical in frequency to the driving field. If 
we look at the Fourier spectrum of the polarization according to Eq.(2.95), 
we obtain lines at frequencies ω± = ωeg ± 2Ωr. This is clearly a nonlinear 
output and the sidebands are called Mollow-sidebands [2] . Most important 
for the existence of these oscillations is the coherence of the atomic system 
over at least one Rabi-oscillation. If this coherence is destroyed fast enough, 
the Rabi-oscillations cannot happen and it is then impossible to generate 
inversion in a two-level system by interaction with light. This is the case for 
a large class of situations in light-matter interaction. So we are interested 
what happens in the case of loss of coherence due to additional interaction 

http:Eq.(2.95


    

       

    

             
          

         
        

              
    

    

         
 

      
  

         
 

  
     

  
   

 

              
            

           
           

              
 

            
   

      

             
                
            

      

             
     

        

2.3. BLOCH EQUATIONS 35 

of the atoms with a heat bath. 

2.3.4 The Density Operator 

To study incoherent or dissipative processes it is useful to switch to a sta-
tistical description using the density operator instead of deterministic wave 
functions similar to classical statistical mechanics, where the deterministic 
trajectories of particles are replaced by probability distributions. 
The density operator of a pure state is defined by the dyadic product of 

the state with itself 
ρ = |ψ >< ψ| (2.96) 

or in coordinate representation by a 2 × 2−matrix µ ¶
ρ ρee egρ = . (2.97) 
ρ ρge gg 

In case of a pure state (2.46) this is µ ¶ 
cec ∗ cec ∗ 

ρ = e g . (2.98) ∗ ∗ c cgce gcg 

It is obvious, that, for the rather simple case of a two-level system, each ele-
ment of the density matrix corresponds to a physical quantity. The main di-
agonal contains the population probabilities for the levels and the off-diagonal 
element is the expectation value of the positive or negative frequency compo-
nent of the dipole moment of the atom, i.e. its contribution to the medium 
polarization. 
The expectation value of an arbitrary operator A can be computed using 

the trace formula 

< A >= Tr{ρA } =< ψ|A|ψ > .  (2.99) 

The advantage of the density operator is, that mixtures of pure states can 
also be treated in a statistical sense. For example, if the atom is in state |e >  
with probability pe and in state |g > with probability pg a density operator 

ρ = pe|e >< e| + pg|g >< g| (2.100) 

is defined, which can be used to compute the average values of observables 
in the proper statistical sense 

< A >= Tr{ρA} = pe < e|A|e > +pg < g|A|g > .  (2.101) 
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Since the matrices (2.64) to (2.67) build a complete base in the space of 
2× 2−matrices, we can express the density matrix as 

1 1 
ρ = ρee (1 + σz) + ρgg (1 − σz) + ρegσ

+ + ρgeσ
− (2.102) 

2 2 

=
1 
1 + 

1
(ρ − ρ )σ + ρ σ+ + ρ σ− , (2.103) ee gg z eg ge2 2 

since the trace of the density matrix is always one (normalization). Choosing 
the new base 1, σx, σy, σz, we  obtain  

ρ =
1 
1 + 

1
(ρ − ρ )σ + dxσ + dyσy, (2.104) ee gg z x

2 2 

with 

1 ¡ ¢ 
= <{< σ(+)dx = ρeg + ρge >}, (2.105) 

2 
j ¡ ¢ 

= ={< σ(+) dy =
2 

ρeg − ρge >}. (2.106) 

The expectation value of the dipole operator is given by (2.73) 

< �p >= Tr{ρ�p} = −M� ∗ Tr{ρσ+} + c.c. = −M� ∗ ρge + c.c. (2.107) 

From the Schrödinger equation for the wave function |ψ >  we can eas-
ily derive the equation of motion for the density operator, called the von 
Neumann equation 

d 1 1 
ρ̇ = |ψ ><  ψ| + h.c. = H|ψ ><  ψ| − |ψ ><  ψ|H (2.108) 

dt j~ j~ 
1 

= [H, ρ] . 
j~ 

Due to the linear nature of the equation, this is also the correct equation 
for a density operator describing an arbitrary mixture of states. In case of a 
two-level atom, the von Neumann equation is 

1 ω∈g
ρ̇ = [HA, ρ] = −j [σz, ρ]. (2.109) 

j~ 2 



    

         

   

   
 

        

      

           
           

              
      

   

               
              

             
            

 
         

               

          
               
              
           
            

         

         

   

 
    

 

 
    

 

               
             

2.3. BLOCH EQUATIONS 37 

Using the commutator relations (2.53) - (2.55), the result is 

ρ̇∈e = 0, (2.110) 

ρ̇gg = 0, (2.111) 
−jωeg tρρ̇eg = −jωegρeg → ρeg(t) =  e eg(0), (2.112) 

jωegtρρ̇ge = jωegρge → ρge(t) =  e ge(0). (2.113) 

Again the isolated two-level atom has a rather simple dynamics, the popu-
lations are constant, only the dipole moment oscillates with the transition 
frequency ω∈g, if there has been a dipole moment induced at t = 0, i.e.  the  
system is in a superposition state. 

2.3.5 Energy- and Phase-Relaxation 

In reality, there is no isolated atom. Indeed in our case we are interested with 
a radiating atom, i.e. it has a dipole interaction with the field. The coupling 
with the infinitely many modes of the free field leads already to spontaneous 
emission, an irreversible process. We could treat this process by using the 
Hamiltonian 

H = HA + HF + HA−F . (2.114) 

Here, HA is the Hamiltonian of the atom, HF of the free field and HA−F 

describes the interaction between them. A complete treatment along these 
lines is beyond the scope of this class and is usually done in classes on Quan-
tum Mechanics. But the result of this calculation is simple and leads in the 
von Neumann equation of the reduced density matrix, i.e. the density ma-
trix of the atom. With the spontaneous emission rate 1/τ sp,i.e. the inverse 
spontaneous life time τ sp, the populations change according to 

d d|ce(t)|2 = ρ = −Γeρ + Γaρ (2.115) ee ee ggdt dt 

with the abbreviations 
1 

Γe = (nth + 1), (2.116) 
τ sp 

1 
Γa = nth. (2.117) 

τ sp 

Here, nth is the number of thermally excited photons in the modes of the free 
field with frequency ωeg, nth = 1/(exp(~ωeg/kT ) − 1), at temperature T . 



     

             
   

       
  

               

         

            
            

        
           

         

 
    

 
  

           
 

  

   
    

   

             
   

 
     

     
    

          
            

              
             

    
   

             
             

                

38 CHAPTER 2. MAXWELL-BLOCH EQUATIONS 

The total probability of being in excited or ground state has to be main-
tained, that is 

d
ρgg = − 

d
ρee = Γeρee − Γaρgg. (2.118) 

dt dt 
If the populations decay, so does the polarization too, since ρge = c ∗ 

ecg, i.e. 

d Γe + Γa
ρ = jωegρ − ρ . (2.119) ge eg gedt 2 

Thus absorption as well as emission processes are also destructive to the 
phase, therefore, the corresponding rates add up in the phase decay rate. 
Taking the coherent (??-2.113) and incoherent processes (2.118-2.119) 

into account results in the following equations for the normalized average 
dipole moment d = dx + jdy and the inversion w 

ḋ = ρ̇ge = (jωeg − 
T 
1 

2 
)d, (2.120) 

w − w0 
ẇ = ρ̇ − ρ̇ = − , (2.121) ee gg T1 

with  the time constants  

1 2 2nth + 1  
= = Γe + Γa = (2.122) 

T1 T2 τ sp 

and equilibrium inversion w0, due to the thermal excitation of the atom by 
the thermal field µ ¶

Γa − Γe −1 ~ωeg
w0 = = = − tanh . (2.123) 

Γa + Γe 1 + 2nth 2kT 

The time constant  T1 denotes the energy relaxation in the two-level system 
and T2 the phase relaxation. T2 is the correlation time between amplitudes 
ce and cg. This coherence is destroyed by the interaction of the two -level 
system with the environment. In this model the energy relaxation is half the 
phase relaxation rate or 

T2 = 2T1. (2.124) 

The atoms in a laser medium do not only interact with the electromagnetic 
field, but in addition also with phonons of the host lattice, they might col-
lide with each other in a gas laser and so on. All these processes must be 



    

          
              
             
             

        

    

             
           

            
          

             
            

           
            

                
       

   
    

  

            
    

    
   

  

             
       

        
  

               
          

            
   

    

2.3. BLOCH EQUATIONS 39 

considered when determining the energy and phase relaxation rates. Some 
of these processes are only destroying the phase, but do actually not lead to 
an energy loss in the system. Therefore, these processes reduce T2 but have 
no influence on T1. In real systems the phase relaxation time is most often 
much shorter than twice the energy relaxation time, 

T2 ≤ 2T1. (2.125) 

If the inversion deviates from its equilibrium value w0 it relaxes back into 
equilibrium with a time constant T1. Eq.  (2.123)  shows  that  for  all  tem-
peratures T > 0 the inversion is negative, i.e. the lower level is stronger 
populated than the upper level. Thus with incoherent thermal light inver-
sion in a two-level system cannot be achieved. Inversion can only be achieved 
by pumping with incoherent light, if there are more levels and subsequent 
relaxation processes into the upper laser level. Due to these relaxation pro-
cesses the rate Γa deviates from the equilibrium expression (2.117), and it 
has to be replaced by the pump rate Λ. If the pump rate Λ exceeds Γe, the  
inversion corresponding to Eq. (2.123) becomes positive, 

Λ − Γe 
w0 = . (2.126) 

Λ + Γe 

If we allow for artificial negative temperatures, we obtain with T < 0 for the 
ratio of relaxation rates 

Γe 1 + n̄ ~ ωeg 

= = e kT < 1. (2.127) 
Γa n̄ 

Thus the pumping of the two-level system drives the system far away from 
thermal equilibrium, which has to be expected. 

2.3.6 The Two-Level Atom with a Coherent Classical 
External Field 

If there is in addition to the coupling to an external heat bath, which models 
the spontaneous decay, pumping, and other incoherent processes, a coherent 
external field, the Hamiltonian has to be extended by the dipole interaction 
with that field, 

HE = −�pE� (�xA, t). (2.128) 



     

  

   
    

 

           

 
    

       
 

 

 
  

    
 

 
 

    
 
 

       
  

            

  
      

 
 

            

            
         

  
 

  
 

  
  

    
            

 

          
            

     

40 CHAPTER 2. MAXWELL-BLOCH EQUATIONS 

Again we use the interaction  Hamiltonian in RWA  

HE =
1 
M� ∗ E� (t)(−)σ+ + h.c.. (2.129) 
2 

This leads in the von Neumann equation to the additional term 

ρ̇ |E = 
1
[HE, ρ] (2.130) 

j~ 

=
1 
M� ∗ E� (t)(−)[σ+ , ρ] +  h.c. (2.131) 

2j~ 

or 

� (−)ρρ̇ee|E =
1 
M� ∗ E ge + c.c., (2.132) 

2j~ 
1 � (+)(ρρ̇ge|E = M� E ee − ρgg), (2.133) 
2j~ 
1 

ρ̇ gg|E = − M� ∗ E� (−)ρge + c.c.. (2.134) 
2j~ 

The evolution of the dipole moment and the inversion is changed by 

1 � (+) ḋ|E = ρ̇ ge|E = M� E w, (2.135) 
2j~ 

1 � ∗ E� (−)d ∗ − M � (+)d).ẇ |E = ρ̇ ee|E − ρ̇ gg|E =
j~
(M � E (2.136) 

Thus, the total dynamics of the two-level system including the pumping and 
dephasing processes from Eqs.(2.120) and (2.121) is given by 

1 1 � E(+)ḋ = −( − jωeg)d + M � w, (2.137) 
T2 2j~ 

ẇ = −w − w0 
+ 
1
(M� ∗ E� (−)d − M� E� (+)d ∗ ). (2.138) 

T1 j~ 

These equations are called Bloch-equations. They describe the dynamics of 
an atom interacting with a classical electric field. Together with Eq. (2.7) 
they build the Maxwell-Bloch equations. 
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2.4 Dielectric Susceptibility 

If the incident field is monofrequent, i.e. 

� (t)(+) �̂E = Eejωt , (2.139) 

and assuming that the inversion w of the atom will be well represented by 
its time average ws, then the dipole moment will oscillate with the same 
frequency in the stationary state 

dêjωtd = , (2.140) 

⎤ 

and the inversion will adjust to a new stationary value ws. With  ansatz  
(2.139) and (2.140) in Eqs. (2.137) and (2.138), we obtain 

−jˆ � �d = 
ws 

ME,
ˆ (2.141) 

2~ 1/T2 + j(ω − ωeg) 

ws = 
w0

ˆ . (2.142) 
1/T2 |M� E|2 

11 + T 
~2 

� 

(1/T2)2+(ωeg −ω)2 

We introduce the normalized lineshape function, which is in this case a 
Lorentzian, 

(1/T2)
2 

L(ω) =  , (2.143) 
(1/T2)2 + (ωeg − ω)2 

ˆand connect the square of the field |E� |2 to the intensity I of a propagating 
1 ˆ|2plane wave, according to Eq. (2.32), I = 
2ZF 
|E� , 

ws = 
w 
I 
0 

. (2.144) 
1 +

Is 
L(ω) 

Thus the stationary inversion depends on the intensity of the incident light, 
therefore, w0 can be called the unsaturated inversion, ws the saturated in-

−1 
version and Is,with ⎡ ¯̄̄

 ¯̄̄
 

¯̄̄
 

� �̂ME 
2 

¯̄̄
 
2 

Is = ⎢⎣2T1T2ZF 

~2 
�̂E 

⎥⎦ , (2.145) 

is the saturation intensity. The expectation value of the dipole operator is 
then given by 

M ∗ d + �< �p >= −( � Md  ∗ ). (2.146) 
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Multiplication with the number of atoms per unit volume N relates the dipole 

moment of the atom to the complex polarization P�̂+ of the medium, and 
therefore to the susceptibility according to 

�̂ (+) P = −2NM� ∗ d,̂ (2.147) 

�̂ (+) �̂P = �0χ(ω)E. (2.148) 

From the definitions (2.147), (2.148) and Eq. (2.141) we obtain for  the linear  
susceptibility of the medium 

jN ws
χ(ω) =M� ∗ M� T , (2.149) 

~�0 1/T2 + j(ω − ωeg) 

which is a tensor. In the following we assume that the direction of the 
atom is random, i.e. the alignment of the atomic dipole moment M� and the 
electric field is random. Therefore, we have to average over the angle enclosed 
between the electric field of the wave and the atomic dipole moment, which 
results in ⎛ ⎞ ⎛ ⎞ 

MxMx MxMy MxMz M2 0 0 ⎝ MyMx MyMy MyMz ⎠ = ⎝ 0 
x 

My 
2 0 ⎠ =

1 |M� |2 1. (2.150) 
3

MzMx MzMy MzMz 0 0 Mz 
2 

Thus, for homogeneous and isotropic media the susceptibility tensor shrinks 
to a scalar 

1 jN ws
χ(ω) =  |M� |2 . (2.151) 

3 ~�0 1/T2 + j(ω − ωeg) 

Real and imaginary part of the susceptibility 

χ(ω) = χ0(ω) + jχ00(ω) (2.152) 

are then given by 

|M� |2NwsT2
2(ωeg − ω)

χ0(ω) =  − L(ω), (2.153) 
3~�0 

|M� |2NwsT2
χ00(ω) =  L(ω). (2.154) 

3~�0 
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T 2 ω eg =10 

0.0 0.5 1.0 1.5 2.0 
ω / ω eg 

If the incident radiation is weak enough, i.e. 

�|M� ∗Eˆ|2 

T1T2 L(ω) ¿ 1 (2.155) 
~2 

we obtain ws ≈ w0. Since  w0 < 0, and especially for optical transitions 
w0 = −1, real and imaginary part of the susceptibility are shown in Fig. 2.4. 

1.0 0.6 

0.4 

0.2 
0.5 0.0 

-0.2 

-0.4 
0.0 

Figure 2.4: Real and imaginary part of the complex susceptibility. 

The susceptibility computed quantum mechanically compares well with 
the classical susceptibility derived from the harmonic oscillator model close 
to the transistion frequency for a transition with reasonably high Q = T2ωab. 
Note, there is an appreciable deviation far away from resonance. Far off 
resonance the rotating wave approximation should not be used. 
The physical meaning of the real and imaginary part of the susceptibility 

becomes obvious, when the propagation of a plane electro-magnetic wave 
through this medium is considered, n o 

Eej(ωt−kz)E� (z, t) =  < �̂  
, (2.156) 

which is propagating in the positive z-direction. The propagation constant 
k is related to the susceptibility by µ ¶p 1 √ 
k = ω µ0�0(1 + χ(ω)) ≈ k0 1 +  χ(ω) , with k0 = ω µ0�0 (2.157) 

2 



     

       
  

     
 

             
             

            
      

            
          

   

           
              
         

          

  
   

        
 

      
 

        
  

    
         

 

          
             

     

  

       

  
  

    
  

          
              

          

     

44 CHAPTER 2. MAXWELL-BLOCH EQUATIONS 

for |χ| ¿ 1. Under this assumption we obtain 

χ0 χ00 
k = k0(1 + ) + jk0 . (2.158) 

2 2 
The real part of the susceptibility contributes to the refractive index n = 
1 + χ0/2. In  case  of  χ00 < 0, the imaginary part leads to an exponential 
damping of the wave. For χ00 > 0 amplification takes place. Amplification of 
the wave is possible for  w0 > 0,  i.e.  an inverted medium.  
The phase relaxation rate 1/T2 of the dipole moment determines the width 

of the absorption line or the bandwidth of the amplifier. 

2.5 Rate Equations 

With the wave equation Eq.(2.7) and the expression for the polarization in-
duced by the electric field of the wave, we end up with the complete Maxwell-
Bloch equations describing an electromagnetic field interacting with a statis-
tical ensemble of atoms that are located at postions zi ¶µ

∂2 ∂21 
E� (+)(z, t) =  µ0 P� (+)(z, t), (2.159) ∆ − 

c20 ∂t
2 ∂t2 

p 

P� (+)(z, t) =  −2NM� ∗ d(z, t) (2.160) 
1 � E(+)ḋ(z, t) =  −( 1 − jωeg)d + M � w, (2.161) 

T2 2j~ 
w − w0 1 � ∗ E� (−)d − M� E� (+)d ∗ )ẇ(z, t) =  − + (M (2.162) 
T1 j~ 

In the following we consider a electromagnetic wave with polarization 
vector �e, frequency ωeg and wave number k0 = ωeg/c0 with a slowly varying 
envelope propagating to the right 

�E(z, t)(+) j(ωeg t−k0z)�e e, (2.163) 2ZF0 A(z, t)= ¯̄̄̄
c 

Note, we normalized the complex amplitude A(t) such that its magnitude 
square is proportional to the intensity of the wave. This will also excite a 
wave of dipole moments in the atomic medium according to 

j(ωegt−k0z)d(z, t) = d̂(z, t)e , (2.165) 

with ¯̄̄̄
 

¯̄̄̄
 

¯̄̄̄
 

∂A(z, t) ∂A(z, t) ¿ |ωegA(z, t)| . (2.164) ,
∂t ∂z 

http:1+�0/2.In
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45 2.6. PULSE PROPAGATION WITH DISPERSION AND GAIN 

that is also slowly varying. In that case, we obtain from Eq.(2.159-d) in 
leading order µ ¶ r 

∂ 1 ∂ ZF0T � ∗ + A(z, t) = jN�e M d̂ (z, t) , (2.166)
∂z c0 ∂t 2 p ³ ´ ∂ 1 2ZF0d(z, t) = − d̂+ � e A(t)w (2.167)M� 

∂t T2 2j~ p ³ ´ ³ ´ ∂ w − w0 2ZF0 � ∗ � ∗ � ∗̂ w(z, t) = − + ( M e A ∗ (t) ˆ M�e A(t)dd − (2.168)
∂t T1 j~ 

Furthermore, in the limit, where the dephasing time T2 is much faster than 
the variation in the envelope of the electric field, one can adiabatically elim-
inate the rapidly decaying dipole moment, i.e. p ³ ´ 2ZF0ˆ �d = T2 M�e A(t)w, (2.169)

2j~ 

w − w0 |A(t)|2 

ẇ = − + w, (2.170)
T1 Es 

where Es = IsT1, is called the saturation fluence, [J/cm2] , of the medium. 
Note,  now  we  don’t have to  care anymore  about the  dipole  moment  and  

we are left over with a rate equation for the population difference of the 
medium and the complex field amplitude of the wave. µ ¶

∂ 1 ∂ N~ 
+ A(z, t) =  w (z, t)A(z, t), (2.171)

∂z c0 ∂t 4T2Es 

w − w0 |A(z, t)|2 

ẇ = − + w(z, t) (2.172)
T1 Es 

Equation (2.171) clearly shows that we obtain gain for an inverted medium 
and that the gain saturates with the electromagnetic power density flowing 
through the medium. 

2.6 Pulse Propagation with Dispersion and 
Gain 

In many cases, mode locking of lasers can be most easily studied in the time 
domain. Then mode locking becomes a nonlinear, dissipative wave propaga-



     

            
               

          
   

          
            

    

     

           
       

    
 

    

         

              
                

                
           

       
      

46 CHAPTER 2. MAXWELL-BLOCH EQUATIONS 

tion problem. In this chapter, we discuss the basic elements of pulse propa-
gation in linear and nonlinear media, as far as it is necessary for the following 
chapters. A comprehensive discussion of nonlinear pulse propagation can be 
found in [6]. 

We consider the electric field of a monochromatic electromagnetic wave 
with frequency Ω, which propagates along the z-axis, and is polarized along 
the x-axis, (Fig. 2.5). 

z 

x 

y 

c 

E 

Figure 2.5: Transverse electro—magnetic wave. 
Figure by MIT OCW. 

In a linear, isotropic, homogeneous, and lossless medium the electric field 
of that electromagnetic wave is given by 

�E(z, t) =  �exE(z, t),n o 
j(Ωt−Kz)E(z, t) =  < Ẽ(Ω)e 

= |Ẽ| cos(Ωt − Kz + ϕ), (2.173) 

˜where E = |Ẽ|ejϕ is the complex wave amplitude of the electromagnetic wave 
at frequency Ω and wave number K = Ω/c = nΩ/c0. Here, n is the refractive 
index, c the velocity of light in the medium and c0 the velocity of light in 
vacuum, respectively. The planes of constant phase propagate with the phase 
velocity c of  the wave.  Usually,  we have a superposition of  many frequencies  
with spectrum shown in Fig. 2.6 



        

          

             
             

        
    

 
     

  

         
       

 
      

  

  

  
 

  
  

            

2.6. PULSE PROPAGATION WITH DISPERSION AND GAIN 47 

Figure 2.6: Electric field and pulse envelope in frequency domain. 

In general, the refractive index is a function of frequency and one is 
interested in the propagation of a pulse, that is produced by a superposition 
of monochromatic waves grouped around a certain carrier  frequency  ω0 (Fig. 
2.6) ½ Z ∞ ¾ 

1 ˜ j(Ωt−K(Ω)z)dΩE(z, t) = < E(Ω)e . (2.174) 
2π 0 

We can always separate the complex electric field in Eq.  (2.174) into a  
carrier wave and an envelope A(z, t) © ª 

j(ω0t−K(ω0)z)E(z, t) = < A(z, t)e . (2.175) 

The envelope is given  by  Z ∞ 

A(z, t) =  
1 

Ã(ω)ej(ωt−k(ω)z)dω, (2.176) 
2π −ω0→−∞ 

where we introduced the offset frequency, offset wave vector and spectrum of 



     

  

     

    

     

   
           

 

       

  

              
            

             
           

  

       
 

            
         

48 CHAPTER 2. MAXWELL-BLOCH EQUATIONS 

the envelope 

ω = Ω − ω0, (2.177) 

k(ω) = K(ω0 + ω)− K(ω0), (2.178) 

Ã(ω) = Ẽ(Ω = ω0 + ω), (2.179) 

(see Fig. 2.8). 
Depending on the dispersion relation, the pulse will be reshaped during 

propagation. 

Figure 2.7: Electric field  and  pulse envelope in  time domain.  

2.6.1 Dispersion 

If the spectral width of the pulse is small compared to the carrier frequency, 
the envelope is only slowly varying with time. Additionally, if the dispersion 
relation k(ω) is only slowly varying over the pulse spectrum, it is useful to 
represent the dispersion relation, K(Ω),see Fig. 2.8, by its Taylor expansion 

k00 k(3) 
k(ω) = k0ω + ω2 + ω3 +O(ω4). (2.180) 

2 6 

If the refractive index depends on frequency, the dispersion relation is no 
longer linear with respect to frequency, see Fig. 2.8. 
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Dispersion Relation K( Ω) 

Pulse Spectrum 

Parabola 

Fourier Domain 

ω 0 Frequency Ω 

Figure 2.8: Taylor expansion of dispersion relation. 

For the moment, we keep only the first term, the linear term, in Eq.(2.180). 
Then we obtain for the pulse envelope from (2.176) by definition of the group 
velocity vg = 1/k

0 

A(z, t) = A(0, t  − z/vg). (2.181) 

Thus the derivative of the dispersion relation at the carrier frequency deter-
mines the velocity of the corresponding wave packet. We introduce the local 
time t0 = t−z/vg. With respect to this local time the pulse shape is invariant 
during propagation 

A(z, t0) = A(0, t0). (2.182) 

If the spectrum of the pulse becomes broad enough, so that the second or-
der term in (2.180) becomes important, wave packets with different carrier 
frequencies propagate with different group velocities and the pulse spreads. 
When keeping in the dispersion relation terms up to second order it follows 
from (2.176) 

k00∂A(z, t0) ∂2A(z, t0) 
= −j . (2.183) 

∂z 2 ∂t02 

This is equivalent to the Schrödinger equation for a nonrelativistic free parti-
cle. Like in Quantum Mechanics, it describes the spreading of a wave packet. 
Here, the spreading is due to the first nontrivial term in the dispersion rela-
tion, which describes spreading of an electromagnetic wave packet via group 
velocity dispersion (GVD). Of course, we can keep all terms in the dispersion 
relation, which would lead to higher order derivatives in the equation for the 
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envelope 

µ ¶X∞ k(n)∂A(z, t0) ∂ n 

= j  j A(z, t0). (2.184) 
∂z n! ∂t0 

n=2 

Therefore, one usually calls the first term dispersion and the higher order 
terms higher order dispersion. In the following, we always work in the local 
time frame to get rid of the trivial motion of the pulse. Therefore, we drop the 
prime to simplify notation. Figure 2.9 shows the evolution of a Gaussian wave 
packet during propagation in a medium which has no higher order dispersion 
and k00 = 2 is given in normalized units. The pulse spreads continuously. 

1 

0.8 

0.6 

0.4 

0.2 

0 

0.5 
6 

4Distance z 21 0 
-2 Time-41.5 -6 

Figure 2.9: Amplitude of the envelope of a Gaussian pulse, |A(z, t0)| , in  a  
dispersive medium. 
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(a) Phase 

Time t 

k'' < 0 

k'' > 0 

Front Back 

Instantaneous 
Frequency 

Time t 

k'' < 0 

k'' > 0 

(b) 

        

            
          

           
            

            
              

               
              

         

Figure 2.10: (a) Phase and (b) instantaneous frequency of a Gaussian pulse 
during propagation through a medium with positive or negative dispersion. 

As shown in Fig. 2.10(a), during propagation in the dispersive medium, 
the pulse acquires a linear chirp, i.e. its phase becomes parabolic. The 
derivative of the phase with respect to time is the instantaneous frequency 
Fig. 2.10(b). It indicates, that the low frequencies are in the front of the 
pulse, whereas the high frequencies are in the back of the pulse. This is due 
to the positive dispersion k00 > 0, which causes, that wave packets with lower 
frequencies travel faster than wave packets with higher frequencies. 



     

    

              
  

  

           
            

  

         

 
    

 

            
           

 

 
   

  
 

               
              

             
            

  

 

  
   

 
 

 
    

 
 

           
      

52 CHAPTER 2. MAXWELL-BLOCH EQUATIONS 

2.6.2 Loss and Gain 

If the medium considered has loss, we can incorporate this loss into a complex 
refractive index 

n(Ω) = nr(Ω) + jni(Ω). (2.185) 

The refractive index is determined by the linear response, χ(Ω), of  the  po-
larization in the medium onto the electric field induced in the medium p 

n(Ω) =  1 + χ(Ω). (2.186) 

For an optically thin medium, i.e. |χ(Ω)| ¿ 1 we obtain approximately 

χ(Ω) 
n(Ω) ≈ 1 +  . (2.187) 

2 

For a two level atom with an electric dipole transition, the susceptibility 
is given, in the rotating wave approximation, by the complex Lorentzian 
lineshape 

2jα 
χ(Ω) =  , (2.188) 

1− jΩ−Ω0 
∆Ω 

where α will turn out to be the peak absorption or gain of the transition, 
which is proportional to the density of the atomic inversion, Ω0 is the center 
frequency of the optical transition and ∆Ω is the HWHM linewidth of the 
transition. Figure 2.11 shows the normalized real and imaginary part of the 
complex Lorentzian 

−2α (Ω−Ω0) 
χr(Ω) =  ¡ ∆Ω ¢2 , (2.189) 

Ω−Ω01 +  
∆Ω 

2α 
χi(Ω) =  ¡ ¢2 , (2.190) 

Ω−Ω01 +  
∆Ω 

which are the real- and imaginary part of the complex susceptibility for 
a noninverted optical transition, i.e. loss. 
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0.5 

0
r

i,m
ax

i,m
ax

-0.5 

(Ω- Ω0)/∆Ω 

1 

0.5 

0 

(Ω- Ω0)/∆Ω 

Figure 2.11: Normalized real and imaginary part of the complex Lorentzian. 

The real part of the transition modifies  the real part of the  refractive  
index of the medium, whereas the imaginary part leads to loss in the case of 
a noninverted  medium.  
In the derivation of the wave equation for the pulse envelope (2.184) in 

section 2.6.1, there was no restriction to a real refractive index. Therefore, 
the wave equation (2.184) also treats the case of a complex refractive index. 
If we assume a medium with the complex refractive index (2.187), then the 
wave number is given by 

-10 -5 0 5 10 

-10 -5 0 5 10 

¶µ
Ω 1 

(2.191)K(Ω) =  1 + (χ (Ω) + jχi(Ω)) . 
c0 2 r 

Since we introduced a complex wave number, we have to redefine the group 
velocity as the inverse derivative of the real part of the wave number with 
respect to frequency. At line center, we obtain ¯̄̄̄

 

¶µ
∂Kr(Ω) 1−1 Ω0

1− α (2.192)v = = .g ∂Ω c0 ∆ΩΩ0 

Ω0Thus, for a narrow absorption line, α >  0 and 
∆Ω À 1, the absolute value 

of the group velocity can become much larger than the velocity of light in 



     

           
             

              
               

              
              

              
  

              
            

              
      

 
 

   

     
 

  

              

  
    

   
   

           
             

           

  
   

 
  

 
 

   

         
      

            
          

       

   
   

               
            

54 CHAPTER 2. MAXWELL-BLOCH EQUATIONS 

vacuum. The opposite is true for an inverted, and therefore, amplifying 
transition, α <  0. There is nothing wrong with it, since the group velocity 
only describes the motion of the peak of a Gaussian wave packet, which is 
not a causal wave packet. A causal wave packet is identical to zero for some 
earlier time t < t0, in some region of space. A Gaussian wave packet fills the 
whole space at any time and can be reconstructed by a Taylor expansion at 
any time. Therefore, the tachionic motion of the peak of such a signal does 
not contradict special  relativity.  
The imaginary part in the wave vector (2.191), due to gain and loss, has 

to be completely treated in the envelope equation (2.184). In the frequency 
domain this leads for a wave packet with a carrier frequency at line center, 
ω0 = Ω0 and Kr(Ω0) = k0, to  the  term  ¯̄̄̄

¯ = 
∂Ã(z, ω) 

∂z 
−αk0 

ω 
¢2 Ã(z, ω). (2.193) ¡

1 +
(loss) ∆Ω 

In the time domain, we obtain up to second order in the inverse linewidth 

∂A(z, t) ̄̄̄¯ ¶µ
1 ∂2 

= −αk0 1 +  A(z, t), (2.194) 
∆Ω2 ∂t2∂z (loss) 

which corresponds to a parabolic approximation of the Lorentzian line shape 
at line center, (Fig. 2.11). For an inverted optical transition, we obtain a 
similar equation, we only have to replace the loss by gain 

∂A(z, t) ̄̄̄¯ ∂z (gain) 

¶µ
1 ∂2 

(2.195) = g 1 +  A(z, t),
Ω2 
g ∂t

2 

where g = −αk0 is  the peak gain at line center per  unit length and  Ωg is 
the HWHM  linewidth  of  the gain transition.  The gain is proportional  to the  
inversion in the atomic system, see Eq.(2.149), which also depends on the 
field strength or intensity according to the rate equation (2.172) 

∂g(z, t) g − g0 |A(z, t)|2 

= − − g . (2.196) 
∂t τL EL 

Here, EL is the saturation fluence of the gain medium and τL the life time 
of the inversion, i.e. the upper-state life time of the gain medium. 
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Fused Quartz Sapphire 
a1 0.6961663 1.023798 
a2 0.4079426 1.058364 
a3 0.8974794 5.280792 
λ2 
1 4.679148·10−3 3.77588·10−3 

λ2 
2 1.3512063·10−2 1.22544·10−2 

λ2 
3 0.9793400·102 3.213616·102 

Table 2.1: Table with Sellmeier coefficients for fused quartz and sapphire. 

2.7 Kramers-Kroenig Relations 

The linear susceptibility is the frequency response of a linear system to an 
applied electric field, which is causal, and therefore real and imaginary parts 
obey Kramers-Kroenig Relations 

Z∞ 

χ (Ω) =r 
2 
π 

ωχi(ω) dω = n 2(Ω) − 1,
ω2 − Ω2 

(2.197) 

0 Z∞ 

χi(Ω) =  
2− 
π 

Ωχ (ω)r dω. 
ω2 − Ω2 

(2.198) 

0 

In transparent media one is operating far away from resonances. Then 
the absorption or imaginary part of the susceptibility can be approximated 
by X 

χi(Ω) =  Aiδ (ω − ωi) (2.199) 
i 

and the Kramers-Kroenig relation results in a Sellmeier Equation for the 
refractive index X ωi 

n 2(Ω) = 1 +  Ai (2.200) 
ω2 − Ω2 
ii X λ 

= 1 +  ai . (2.201) 
λ2 − λ2 

ii 

For an example Table 2.1 shows the sellmeier coefficients for fused quartz 
and sapphire. 
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A typical situation for a material having resonances in the UV and IR, 
such as glass, is shown in Fig. 2.12 

Visible 

Absorption 
Coefficient a 

0.01 0.1 1 10 100 1000 

Refractive 
Index n 

0.01 0.1 1 10 100 1000 

Ultraviolet Infrared 

Wavelength λ(µm) 

Figure 2.12: Typcial distribution of absorption lines in a medium transparent 
in the visible. 

Figure by MIT OCW. 

The regions where the refractive index is decreasing with wavelength is 
usually called normal dispersion range and the opposite behavior anormal 
dispersion 

dn 
< 0 : normal dispersion (blue refracts more than red) 

dλ 
dn 

> 0 : abnormal dispersion 
dλ 

Fig.2.13 shows the transparency range of some often used media. 

http:Fig.2.13
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Magnesium Fluoride MgF2 

Calcium Fluoride CaF2 

Barium Fluoride BaF2 

Quarz SiO2 

UV Fused Silicia SiO2 

IR Fused Silicia SiO2 

Glass (BK-7) 

Silicon Si 

Germanium Ge 

Zinc Sulfide ZnS 

Gallium Arsenide GaAs 

Zinc Selenide ZnSe 

Cadmium Telluride CdTe 

0,1 0,2 0,3 0,4 0,5 0,7 1,0 2 3 4 5 7 10 20 

Wavelength (µm) 

Figure 2.13: Transparency range of some materials. 

Figure by MIT OCW. 

2.8 Pulse Shapes and Time-Bandwidth Prod-
ucts 

The following table 2.2 shows pulse shape, spectrum and time bandwidth 
products of some often used pulse forms. 
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R ∞ 
a(t) â(ω) =  a(t)e−jωtdt−∞ ∆t ∆t · ∆f 
2 − t Gauss: e tτ2 

√ − 1 τ2ω2 
2πτe t 

√ 
2 ln 2τ 0.441 

Hyperbolicsecant: 
sech( t )

τ 

¡ ¢ 
τ πsech τω
2 2 1.7627 τ 0.315 

Rect-function:½ 
1, |t| ≤ τ/2 

= 
0, |t| > τ/2 

sin(τω/2)τ 
τω/2 τ 0.886 

1Lorentzian: 
1+(t/τ)2 

−|τω|2πτe 1.287 τ 0.142 
−| t |Double-Exponential: e τ τ 

1+(ωτ)2 ln2 τ 0.142 

Table 2.2: Pulse shapes, corresponding spectra and time bandwidth prod-
ucts. 

1.0 0.5 

f(
t) 

1 F(ω)τp 

-4 -2 0 2 4 -2 -1 0 1 2 
t/τp ωτp 

f(t) = sech (t/τp) 1 F(ω) 1= τp 2 
πsech[ 2 

ωτp] 

20 

1.0 

4 

f(
t) 

6 8 
t/τp 

10 

1 F(ω)τp 

-5 

0.5 

5 

l ωτpf(t) = t0 = 5τp
t-t0 

2 

l+ 1 -|ωτp|[ τp ] Re[ 1 F(ω)] = cos ωt0eτp 2 

1 1 -|ωτp|lm F(ω) = - sin ωt0e[ τp ] 2 

Figure 2.14: Fourier relationship to table above. 
Figure by MIT OCW. 
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f(t)1 

-1 0 1 
t/τp 

ωτp
f(t) =1 -τp< t < τp sinωτpf(t) = 0 |t| > τp 

1 F(ω) = 

-1 
1 F(ω)f(t) 

-70 70 

0.16 
τp 

ωτp 

πωτpτp 

-16 16 
-0.1 

0.3 1 F(ω)τp 

-1 1 

1 
t/τp l F(ω) l sin(ω-ω0)τp sin(ω+ω0)τp= τp 2π [ (ω-ω0)τp
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Figure 2.15: Fourier relationships to table above. 
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Chapter 3 

Nonlinear Pulse Propagation 

There are many nonlinear pulse propagation problems worthwhile of being 
considered in detail, such as pulse propagation through a two-level medium 
in the coherent regime, which leads to self-induced transparency and solitons 
governed by the Sinus-Gordon-Equation. The basic model for the medium is 
the two-level atom discussed before with infinitely long relaxation times T1,2, 
i.e. assuming that the pulses are much shorter than the dephasing time in the 
medium. In such a medium pulses exist, where the first half of the pulse fully 
inverts the medium and the second half of the pulse extracts the energy from 
the medium. The integral over the Rabi-frequency as defined in Eq.(2.39)  is  
than a mutiple of 2π. The interested reader is refered to the book of Allen 
and Eberly [1]. Here, we are interested in the nonlinear dynamics due to 
the Kerr-effect which is most important for understanding pulse propagation 
problems in optical communications and short pulse generation. 

3.1 The Optical Kerr-effect 

In an isotropic and homogeneous medium, the refractive index can not de-
pend on the direction of the electric field. Therefore, to lowest order, the 
refractive index of such a medium can only depend quadratically on the 
field, i.e. on the intensity [22] 

n = n(ω, |A|2) ≈ n0(ω) + n2,L|A|2 . (3.1) 

Here, we assume, that the pulse envelope A is normalized such that |A|2 is 
the intensity of the pulse. This is the optical Kerr effect and n2,L is called 
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64 CHAPTER 3. NONLINEAR PULSE PROPAGATION 

Material Refractive index n n2,L[cm
2/W ] 

Sapphire (Al2O3) 1.76 @ 850 nm 3·10−16 

Fused Quarz 1.45 @ 1064 nm 2.46·10−16 

Glass (LG-760) 1.5 @ 1064 nm 2.9·10−16 

YAG (Y3Al5O12) 1.82 @ 1064 nm 6.2·10−16 

YLF (LiYF4), ne 1.47 @ 1047 nm 1.72·10−16 

Si 3.3 @ 1550 nm 4·10−14 

Table 3.1: Nonlinear refractive index coefficients for different materials. In 
the literature most often  the electro-statitic unit system  is  in use.  The con-
version is n2,L[cm2/W ] = 4.19 · 10−3n2,L[esu]/n0 

the intensity dependent refractive index coefficient. Note, the nonlinear in-
dex depends on the polarization of the field and without going further into 
details, we assume that we treat a linearily polarized electric field. For most 
transparent materials the intensity dependent refractive index is positive. 

3.2 Self-Phase Modulation (SPM) 

In a purely one dimensional propagation problem, the intensity dependent 
refractive index imposes an additional self-phase shift on the pulse envelope 
during propagation, which is proportional to the instantaneous intensity of 
the pulse 

∂A(z, t) 
= −jk0n2,L|A(z, t)|2A(z, t) =  −jδ|A(z, t)|2A(z, t). (3.2) 

∂z 
where δ = k0n2,L is the self-phase modulation coefficient. Self-phase modu-
lation (SPM) leads only to a phase shift in the time domain. Therefore, the 
intensity profile of the pulse does not change only the spectrum of the pulse 
changes, as discussed in the class on nonlinear optics. Figure (3.1) shows 
the spectrum of a Gaussian pulse subject to SPM during propagation (for 
δ = 2  and normalized units). New frequency components are generated by 
the nonlinear process via four wave mixing (FWM). If we look at the phase of 
the pulse during propagation due to self-phase modulation, see Fig. 3.2 (a), 
we find, that the pulse redistributes its energy, such that the low frequency 
contributions are in the front of the pulse and the high frequencies in the 
back of the pulse, similar to the case of positive dispersion. 

http:n2,L[cm2/W]=4.19
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Figure 3.1: Spectrum |Â(z, ω = 2πf)|2 of a Gaussian pulse subject to self-
phase modulation. 
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(a) 
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Time  t

Figure 3.2: (a) Intensity, (b) phase and (c) instantaneous frequency of a 
Gaussian pulse during propagation through a medium with positive self-
phase modulation. 



      

     

          
        

   
      

  

           
          

         
              

           
           

            
            

             
            

              
            

             
            

             
             

             
    

      

            
          

               
            

          
            

 
               

            

3.3. THE NONLINEAR SCHRÖDINGER EQUATION 67 

3.3 The Nonlinear Schrödinger Equation 

If both effects, dispersion and self-phase modulation, act simultaneously on 
the pulse, the field envelope obeys the equation 

∂A(z, t) ∂2A 
j = −D2 + δ|A|2A, (3.3) 

∂z ∂t2 

This equation is called the Nonlinear Schrödinger Equation (NSE) - if we 
put the  imaginary unit on  the  left  hand  side  -,  since it has  the form  of a  
Schrödinger Equation. Its called nonlinear, because the potential energy 
is derived from the square of the wave function itself. As we have seen 
from the discussion in the last sections, positive dispersion and positive self-
phase modulation lead to a similar redistribution of the spectral components. 
This enhances the pulse spreading in time. However, if we have negative 
dispersion, i.e. a wave packet with high carrier frequency travels faster than 
a wave packet with a low carrier frequency, then, the high frequency wave 
packets generated by self-phase modulation in the front of the pulse have 
a chance to catch up with the pulse itself due to the negative dispersion. 
The opposite is the case for the low frequencies. This arrangement results 
in pulses that do not disperse any more, i.e. solitary waves. That negative 
dispersion is necessary to compensate the positive Kerr effect is also obvious 
from the NSE (3.3). Because, for a positive Kerr effect, the potential energy 
in the NSE is always negative. There are only bound solutions, i.e. bright 
solitary waves, if the kinetic energy term, i.e. the dispersion, has a negative 
sign, D2 < 0. 

3.3.1 The Solitons of the NSE 

In  the following,  we study  different solutions of the NSE for the case of 
negative dispersion and positive self-phase modulation. We do not intend 
to give a full overview over the solution manyfold of the NSE in its full 
mathematical depth here, because it is not necessary for the following. This 
can be found in detail elsewhere [4, 5, 6, 7]. 
Without loss of generality, by normalization of the field amplitude A = q 

Á 2D2 
τ δ , the propagation distance z = ź · τ 2/D2, and  the  time  t = t́ · τ , 
the NSE (3.3) with negative dispersion can always be transformed into the 
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normalized form 
∂Á(ź, t) ∂2Á  

j = 2 + 2|Á|2Á  (3.4) 
∂ź  ∂t́  

This is equivalent to set D2 = −1 and δ = 2. For the numerical simulations, 
which are shown in the next chapters, we simulate the normalized eq.(3.4) 
and the axes are in normalized units of position and time. 

3.3.2 The Fundamental Soliton 

We look for a stationary wave function of the NSE (3.3), such that its absolute 
square is a self-consistent potential. A potential of that kind is well known 
from Quantum Mechanics, the sech2-Potential [8], and therefore the shape of 
the solitary pulse is a sech µ ¶

t 
As(z, t) = A0sech e −jθ, (3.5) 

τ 

where θ is the nonlinear phase shift of the soliton 

θ =
1 
δA20z (3.6) 
2 

The soltion phase shift is constant over the pulse with respect to time in 
contrast to the case of self-phase modulation only, where the phase shift is 
proportional to the instantaneous power. The balance between the nonlinear 
effects and the linear effects requires that the nonlinear phase shift is equal 
to the dispersive spreading of the pulse 

|D2|
θ = z. (3.7) 

τ 2 

Since the field amplitude A(z, t) is normalized, such that the absolute square 
is the intensity, the soliton energy fluence is given by Z ∞ 

w = |As(z, t)|2dt = 2A2τ .  (3.8) 0 
−∞ 

From eqs.(3.6) to (3.8), we obtain for constant pulse energy fluence, that the 
width of the soliton is proportional to the amount of negative dispersion 

4|D2|
τ = . (3.9) 

δw 
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Note, the pulse area for a fundamental soliton is only determined by the 
dispersion and the self-phase modulation coefficient

Am
pl

itu
de

Z ∞ 
r 
|D2|Pulse Area = |As(z, t)|dt = πA0τ = π . (3.10) 
2δ−∞ 

Thus, an initial pulse with a different area can not just develope into a pure 
soliton. 
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Figure 3.3: Propagation of a fundamental soliton. 

Fig. 3.3 shows the numerical solution of the NSE for the fundamental 
soliton pulse. The distance, after which the soliton aquires a phase shift of 
π/4, is called the soliton period, for reasons, which will become clear in the 
next section. 
Since the dispersion is constant over the frequency, i.e. the NSE has 

no higher order dispersion, the center frequency of the soliton can be chosen 
arbitrarily. However, due to the dispersion, the group velocities of the solitons 
with different carrier frequencies will be different. One easily finds by a 
Gallilei tranformation to a moving frame, that the NSE posseses the following 
general fundamental soliton solution 

−jθ(z,t)As(z, t) = A0sech(x(z, t))e , (3.11) 
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with 
1 

x = (t − 2|D2|p0z − t0), (3.12) 
τ 

and a nonlinear phase shift 

µ ¶
1 

θ = p0(t − t0) + |D2| 
τ 2 
− p 2 z + θ0. (3.13) 0 

Thus, the energy fluence w or amplitude A0, the carrier frequency p0, the  
phase θ0 and the origin t0, i.e. the timing of the fundamental soliton are 
not yet determined. Only the soliton area is fixed. The energy fluence and 
width are determined if one of them is specified, given a certain dispersion 
and SPM-coefficient. 

3.3.3 Higher Order Solitons 

The NSE has constant dispersion, in our case negative dispersion. That 
means the group velocity depends linearly on frequency. We assume, that 
two fundamental soltions are far apart from each other, so that they do not 
interact. Then this linear superpositon is for all practical purposes another 
solution of the NSE. If we choose the carrier frequency of the soliton, starting 
at a later time, higher than the one of the soliton in front, the later soliton 
will catch up with the leading soliton due to the negative dispersion and the 
pulses will collide. 
Figure 3.4 shows this situation. Obviously, the two pulses recover com-

pletely from the collision, i.e. the NSE has true soliton solutions. The solitons 
have particle like properties. A solution, composed of several fundamental 
solitons, is called a higher order soliton. If we look closer to figure 3.4, we 
recognize, that the soliton at rest in the local time frame, and which follows 
the t = 0 line without the collision, is somewhat pushed forward due to the 
collision. A detailed analysis of the collision would also show, that the phases 
of the solitons have changed [4]. The phase changes due to soliton collisions 
are used to built all optical switches [10], using backfolded Mach-Zehnder in-
terferometers, which can be realized in a self-stabilized way by Sagnac fiber 
loops. 
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Figure 3.4: A soliton with high carrier frequency collides with a soliton of 
lower carrier frequency. After the collison both pulses recover completely. 
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Figure 3.5: (a) Amplitude and, (b) Spectrum of a higher order soliton com-
posed of two fundamental solitons with the same carrier frequency 
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The NSE also shows higher order soliton solutions, that travel at the same 
speed, i.e. they posses the same carrier frequency, the so called breather 
solutions. Figures 3.5(a) and (b) show the amplitude and spectrum of such 
a higher order soliton solution, which has twice the area of the fundamental 
soliton. The simulation starts with a sech-pulse, that has twice the area of 
the fundamental soliton, shown in figure 3.3. Due to the interaction of the 
two solitons, the temporal shape and the spectrum exhibits a complicated but 
periodic behaviour. This period is the soliton period z = π/4, as mentioned 
above. As can be seen from Figures 3.5(a) and 3.5(b), the higher order 
soliton dynamics leads to an enormous pulse shortening after half of the 
soliton period. This process has been used by Mollenauer, to build his soliton 
laser [11]. In the soliton laser, the pulse compression, that occures for a 
higher order soliton as shown in Fig. 3.5(a), is exploited for modelocking. 
Mollenauer pioneered soliton propagation in optical fibers, as proposed by 
Hasegawa and Tappert [3], with the soliton laser, which produced the first 
picosecond pulses at 1.55 µm. A detailed account on the soliton laser is given 
by Haus [12]. 

So far, we have discussed the pure soliton solutions of the NSE. But, 
what happens if one starts propagation with an input pulse that does not 
correspond to a fundamental or higher order soliton? 

3.3.4 Inverse Scattering Theory 

Obviously, the NSE has solutions, which are composed of fundamental soli-
tons. Thus, the solutions obey a certain superposition principle which is 
absolutely surprising for a nonlinear system. Of course, not arbitrary super-
positions are possible as in a linear system. The deeper reason for the solution 
manyfold of the NSE can be found by studying its physical and mathemat-
ical properties. The mathematical basis for an analytic formulation of the 
solutions to the NSE is the inverse scattering theory [13, 14, 4, 15]. It is a 
spectral tranform method for solving integrable, nonlinear wave equations, 
similar to the Fourier transform for the solution of linear wave equations [16]. 
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Figure 3.6: Fourier transform method for the solution of linear, time invariant 
partial differential equations. 

Figure 3.7: Schematic representation of the inverse scattering theory for the 
solution of integrable nonlinear partial differential equations. 

Let’s remember briefly, how to solve an initial value problem for a linear 
partial differential equation (p.d.e.), like eq.(2.184), that treats the case of 
a purely dispersive pulse propagation. The method is sketched in Fig. 3.6. 
We Fourier tranform the initial pulse into the spectral domain, because, the 
exponential functions are eigensolutions of the differential operators with 
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constant coefficients. The right side of (2.184) is only composed of powers of 
the differntial operator, therefore the exponentials are eigenfunctions of the 
complete right side. Thus, after Fourier transformation, the p.d.e. becomes 
a set of ordinary differential equations (o.d.e.), one for each partial wave. 
The excitation of each wave is given by the spectrum of the initial wave. 
The eigenvalues of the differential operator, that constitutes the right side 
of (2.184), is given by the dispersion relation, k(ω), up  to  the  imaginary  
unit. The solution of the remaining o.d.e is then a simple exponential of the 
dispersion relation. Now, we have the spectrum of the propagated wave and 
by inverse Fourier transformation, i.e. we sum over all partial waves, we find 
the new temporal shape of the propagated pulse. 
As in the case of the Fourier transform method for the solution of linear 

wave equations, the inverse scattering theory is again based on a spectral 
transform, (Fig.3.7). However, this transform depends now on the details 
of the wave equation and the initial conditions. This dependence leads to 
a modified superposition principle. As is shown in [7], one can formulate 
for many integrable nonlinear wave equations a related scattering problem 
like one does in Quantum Theory for the scattering of a particle at a poten-
tial well. However, the potential well is now determined by the solution of 
the wave equation. Thus, the initial potential is already given by the ini-
tial conditions. The stationary states of the scattering problem, which are 
the eigensolutions of the corresponding Hamiltonian, are the analog to the 
monochromatic complex oscillations, which are the eigenfunctions of the dif-
ferential operator. The eigenvalues are the analog to the dispersion relation, 
and as in the case of the linear p.d.e’s, the eigensolutions obey simple linear 
o.d.e’s. 
A given potential will have a certain number of bound states, that cor-

respond to the discrete spectrum and a continuum of scattering states. The 
characteristic of the continuous eigenvalue spectrum is the reflection coef-
ficient for waves scatterd upon reflection at the potential. Thus, a certain 
potential, i.e. a certain initial condition, has a certain discrete spectrum and 
continuum with a corresponding reflection coefficient. From inverse scatter-
ing theory for quantum mechanical and electromagnetic scattering problems, 
we know, that the potenial can be reconstructed from the scattering data, 
i.e. the reflection coefficient and the data for the discrete spectrum [?]. This 
is true for a very general class of scattering potentials. As one can almost 
guess now, the discrete eigenstates of the initial conditions will lead to soliton 
solutions. We have already studied the dynamics of some of these soliton so-
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lutions above. The continuous spectrum will lead to a dispersive wave which 
is called the continuum. Thus, the most general solution of the NSE, for 
given arbitrary initial conditions, is a superposition of a soliton, maybe a 
higher order soliton, and a continuum contribution. 
The continuum will disperse during propagation, so that only the soliton 

is recognized after a while. Thus, the continuum becomes an asympthotically 
small contribution to the solution of the NSE. Therefore, the dynamics of 
the continuum is completely discribed by the linear dispersion relation of the 
wave equation. 
The back transformation from the spectral to the time domain is not as 

simple as in the case of the Fourier transform for linear p.d.e’s. One has to 
solve a linear integral equation, the Marchenko equation [17]. Nevertheless, 
the solution of a nonlinear equation has been reduced to the solution of two 
linear problems, which is a tremendous success. 
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Figure 3.8: Solution of the NSE for an unchirped and rectangular shaped 
initial pulse. 
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To appreciate these properties of the solutions of the NSE, we solve the 
NSE for a rectangular shaped initial pulse. The result is shown in Fig. 3.8. 
The scattering problem, that has to be solved for this initial condition, 

is the same as for a nonrelativistic particle in a rectangular potential box 
[32]. The depth of the potential is chosen small enough, so that it has only 
one bound state. Thus, we start with a wave composed of a fundamental 
soliton and continuum. It is easy to recognize the continuum contribution, 
i.e. the dispersive wave, that separates from the soliton during propagation. 
This solution illustrates, that soliton pulse shaping due to the presence of 
dispersion and self-phase modulation may have a strong impact on pulse 
generation [18]. When the dispersion and self-phase modulation are properly 
adjusted, soliton formation can lead to very clean, stable, and extremly short 
pulses in a modelocked laser. 

3.4 Universality of the NSE 

Above, we derived the NSE in detail for the case of disperison and self-phase 
modulation. The input for the NSE is surprisingly low, we only have to 
admitt the first nontrivial dispersive effect and the lowest order nonlinear 
effect that is possible in an isotropic and homogeneous medium like glass, 
gas or plasmas. Therefore, the NSE and its properties are important for 
many other effects like self-focusing [19], Langmuir waves in plasma physics, 
and waves in proteine molecules [20]. Self-focusing will be treated in more 
detail  later,  because it is the  basis for  Kerr-Lens Mode Locking.  

3.5 Soliton Perturbation Theory 

From the previous discussion, we have full knowledge about the possible 
solutions of the NSE that describes a special Hamiltonian system. However, 
the NSE hardly describes a real physical system such as, for example, a real 
optical fiber in all its aspects [21, 22]. Indeed the NSE itself, as we have 
seen during the derivation in the previous sections, is only an approximation 
to the complete wave equation. We approximated the dispersion relation 
by a parabola at the assumed carrier frequency of the soliton. Also the 
instantaneous Kerr effect described by an intensity dependent refractive index 
is only an approximation to the real χ(3)-nonlinearity of a Kerr-medium [23, 
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24]. Therefore, it is most important to study what happens to a soliton 
solution of the NSE due to perturbing effects like higher order dispersion, 
finite response times of the nonlinearites, gain and the finite gain bandwidth 
of amplifiers, that compensate for the inevitable loss in a real system. 
The investigation of solitons under  perturbations is as old  as  the solitons  

itself. Many authors treat the perturbing effects in the scattering domain 
[25, 26]. Only recently, a perturbation theory on the basis of the linearized 
NSE has been developed, which is much more illustrative then a formulation 
in the scattering amplitudes. This was first used by Haus [27] and rigorously 
formulated by Kaup [28]. In this section, we will present this approach as 
far as it is indispensible for the following. 
A system, where the most important physical processes are dispersion 

and self-phase modulation, is described by the NSE complimented with some 
perturbation term F ∙ ¸

∂A(z, t) ∂2A 
= −j |D2| + δ|A|2A + F (A, A ∗ , z). (3.14) 

∂z ∂t2 

In the following, we are interested what happens to a solution of the full 
equation (3.14) which is very close to a fundamental soliton, i.e. ∙ ¸

t −jkszA(z, t) =  a( ) +∆A(z, t) e . (3.15) 
τ 

Here, a(x) is the fundamental soliton according to eq.(3.5) 

t t 
a( ) = A0 sech( ), (3.16) 
τ τ 

and 
ks =

1 
δA20 (3.17) 
2 

is the phase shift of the soliton per unit length, i.e. the soltion wave vector. 
A deviation from the ideal soliton can arise either due to the additional 

driving term F on the right side or due to a deviation already present in 
the initial condition. We use the form (3.15) as an ansatz to solve the NSE 
to first order in the perturbation ∆A, i.e. we linearize the NSE around the 
fundamental soliton and obtain for the perturbation ∙µ ¶ ¸

∂∆A ∂2 

= −jks − 1 ∆A + 2sech2(x) (2∆A +∆A ∗ )
∂z ∂x2 

+F (A, A ∗ , z)ejksz , (3.18) 
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where x = t/τ . Due to the nonlinearity, the field  is coupled  to  its complex  
conjugate. Thus, eq.(3.18) corresponds actually to two equations, one for the 
amplitude and one for its complex conjugate. Therefore, we introduce the 
vector notation µ ¶ 

∆A = 
∆
∆ 
A
A 
∗ . (3.19) 

We further introduce the normalized propagation distance z0 = ksz and the 
normalized time x = t/τ . The linearized perturbed NSE is then given by 

∂ 1 
∆A = L∆A + F(A, A ∗ , z)ejz

0 
(3.20)

∂z0 ks 

Here, L is the operator which arises from the linearization of the NSE ∙ ¸
∂2 

L = −jσ3 ( − 1) + 2 sech2(x)(2 + σ1) , (3.21) 
∂x2 

where σi, i  = 1, 2, 3 are the Pauli matrices. For a solution of the inhomoge-
neous equation (3.20), we need the eigenfunctions and the spectrum of the 
differential operator L. We found in section 3.3.2, that the fundamental soli-
ton has four degrees of freedom, four free parameters. This gives already four 
known eigensolutions and mainsolutions of the linearized NSE, respectively. 
They are determined by the derivatives of the general fundamental soliton 
solutions according to eqs.(3.11) to (3.13) with respect to free parameters. 
These eigenfunctions are  

fw(x) =  

fθ(x) =  

fp(x) =  

ft(x) =  

µ
1 1 
(1 − x tanh x)a(x) 

w 1 µ ¶
1−ja(x) ,−1 µ ¶
1−j xτa(x) ,−1 µ ¶

1 1 
tanh(x) a(x) ,

τ 1 

¶ 

, (3.22) 

(3.23) 

(3.24) 

(3.25) 

and they describe perturbations of the soliton energy, phase, carrier frequency 
and timing. One component of each of these vector functions is shown in Fig. 
3.9. 

http:eqs.(3.11
http:z)e(3.20
http:eq.(3.18
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Figure 3.9: Perturabations in soliton amplitude (a), phase (b), frequency (c), 
and timing (d). 

Figure by MIT OCW. 

The action of the evolution operator of the linearized NSE on these soliton 
perturbations is 

Lfw = 
1 
fθ, (3.26) 

w 
Lfθ = 0, (3.27) 

Lfp = −2τ 2ft, (3.28) 

Lft = 0. (3.29) 

x 

x 



     

          
          

                
           
           

              
              

 

   

 
  

 
  

   
  

 

 

 

 

 

     

 
   

   

           
         

   
      

  

             
            

          
             
           

            
             

   
   

           
       

 
     

   
 

    

3.5. SOLITON PERTURBATION THEORY 81 

Equations (3.26) and (3.28) indicate, that perturbations in energy and 
carrier frequency are converted to additional phase and timing fluctuations 
of the pulse due to SPM and GVD. This is the base for soliton squeezing in 
optical fibers [27]. The timing and phase perturbations can increase without 
bounds, because the system is autonomous, the origin for the Gordon-Haus 
effect, [29] and there is no phase reference in the system. The full continuous 
spectrum of the linearized NSE has been studied by Kaup [28] and is given 
by 

Lfk = λkfk, (3.30) 

λk = j(k2 + 1),µ 
−jkx fk(x) = e 

2(k − jtanhx) 
sech2 x 

¶ 

, 

(3.31) 

(3.32) 

and 

Lf̄k 
¯ ¯ = λkfk, (3.33) 

λ̄k = −j(k2 + 1), (3.34) 

f̄k = σ1fk. (3.35) 

Our definition of the eigenfunctions is slightly different from Kaup [28], be-
cause we also define the inner product in the complex space as Z +∞ 

< u|v >=
1 

u +(x)v(x)dx. (3.36) 
2 −∞ 

Adopting this definition, the inner product of a vector with itself in the 
subspace where the second component is the complex conjugate of the first 
component is the energy of the signal, a physical quantity. 
The operator L is not self-adjoint with respect to this inner product. The 

physical origin for this mathematical property is, that the linearized system 
does not conserve energy due to the parametric pumping by the soliton. 
However, from (3.21) and (3.36), we can easily see that the adjoint operator 
is given by 

L+ = −σ3Lσ3, (3.37) 

and therefore, we obtain for the spectrum of the adjoint operator 
(+) (+) (+)

L+f = λ f , (3.38) k k k 
(+)

λk = −j (k2 + 1), (3.39) 

f
(+) 
=

1 
σ3fk, (3.40) k π(k2 + 1)2 
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and 
(+) (+) (+)

L+¯ ¯ ¯fk = λk fk , (3.41) 

λ̄
(+) 
k = j(k2 + 1), (3.42) 

1(̄+) ¯fk = σ3fk. (3.43) 
π(k2 + 1)2 

The eigenfunctions to L and its adjoint are mutually orthogonal to each 
other, and they are already properly normalized 

(+) (+)
< fk |fk0 > = δ(k − k0), < f̄k |̄fk0 >= δ(k − k0) 

(+) (+)
< f̄k |fk0 > = < fk |̄fk0 >= 0. 

This system, which describes the continuum excitations, is made complete 
by taking also into account the perturbations of the four degrees of freedom 
of the soliton (3.22) - (3.25) and their adjoints µ ¶ 

f (+) 
1 

w (x) =  j2τσ3fθ(x) = 2τa(x) , (3.44) 
1 

f
(+)
(x) =  −2jτσ3fw(x)θ µ ¶−2jτ 1 

= (1− x tanhx)a(x) , (3.45) 
w −1 µ ¶ 

f (+) 
2jτ 2i 1 

p (x) =  − σ3ft(x) =  tanhxa(x) , (3.46) 
w w −1 µ ¶ 

(+) 2jτ 2τ 2 1 
ft (x) =  σ3fp(x) =  xa(x) .. (3.47) 

w w 1 

Now, the unity can be decomposed into two projections, one onto the con-
tinuum and one onto the perturbation of the soliton variables [28] Z ∞ h i 

(+) (+) 
δ(x − x 0) =  dk |fk >< fk | + |f̄k >< f̄k | 

−∞ 

>< f (+) (+)
+ |fw w | + |fθ >< fθ | (3.48) 

>< f (+) (+) 
+ |fp p | + |ft >< ft |. 

Any deviation ∆A can be decomposed into a contribution that leads to a soli-
ton with a shift in the four soliton paramters and a continuum contribution 
ac 

∆A(z 0) = ∆w(z 0)fw +∆θ(z 0)fθ +∆p(z 0)fp +∆t(z 0)ft + ac(z 0). (3.49) 



     

       
   

      
 

          

 
          

     

 
       

 
    

 
  

            
            

     

  
   

    
  

     
    

  

  
   

    
  

    
      

  

    
         

 
 

             

     

         

    

            
   

  
        

  

3.5. SOLITON PERTURBATION THEORY 83 

Further, the continuum can be written as Z ∞ £ ¤ 
¯ ac = dk g(k)fk(x) + ḡ(k)fk(x) . (3.50) 

−∞ 

If we put the decomposition (3.49) into (3.20) we obtain 

∂∆w ∂∆θ ∂∆p ∂∆t ∂ 
fw + fθ + fp + ft + ac = 

∂z0 ∂z0 ∂z0 ∂z0 ∂z0 

1 
L (∆w(z 0)fw +∆p(z 0)fp + a(z 0)c) +

ks 
F(A,A ∗ , z  0)e −iz

0 
. (3.51) 

By building the scalar products (3.36) of this equation with the eigensolutions 
of the adjoint evolution operator (3.38) to (3.43) and using the eigenvalues 
(3.26) to (3.35), we find 

∂ 1 
< f (+) jz0 ∆w = |Fe >, (3.52) 

∂z0 ks
w 

∂ ∆W 1 (+) jz0 ∆θ = + fθ |Fe >, (3.53) 
∂z0 W ks 

< f (+) jz0∂ 
∆p =

1 |Fe >, (3.54) 
∂z0 ks

p 

(+) jz0∂ 
∆t = 2τ∆p +

1 
< f |Fe >, (3.55) 

∂z0 ks
t 

∂ 1 0)
(+) jz0 g(k) =  j(1 + k2)g(k) +  < fk F(A, A ∗ , z e > .  (3.56) 

∂z0 ks 

Note, that the continuum ac has to be in the subspace defined by 

σ1ac = ac 
∗ . (3.57) 

The spectra of the continuum g(k) and ḡ(k) are related by 

ḡ(k) = g(−k) ∗ . (3.58) 

Then, we can directly compute the continuum from its spectrum using (3.32), 
(3.50) and (3.57) 

∂2G(x) ∂G(x) 2 ac = − + 2 tanh(x) − tanh (x)G(x) +G ∗ (x)sech2(x), (3.59) 
∂x2 ∂x 
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where G(x) is, up to the phase factor eiz
0 
, Gordon’s associated function [33]. 

It is the inverse Fourier transform of the spectrum Z ∞ 

G(x) =  g(k) e ikxdk. (3.60) 
−∞ 

Since g(k) obeys eq.(3.56), Gordon’s associated function obeys a pure dis-
persive equation in the absence of a driving term F µ ¶

∂G(z0, x) ∂2 

= −j 1 +  G(z 0 , x). (3.61) 
∂z0 ∂x2 

It is instructive to look at the spectrum of the continuum when only one 
continuum mode with normalized frequency k0 is present, i.e. g(k) =  δ(k − 
k0). Then according to eqs. (3.59) and (3.60) we have £ ¤ 

ac,k(x) =  k0
2 − 2jk0 tanh(x) − 1 e −jk0x + 2sech2(x) cos(x). (3.62) 

The spectrum of this continuum contribution is Ã ! 

ãc,k(ω) = 2π(k0
2 − 1)δ(ω − k0) + 2k0 P.V. 

2
+ ¡

π 

π ¢ 
ω − k0 sinh 

2 (ω − k0) 

ω − k0 ω + k0 
+ π ¡ ¢ + π ¡ ¢ . (3.63) 

sinh π 
2 (ω − k0) sinh π 

2 (ω + k0) 

3.6 Soliton Instabilities by Periodic Pertur-
bations 

Periodic perturbations of solitons are important for understanding ultrashort 
pulse lasers as well as ong distance optical communication systems [30, 31]. 
Along a long distance transmission system, the pulses have to be periodi-
cally amplified. In a mode-locked laser system, most often the nonlinearity, 
dispersion and gain occur in a lumped manner. The solitons propagating in 
these systems are only average solitons, which propagate through discrete 
components in a periodic fashion, as we will see later. 
The effect of this periodic perturbations can be modelled by an additional 

term F in the perturbed NSE according to Eq.(3.14) 
∞X 

F (A, A ∗ , z) =  jξ δ(z − nzA)A(z, t). (3.64) 
n=−∞ 

http:Eq.(3.14
http:eq.(3.56


       

             
 

             
 

 
           

 
  

 
 

          
   

 
     

 
       

 
            

  
 

         

 
             

 
  

  
   

  
  

        
   

 

      
          

        
         

 
   

 

           
           

   
      

3.6. SOLITON INSTABILITIES BY PERIODIC PERTURBATIONS 85 

The periodic kicking of the soliton leads to shedding of energy into continuum 
modes according to Eq.(3.56)  

∂ (+) jksz g(k) =  jks(1 + k2)g(k)+ < fk F(A, A ∗ , z)e > .  (3.65) 
∂z 

∞X 
(+) jksz< fk F(A, A ∗ , z)e >= jξ δ(z − nzA)

1 · (3.66) 
2 Z +∞ µ 

n=−∞ ¶ µ ¶
1 jkx (k + jtanhx)2 1 

e · A0 sechx dx  
−∞ π(k2 + 1)2 −sech2 x 1 

∞X 
= jξ δ(z − nzA) · (3.67) Z 

n=−∞ 
+∞ A0 jkx 

¡ ¢ 
e k2 + 2jk tanh x − 1 ·sechx dx  

2π(k2 + 1)2 
−∞ 

Note, 
dx
d sechx = −sechx tanh x, and therefore 

∞X 
(+) jz< fk F(A, A ∗ , z)e >= −jξ δ(z − nzA) · Z 

n=−∞ 
+∞ A0 jkxe ·sechxdx 

2π(k2 + 1)  −∞ 
∞ µ ¶X A0 πk 

= −jξ δ(z − nzA) sech . (3.68) 
4(k2 + 1)  2 

n=−∞ P∞ P∞ jm 2π z 
zAUsing δ(z − nzA) =  1 we obtain n=−∞ zA m=−∞ e 

∞ µ ¶X∂ ξ jm 2π z A0 πk 
zAg(k) =  jks(1 + k2)g(k) − j e sech . (3.69) 

∂z zA 4(k2 + 1)  
m=−∞ 

Eq.(3.69) is a linear differential equation with constant coefficients for the 
continuum amplitudes g(k), which can be solved by variation of constants 
with the ansatz 

jks(1+k2)z g(k, z) =  C(k, z)e , (3.70) 

2 

http:Eq.(3.69
http:modesaccordingtoEq.(3.56


      

       

  
   

   
 

      
  

   
 

 
     

  
   

 
  

  
 

    
  

  
     

 
   

      
  

 
  

           
         

 
    

 
 

       
 

            
             

              
   

 
    

 

   
 

  
     

 
   

    
  

   
   

           
             
             

86 CHAPTER 3. NONLINEAR PULSE PROPAGATION 

and initial conditions C(z = 0) = 0, we obtain 

∞ µ ¶ ³ ´X∂ ξ A0 πk −j ks(1+k2)−m 
z 
2 

A

π z
C(k, z) = −j sech e , (3.71) 

∂z zA 4(k2 + 1)  2 
m=−∞ 

or µ ¶ ∞ Z zXξ A0 πk j(−ks(1+k2)+m )z
C(k, z) =  −j sech · e z 

2 

A

π 

dz 
zA 4(k2 + 1)  2 0 µ ¶ m=−∞ 

ξ A0 πk 
= −j sech · (3.72) 

zA 4(k2 + 1)  2 X 2π∞ j(−ks(1+k2)+m 
zA 
)z 

e − 1 
. 

m 2π − ks(1 + k2)
m=−∞ zA 

There is a resonant denominator, which blows up at certain normalized fre-
quencies km for z →∞ Those frequencies are given by 

m 
2π − ks(1 + k m 

2 ) = 0  (3.73) 
zA s 

2πm 
or km = ± zA − 1. (3.74) 

ks 

Removing the normalization by setting k = ωτ, ks = |D2| /τ 2 and introducing 
the nonlinear phase shift of the soliton acquired over one periode of the 
perturbation φ0 = kszA, we obtain a handy formula for the location of the 
resonant sidebands s 

1 2mπ 
ωm = ± − 1, (3.75) 

τ φ0 

and the coefficients ³ ´ ξ A0 πωτ 
C(ω, z) =  −j sech (3.76) 

zA 4((ωτ)
2 + 1)  2 X 2π∞ j(−ks(1+(ωτ)2)+m )z 

zAe − 1 · zA 2 . 
m=−∞ 2πm − φ0(1 + (ωτ) ) 

The coefficients stay bounded for frequencies not equal to the resonant condi-
tion and they grow linearly with zA, at resonance, which leads to a destruc-
tion of the pulse. To stabilize the soliton against this growth of resonant 
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Figure 3.10: Phasematching between soliton and continuum due to periodic 
perturbations leads to resonant sideband generation. The case shown is for 
φ0 = π/2. 

sidebands, the resonant frequencies have to stay outside the spectrum of the 
1soliton, see Fig. 3.10, which feeds the continuum, i.e. ωm À 
τ . This con-

dition is only fulfilled if φ0 ¿ π/4. This condition requires that the soliton 
period is much longer than the periode of the perturbation. As an example 
Fig. 3.10 shows the resonant sidebands observed in a fiber laser. For optical 
communication systems this condition requires that the soliton energy has 
to be kept small enough, so that the soliton periode is much longer than the 
distance between amplifiers, which constitute periodic perturbations to the 
soliton.These sidebands are often called Kelly-Sidebands, according to the 
person who first described its origin properly [30]. 
To illustrate its importance we discuss the spectrum observed from the 

longcavity Ti:sapphire laser system illustrated in Figure 3.11 and described 
in full detail in [37]. Due to the low repetitionrate, a rather large pulse 
energy builts up in the cavity, which leads to a large nonlinear phase shift 
per roundtrip.Figure 3.12 shows the spectrum of the output from the laser. 
The Kelly sidebands are clearly visible. It is this kind of instability, which 
limits further increase in pulse energy from these systems operating in the 
soliton pulse shaping regime. Energy is drained from the main pulse into 
the sidebands, which grow at the expense of the pulse. At some point the 
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Image removed due to copyright restrictions. 

Please see: 
Kowalewicz, A. M., et al. "Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens modelocked 
Ti:Al2O3 oscillator." Optics Letters 28 (2003): 1507-09. 

Figure 3.11: Schematic layout of a high pulse energy laser cavity. All shaded 
mirrors are (Double-chirped mirrors) DCMs. The standard 100 MHz cavity 
with arms of 45 cm and 95 cm extends from the OC to M6 for the short 
and long arms respectively. The multiple pass cavity (MPC) is enclosed in 
the dotted box. The pump source is a frequency doubled Nd:Vanadate that 
produces up to 10W at 532 nm [37]. 

pulse shaping becomes unstable because of conditions to be discussed in later 
chapters. 

Image removed due to copyright restrictions. 

Please see: 
Kowalewicz, A. M., et al. "Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens modelocked 
Ti:Al2O3 oscillator." Optics Letters 28 (2003): 1507-09. 

Figure 3.12: Measured modelocked spectrum with a 16.5 nm FWHM centered 
at 788 nm 



    

   

             
           

           
                 

             
           

                 
             

           
             
                

          

     

           
              

             
             

          
             

              
             

           
             

               
             

          
 
             

            
          

        
               

           
            

3.7. PULSE COMPRESSION 89 

3.7 Pulse Compression 

So far we have discussed propagation of a pulse in negative dispersive media 
and positive self-phase modulation. Then at large enough pulse energy a 
soliton can form, because the low and high frequency components generated 
by SPM in the front and the back of the pulse are slow and fast and therefore 
catch up with the pulse and stay together. What happens if the dispersion 
is positive? Clearly, the low and high frequency components generated by 
SPM in the front and back of the pulse are fast and slow and move away from 
the pulse in a continuous fashion. This leads to highly but linearly chirped 
pulse, which can be compressed after the nonlinear propagation by sending 
it through a linear negative dispersive medium or prism pair or grating pair. 
In that way, pulses can be compressed by large factors of 3 to 20. This pulse 
compression process can be formulated in a more general way. 

3.7.1 General Pulse Compression Scheme 

The general scheme for pulse compression of optical pulses was independently 
proposed by Gires and Tournois in 1964 [38] and Giordmaine et al. in 1968 
[39]. The input pulse is first spectrally broadened by a phase modulator. The 
phase over the generated spectrum is hopefully in a form that can be con-
veniently removed afterwards, i.e. all spectral components can be rephased 
to generate a short as possible pulse in the time domain. To compress fem-
tosecond pulses an ultrafast phase modulator has to be used, that is the pulse 
has to modulate its phase itself by self-phase modulation. In 1969 Fisher et 
al. [40] proposed that picosecond pulses can be compressed to femtosecond 
duration using the large positive chirp produced around the peak of a short 
pulse by SPM in an optical Kerr liquid. In the same year Laubereau [41] used 
several cells containing CS2 and a pair of diffraction gratings to compress, by 
approximately ten times, 20-ps pulses generated by a mode-locked Nd:glass 
laser. 
As discussed in section 3.2, the optical Kerr effect in a medium gives 

rise to an intensity dependent change of the refractive index ∆n = n2,LI(t), 
where n2,L is the nonlinear-index coefficient and I(t) is the optical inten-
sity. The self-induced intensity-dependent nonlinear phase shift experienced 
by an optical field during its propagation in a Kerr medium of length c is 
given by ∆φ(t) = −(ω0/c)n2I(t)c where ω0 is the carrier frequency of the 
pulse. The induced frequency sweep over the pulse can be calculated from 
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Image removed due to copyright restrictions. 

Please see: 
Nakatsuka, H., D. Grischkowsky, and A. C. Balant. "Nonlinear picosecond-pulse propagation through 
optical fibers with positive group velocity dispersion." Physics Review Letters 47 (1981): 910-913. 

Figure 3.13: Intensity profile, spectrum, instantaneous frequency, optimum 
quadratic compression and ideal compression for two cases: top row for a 
short fiber, i.e. high nonlinearity and low dispersion; bottom row optimum 
nonlinearity and dispersion.[42] 

∆ω = d∆φ/dt, see Figure 3.13. Around the central part of the pulse, where 
most of the energy is concentrated, the phase is parabolic, leading to an 
approximately linear chirp in frequency. The region with linear chirp can 
be enlarged in the presence of positive dispersion in a Kerr medium of the 
same sign [42]. To compress the spectrally broadened and chirped pulse, 
a dispersive delay line can be used, characterized by a nearly linear group 
delay Tg(ω). Or if the chirp generated over the newly generated spectrum 
is nonlinear this chirp needs to be removed by a correspondingly nonlinear 
group delay Tg(ω). Figure 3.13 shows that in the case SPM and positive 
GDD a smoother spectrum with more linear chirp is created and therefore 
the final compressed pulse is of higher quality, i.e. a higher percentage of the 
total pulse energy is really concentrated in the short pulse and not in a large 
uncompressed pulse pedestal. 

For a beam propagating in a homogenous medium,unfortunately the non-
linear refractive index does not only lead to a temporal phase modulation but 
also to a spatial phase modulation, which leads to self-focusing or defocus-
ing and small-scale instabilities [43]. Therefore, a fundamental requirement 



    

             
           

              
           

       
            

       
           

               
             

   

      

            

     

             
         

           
            

          
              
         

            

 
    

     
   

            
             

             
 
          

                
           

           

3.7. PULSE COMPRESSION 91 

for pulse compression is that the Kerr effect is provided by a guiding non-
linear medium so that a spatially uniform spectral broadening is obtained. 
In 1974 Ippen et al. reported the first measurement of SPM in the absence 
of self-trapping and self-focusing by using a guiding multimode optical fiber 
filled with liquid CS2 [44].  In 1978 Stolen and Lin reported measurements  of  
SPM in single-mode silica core fibers [45]. The important advantage of the 
single-mode fiber is that the  phase modulation can  be  imposed  over  the entire  
transverse profile of the beam, thus removing the problem of unmodulated 
light in the wings of the beam [44]. In 1981 Nakatsuka et al. [42] performed 
the first pulse compression experiment using fibers as a Kerr medium in the 
positive dispersion region. 

3.7.2 Spectral Broadening with Guided Modes 

The electric field of a guided mode can be written as [52]: 

E(r, ω) = A(z, ω)F (x, y) exp[iβ(ω)z] (3.77) 

where A(z, ω) is the mode-amplitude for a given frequency component, F (x, y) 
is the mode-transverse field distribution and β(ω) is the mode-propagation 
constant. The propagation equation for the guided field splits into two equa-
tions for amplitude A(z, ω) and field pattern F (x, y). In  first order pertur-
bation theory a perturbation ∆n = n̄2|E|2 of  the refractive index,  which  is  
much smaller than the index step that defines the mode, does not change the 

¯modal distribution F (x, y),  while  the mode propagation  constant  β(ω) can 
¯be written as β(ω) = β(ω) +∆β , where the perturbation ∆β is given by R R  

(ω0/c) ∆n|F (x, y)|2dxdy
∆β = R R  . (3.78) |F (x, y)|2dxdy 

As shown by Eq.(3.78), the perturbation ∆β, which includes the effect due 
to the fiber nonlinearity, is related to a spatial average on the fiber trans-
verse section of the perturbation ∆n. In this way, spatially uniform SPM is 
realized. 
Using regular single mode fibers and prism-grating compressors, pulses as 

short as 6 fs at 620 nm were obtained in 1987 from 50-fs pulses generated by 
a colliding-pulse mode-locking dye laser [46] see Figure 3.14. More recently, 
13-fs pulses from a cavity-dumped Ti:sapphire laser were compressed to 4.5 

http:Eq.(3.78
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Input Pulse 

Optical fiber 

Grating Pair 

Spectrally Broadened Pulse 

Compressed pulse 

Figure 3.14: Fiber-grating pulse compressor to generate femtosecond pulses 
[53] 

Figure by MIT OCW. 

fs with the same technique using a compressor consisting of a quartz 45◦-
prism pair, broadband chirped mirrors and thin-film Gires-Tournois dielectric 
interferometers [47, 54]. The use of a single-mode optical fiber limits the pulse 
energy to a few nanojoule. 
In 1996, using a phase modulator consisting of a hollow fiber (leaky 

waveguide) filled with noble gas, a powerful pulse compression technique 
has been introduced, which handles high-energy pulses [48]. The implemen-
tation of the hollow-fiber compression technique using 20-fs seed pulses from 
a Ti:sapphire system and chirped-mirrors that form a dispersive delay line 
has led to the generation of pulses with duration down to 4.5 fs [49] and en-
ergy up to 0.55 mJ [50]. This technique presents the advantages of a guiding 
element with a large-diameter mode and of a fast nonlinear medium with 
high damage threshold. 
The possibility to take advantage of the ultrabroadband spectrum which 

can be generated by the phase modulation process, is strictly related to the 
development of dispersive delay lines capable of controlling the frequency-
dependent group delay over such bandwidth. 

3.7.3 Dispersion Compensation Techniques 

The pulse frequency sweep (chirp) imposed by the phase modulation is ap-
proximately linear near the peak of the pulse, where most of the energy is 
concentrated. In the presence of dispersion in the phase modulator the chirp 
becomes linear over almost the whole pulse. Therefore, optimum temporal 
compression requires a group delay, Tg,comp(ω) =  ∂φ/∂ω, characterized by a 
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nearly linear dependence on frequency in the dispersive delay line. Since in 
the case of SPM the nonlinear index n2 is generally positive far from reso-
nance, a negative group delay dispersion (GDD = ∂Tg/∂ω) is required  in  
the compressor. In order to generate the shortest pulses, the pulse group de-
lay after the phase modulator and the compressor must be nearly frequency 
independent. Tg(ω) can be expanded into a Taylor series around the central 
frequency ω0: 

1 1 
φ000 φ0000Tg(ω) = φ0(ω0) + φ00(ω0)∆ω + (ω0)∆ω2 + (ω0)∆ω3 + · · ·  (3.79) 
2 3! 

, φ000 where ∆ω = ω − ω0, and  φ00(ω0) (ω0), and  φ0000(ω0) are the second-, the 
third-, and the fourth-order-dispersion terms, respectively. Critical values of 
these dispersion terms above which dispersion causes a significant change of 
the pulse are given by a simple scaling expression: φ(n) = τnp , where  φ(n) is 
the nth-order dispersion term and τ p is the pulse duration. For example, 
a second order dispersion with φ00 = τ 2 

p results in a pulse broadening by 
more than a factor of two. Therefore dispersion-induced pulse broadening 
and distortion become increasingly important for decreasing pulse durations. 
Equation (3.79) shows that to compress a pulse to near the transform limit 
one should eliminate these high order dispersion terms. For instance, assum-
ing a transform-limited input pulse to the phase modulator, the condition 
for third-order-dispersion-compensated compression is the following: 

φ00 φ00(ω0) =  modulator + φ00 = 0  (3.80) compresssor 

φ000 φ000 (ω0) =  modulator + φ000 = 0  (3.81) compresssor 

Several compressor schemes have been developed so far that included such 
components as: diffraction gratings, Brewster-cut prism pairs, combination 
of gratings and prisms, thin prisms and chirped mirrors, and chirped mirrors 
only, etc. In the following we will briefly outline the main characteristics of 
these compressor schemes. 

Grating and Prism Pairs 

In 1968 Treacy demonstrated for the first time the use of a pair  of  diffraction 
gratings to achieve negative GDD [55]. In 1984 Fork et al. obtained negative 
GDD with pairs of Brewster-angled prisms [56]. Prism pairs have been widely 
used for dispersion control inside laser oscillators since they can be very low 
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D 

l 
kout 

kin 

α 
γγ 

Figure 3.15: Optical path difference in a two-element dispersive delay line 
[107] 

Figure by MIT OCW. 

loss in contrast to grating pairs. In both optical systems the origin of the 
adjustable dispersion is the angular dispersion that arises from diffraction 
and refraction, respectively. The dispersion introduced by these systems can 
be easily calculated, by calculating the phase accumulated between the input 
and output reference planes [78]. To understand the main properties of these 
systems, we will refer to Fig. 3.15. The first element scatters the input beam 
with wave vector kin and input path vector l into the direction kout. The  
beam passes between the first and the second element and is scattered back 
into its original direction. The phase difference by the scattered beam and 
the reference beam without the grating is: φ(ω) =  kout(ω) · l. Considering 
free-space propagation between the two elements, we have |kout| = ω/c, and  
the accumulated phase can be written as 

ω ω D 
φ(ω) =  |l| cos[γ − α(ω)] = cos[γ − α(ω)] (3.82) 

c c cos(γ) 

where: γ is the angle between the incident wave vector and the normal 
to the first element; α is the angle of the outgoing wave vector,  which  is  
a function of frequency; D is the spacing between the scattering elements 
along a direction parallel to their normal. In the case of a grating pair the 
frequency dependence of the diffraction angle α is governed by the grating 
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law, that in the case of first-order diffraction is given by: 

2πc 
= d[sin α(ω) − sin γ] (3.83) 

ω 

where d is the groove spacing of the grating. Using Eq.(3.82) and Eq.(3.83), 
it is possible to obtain analytic expressions for the GDD and the higher-order 
dispersion terms (for single pass): 

4π2cD 
φ00(ω) =  − (3.84) 

ω3d2 cos3 α(ω) µ ¶ 
φ000(ω) =  

12π2cD 2πc sin α(ω)
1 +  (3.85) 

ω4d2 cos3 α(ω) ωd cos2 α(ω) 

It is evident from Eq.(3.84) that grating pairs give negative dispersion. D 
is the distance between the gratings. A disadvantage of the grating pair is 
the diffraction loss. For a double-pass configuration the loss is typically 75%. 
Also the bandwidth for efficient diffraction is limited. 
In the case of a Brewster-angled prism pair Eq.(3.82) reduces to the 

following expression (for single pass) [56]: 
ω 

φ(ω) =  cp cos β(ω) (3.86) 
c 

where cp is the distance between prism apices and β(ω) is the angle between 
the refracted ray at frequency ω and the line joining the two apices. The 
second and third order dispersion can be expressed in terms of the optical 
path P (λ) =  cp cos β(λ): 

λ3 d2P 
φ00(ω) =  (3.87) 

2πc2 dλ2 µ ¶
λ4 d2P d3P 

φ000(ω) =  − 3 + λ (3.88) 
4π2c3 dλ2 dλ3 

with the following derivatives of the optical path with respect to wavelength 
evaluated at Brewster’s angle: 

d2P 
= 2[n 00 + (2n − n −3)(n 0)2]cp sin β − 4(n 0)2 cp cos β (3.89) 

dλ2 

d3P 
= [6(n 0)3(n −6 + n 2) + 12n 0 00(2n − n −3)+−4 − 2n −2 + 4n n (3.90) 

dλ3 

000]cp 
0+2n sin β + 12[(n −3 − 2n)(n 0)3 − n n 00]cp cos β (3.91) 

http:Eq.(3.82
http:Eq.(3.84
http:Eq.(3.83
http:Eq.(3.82
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D 
E 

B 

F 

G 
H 

C 

A 
β 

L 

Blue 

Red 

Figure 3.16: Prism pair for dispersion compensation. The blue wavelengths 
have less material in the light path then the red wavelengths. Therefore, blue 
wavelengths are less delayed than red wavelength 

Figure by MIT OCW. 

0 00 000 where n is the refractive index of the prism material; n , n and n are 
respectively, the first-, second- and third-order derivatives of n, with respect 
to wavelength. The prism-compressor has the advantage of reduced losses. 
Using only fused silica prisms for dispersion compensation, sub-10-fs light 
pulses have been generated directly from an oscillator in 1994 [79]. In 1996, 
pulses with tens of microjoules energy, spectrally broadened in a gas-filled 
hollow fiber were compressed down to 10 fs using a prism compressor [48]. 
Both in the case of grating and prism pairs, negative GDD is associated with 
a significant amount of higher-order dispersion, which cannot be lowered or 
adjusted independently of the desired GDD, thus limiting the bandwidth 
over which correct dispersion control can be obtained. This drawback has 
been only partially overcome by combining prism and grating pairs with 
third-order dispersion of opposite sign. In this way pulses as short as 6 fs 
have  been generated in 1987  [46],  and less  than 5 fs in 1997 [47],  by  external  
compression. This combination cannot be used for few-optical-cycle pulse 
generation either in laser oscillators, due to the high diffraction losses of the 
gratings, or in external compressors at high power level, due to the onset of 
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unwanted nonlinearities in the prisms. 

3.7.4 Dispersion Compensating Mirrors 

Chirped mirrors are used for the compression of high energy pulses, because 
they provide high dispersion with little material in the beam path, thus 
avoiding nonlinear effects in the compressor. 
Grating and prism compressors suffer from higher order dispersion. In 

1993 Robert Szipoecs and Ferenc Krausz [80] came up with a new idea, 
so called chirped mirrors. Laser mirrors are dielectric mirrors composed of 
alternating high and low index quarter wavelenth thick layers resulting in 
strong Bragg-reflection. In chirped mirrors the Bragg wavelength is chirped 
so that different wavelength penetrate different depth into the mirror upon 
reflection giving rise to a wavelength dependent group delay. It turns out 
that the generation of few-cycle pulses via external compression [95] as well 
as direct generation from Kerr lens mode-locked lasers [58] relies heavily on 
the existence of chirped mirrors [57, 83, 59] for dispersion compensation. 
There are two reasons to employ chirped mirrors . First the high-reflectivity 
bandwidth, ∆f, of a standard dielectric Bragg-mirror is determined by the 
Fresnel reflectivity rB of the high, nH , and low, nL, index materials used for 
the dielectric mirror 

∆f nH − nL 
rB = = (3.92) 

fc nH + nL 

where fc is again the center frequency of the mirror. Metal mirrors are 
in general too lossy, especially when used as intracavity laser mirrors. For 
material systems typically used for broadband optical coatings such as Silicon 
Dioxide and Titanium Dioxide with nSiO2 = 1.48 and nTiO2 = 2.4, (these  
indexes might vary depending on the deposition technique used), a fractional 
bandwidth ∆f/fc = 0.23 can be covered. This fractional bandwidth is only 
about  a third of  an octave spanning mirror  ∆f/fc = 2/3. Furthermore, the 
variation in group delay of a Bragg-mirror impacts already pulses that fill 
half the spectral range ∆f = 0.23fc. A way out of this dilemma was found 
by introducing chirped mirrors [57], the equivalent of chirped fiber Bragg 
gratings, which at that time were already well developed components in fiber 
optics [60]. When the Bragg wavelength of the mirror stack is varied slowly 
enough and no limitation on the number of layer pairs exists, an arbitrary 
high reflectivity range of the mirror can be engineered. The second reason 
for using chirped mirrors is based on their dispersive properties due to the 
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wavelength dependent penetration depth of the light reflected from different 
positions inside the chirped multilayer structure. Mirrors are filters, and in 
the design of any filter, the control of group delay and group delay dispersion 
is difficult. This problem is further increased when the design has to operate 
over wavelength ranges up to an octave or more. 

The matching problem Several designs for ultra broadband dispersion 
compensating mirrors have been developed over the last years. For disper-
sion compensating mirrors which do not extend the high reflectivity range 
far beyond what a Bragg-mirror employing the same materials can already 
achieve, a multi-cavity filter design can be used to approximate the desired 
phase and amplitude properties [61, 62]. For dispersion compensating mir-
rors covering a high reflectivity range of up to ∆f/fc = 0.4 the concept of  
double-chirped mirrors (DCMs) has been developed [83][81]. It is based on 
the following observations. A simple chirped mirror provides high-reflectivity 
over an arbitrary wavelength range and, within certain limits, a custom des-
ignable average group delay via its wavelength dependent penetration depth 
[73] (see Figure 3.17 (a) and (b) ). However, the group delay as a function 
of frequency shows periodic variations due to the impedance mismatch be-
tween the ambient medium and the mirror stack, as well as within the stack 
(see Figure 3.17 b and Figure 3.18). A structure that mitigates these mis-
matches and gives better control of the group delay dispersion (GDD) is the 
double-chirped mirror (DCM) (Figure 3.17 c), in a way similar to that of an 
apodized fiber Bragg grating [64]. 
Figure 3.18 shows the reflectivity and group delay of several Bragg and 

chirped mirrors composed of 25 index steps, with nH = 2.5 and nL = 1.5, 
similar to the refractive indices of TiO2 and SiO2, which result in a Fresnel 
reflectivity of rB = 0.25. The Bragg-mirror can be decomposed in symmetric 
index steps [83]. The Bragg wavenumber is defined as kB = π/(nLdL + 
nH dH ), where  dL and dH are the thicknesses of the low and high index layer, 
respectively. The Bragg wavenumber describes the center wavenumber of 
a Bragg mirror composed of equal index steps. In the first case, (Figure 
3.18, dash-dotted line) only the Bragg wave number is linearly chirped from 
6.8µm−1 < kB < 11µm−1 over the first 20 index steps and held constant over 
the last 5 index steps. The reflectivity of the structure is computed assuming 
the structure imbedded in the low index medium. The large oscillations 
in the group delay are caused by the different impedances of the chirped 
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a Bragg-Mirror: 

AirSiO2
Substrate 

-

SiO2 

TiO2/SiO2 

λ1 

λ2 λ2 > λ1 

λB - Layers
4 

Substrate 
-

SiO2
Substrate 

AR-
Coating 

-

Chirped Mirror: Only Bragg-Wavelength λB Chirped 

Double-Chirped Mirror: Bragg-Wavelength and Coupling Chirped 

Air 

dh = λB/4 

Negative 
Dispersion: 

b 

c 

Impedance-Matching Sections 

Figure 3.17: a) Standard Bragg mirror; (b) Simple chirped mirror, (c) 
Double-chirped mirror with matching sections to avoid residual reflections 
causing undesired oscillations in the GD and GDD of the mirror. 

Figure by MIT OCW. 

grating and the surrounding low index material causing a strong reflection at 
the interface of the low index material and the grating stack. By adiabatic 
matching of the grating impedance to the low index material this reflection 
can be avoided. This is demonstrated in Fig. 3.18 by the dashed and solid 
curves, corresponding to an additional chirping of the high index layer over 
the first 12 steps according to the law dH = (m/12)αλB,12/(4nH) with α = 1, 
and 2, for linear and quadratic adiabatic matching. The argument m denotes 
the m-th index step and λB,12 = 0.740µm. The strong reduction of the 
oscillations in the group delay by the double-chirp technique is clearly visible. 
Quadratic tapering of the high index layer, and therefore, of the grating 
already eliminates the oscillations in the group delay completely, which can 
also be shown analytically by coupled mode analysis [81]. Because of the 
double chirp a high transmission window at the short wavelength end of the 
mirror opens up which is ideally suited for the pumping of Ti:sapphire lasers. 
So far, the double-chirped mirror is only matched to the low index material 
of the mirror. Ideally, the matching can be extended to any other ambient 
medium by a properly designed AR-coating. However, this AR-coating has 
to be of very high quality, i.e. very low residual reflectivity ideally a power 
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Image removed due to copyright restrictions. 

Please see: 

Kaertner, F. X., et al. "Design and fabrication of double-chirped mirrors." Optics Letters 15 (1990): 326-328. 

Figure 3.18: Comparison of the reflectivity and group delay of chirped mirrors 
with 25 layer pairs and refractive indices nH = 2.5, and nL = 1.5.The upper 
portion shows the enlarged top one percent of the reflectivity. The dotted 
curves show the result for a simple chirped mirror. The dashed and solid 
curves show the result for double-chirped mirrors where in addition to the 
chirp in the  Bragg wave number  kB the thickness  of  the high-index layers is  
also chirped over the first 12 layer pairs from zero to its maximum value for a 
linear chirp, i.e. α = 1, (dashed curves) and for a quadratic chirp, i.e. α = 2  
(solid curves). [83]. 
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Tilted-Front-Interface Mirror b Black-Side Coated Mirrora 

Wedge 

AR-coating AR-coating 

Substrate 

Thin wedged 
substrate 

DCM DCM 

c 

Brewster Angle 
Mirror 

DCM
Substrate 

Figure 3.19: Schematic structure of proposed broadband dispersion compen-
sating mirror system avoiding the matching to air: (a) tilted-front-interface 
mirror; (b) back-side coated mirror and (c) Brewster-angle mirror. 

Figure by MIT OCW. 

reflectivity of 10−4 , i.e. an amplitude reflectivity of r = 10−2 is required. 
The quality of the AR-coating can be relaxed, if the residual reflection is 
directed out of the beam path. This is achieved in so called tilted front-side 
or back-side coated mirrors [65], [66], (Fig. 3.19 (a) and (b)). In the back-
side coated mirror the ideal DCM structure, which is matched to the low 
index material of the mirror is deposited on the back of a substrate made 
of the same or at least very similar low index material. The AR-coating is 
deposited on the front of the slightly wedged substrate, so that the residual 
reflection is directed out of the beam and does not affect the dispersion 
properties. Thus the task of the AR-coating is only to reduce the Fresnel 
losses of the mirror at the air-substrate interface, and therefore, it is good 
enough for some applications, if the residual reflection at this interface is of 
the order of 0.5%. However, the substrate has to be very thin in order to 
keep the overall mirror dispersion negative, typically on the order of 200-500 
µm. Laser grade quality optics are hard to make on such thin substrates 
and the stress induced by the coating leads to undesired deformation of 
the substrates. The front-side coated mirror overcomes this shortcoming 
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by depositing the ideal DCM-structure matched to the index of the wedge 
material on a regular laser grade substrate. A 100-200 µm thin wedge  is  
bonded on top of the mirror and the AR-coating is then deposited on this 
wedge. This results in stable and octave spanning mirrors, which have been 
successfully used in external compression experiments [69]. Both structures 
come with limitations. First, they introduce a wedge into the beam, which 
leads to an undesired angular dispersion of the beam. This can partially 
be compensated by using these mirrors in pairs with oppositely oriented 
wedges. The second drawback is that it seems to be impossible to make high 
quality AR-coatings over one or more than one octave of bandwidth, which 
have less than 0.5% residual reflectivity [68], i.e. on one reflection such a 
mirror has at least 1% of loss, and, therefore, such mirrors cause high losses 
inside a laser. For external compression these losses are acceptable. A third 
possibility for overcoming the AR-coating problem is given by using the ideal 
DCM under Brewster-angle incidence, (Figure 3.19) [67]. In that case, the 
low index layer is automatically matched to the ambient air. However, under 
p-polarized incidence the index contrast or Fresnel reflectivity of a layer pair 
is reduced and more layer pairs are necessary to achieve high reflectivity. 
Also the penetration depth into the mirror increased, so that scattering and 
other losses in the layers become more pronounced. On the other hand, such a 
mirror can generate more dispersion per bounce due to the higher penetration 
depth. For external compression such mirrors might have advantages because 
they can cover bandwidths much wider than one octave. This concept is 
difficult to apply to the fabrication of curved mirrors. There is also a spatial 
chirp of the reflected beam, which may become sizeable for large penetration 
depth and has to be removed by back reflection or an additional bounce on 
another Brewster-angle mirror, that recombines the beam. For intracavity 
mirrors a  way  out of this dilemma  is found by mirror pairs, which cancel the 
spurious reflections due to an imperfect AR-coating and matching structure 
in the chirped mirror [76]. Also this design has its drawbacks and limitations. 
It requires a high precision in fabrication and depending on the bandwidth 
of the mirrors it may be only possible to use them for a restricted range of 
angles of incidence. 

Double-chirped mirror pairs 

There have been several proposals to increase the bandwidth of laser mirrors 
by mutual compensation of GDD oscillations [70, 71, 72] using computer 
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Total DCM M1 

Back Mirror MB 

SiO2 
Substrate 

AR 
Coating 

SiO2 
Substrate 

Quarter Wave 
Layer 

AR 
Coating 

Back Mirror MB 

Total DCM M2 
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b 

Figure 3.20: DCM-Pair M1 (a) and M2 (b). The DCM M1 can be decom-
posed in a double-chirped back-mirror MB matched to a medium with the 
index of the top most layer. In M2 a layer with a quarter wave thickness 
at the center frequency of the mirror and an index equivalent to the top 
most layer of the back-mirror MB is inserted between the back-mirror and 
the AR-coating. The new back-mirror comprising the quarter wave layer can 
be reoptimized to achieve the same phase as MB with an additional π-phase 
shift over the whole octave of bandwidth. 

Figure by MIT OCW. 

optimization. These early investigations resulted in a rather low reflectivity 
of less than 95% over almost half of the bandwidth considered. The ideas 
leading to the DCMs help us to show analytically that a design of DCM-
pairs covering one octave of bandwidth,  i.e.  600 nm  to 1200 nm,  with  high  
reflectivity and improved dispersion characteristics is indeed possible [76]. 
Use of these mirror pairs in a Ti:sapphire laser system resulted in 5 fs pulses 
with octave spanning spectra directly from the laser [58]. Yet, the potential 
of these pairs is by no means fully exploited. 

A DCM-Pair, see Fig. 3.20, consists of a mirror M1 and M2. Each is 
composed of an AR-coating and a low-index matched double-chirped back-
mirror MB with given wavelength dependent penetration depth. The high 
reflectivity range of the back-mirror can be easily extended to one octave by 
simply chirping slowly enough and using a sufficient number of layer pairs. 
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MB 

a1 a2 

AR-Coating 

[T] 

b1 

r 

b2 

ρ
b ρtot 

Figure 3.21: Decomposition of a DCM into a double-chirped backmirror MB 
and an AR-coating.  

Figure by MIT OCW. 

However, the smoothness of the resulting GDD strongly depends on the qual-
ity of matching provided by the AR-coating and the double-chirped section. 
Fig. 3.21 indicates the influence of the AR-coating on the GDD of the total 
DCM-structure. The AR-coating is represented as a two - port with two in-
coming waves a1, b2 and two outgoing waves a2, b1. The connection between 
the waves at the left port and the right port is described by the transfer 
matrix µ ¶ µ ¶ µ ∗ ¶1 ra1 a2 t t ∗ 

b1 
= Tar b2 

with Tar = r 1 (3.93) 
t t ∗ 

where we assumed that the multilayer AR-coating is lossless. Here, r and t 
are the complex coefficients for reflection and transmission at port 1 assuming 
reflection free termination of port 2. The back-mirror MB, is assumed to be 
perfectly matched to the first layer in the AR-coating, has full reflection over 
the total bandwidth under consideration. Thus its complex reflectivity in the 
range of interest is given by 

jφb(ω)ρb = e (3.94) 

The phase φb(ω) is determined by the desired group delay dispersion 

GDDb = −d2φb(ω)/dω2 (3.95) 

up to an undetermined constant phase and group delay at the center fre-
quency of the mirror, ωc. All higher order derivatives of the phase are 
determined by the desired dispersion of the mirror. Analytic formulas for 
the design of DCMs, showing custom designed dispersion properties without 
considering the matching problem to the ambient air, can be found in [73]. 
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The resulting total mirror reflectivity including the AR-coating follows from 
(3.93) 

t 1 − r ∗/ρbρtot = ρb (3.96) 
t∗ 1 − rρb 

For the special case of a perfectly reflecting back-mirror according to Eq. 
(3.94) we obtain 

t 1 − z ∗ 
jφb(ω) jφb(ω)ρtot = e , with z = re (3.97) 

t∗ 1 − z 

The new reflectivity is again unity but new contributions in the phase of the 
resulting reflectivity appear due to the imperfect transmission properties of 
the AR-coating. With the transmission coefficient of the AR-coating 

t = |t|ejφt , (3.98) 

The total phase of the reflection coefficient becomes 

= 2φt (3.99) φtot + φb(ω) +  φGT I 

with ∙ ¸
Im{z}

φGT I = 2 arctan (3.100) 
1 +  Re{z} 

Here, φt is the phase of the transmission coefficient and φGT I is the phase due 
to the Gire-Tournois interferometer created by the non-perfect AR-coating, 
i.e. r 6= 0, and the back-mirror MB, (Figure 3.21). The phase φt of a 
good AR-coating, i.e. |r| < 0.1, is linear and, therefore, does not introduce 
undesired oscillations into the GD and GDD. However, the phase φGT I is 
rapidly varying since φb(ω) varies over several 2π over the frequency range 
of interest due to the monotonic group delay of the back-mirror. The size 
of these oscillations scale with the quality of the AR-coating, i.e. with |r|. 
Thus, the GDD oscillations are reduced with smaller residual reflectivity of 
the AR-coating. Assuming, that the reflectivity r is real and smaller or equal 
to 0.1, the oscillations in the group delay and group delay dispersion are easily 
estimated by 

dφGT I Tg,GT I = ≈ −rTgb(ω) cos[φb(ω)] (3.101) 
dω 

with 

Tgb(ω) = −dφb(ω)/dω, 
d2φGT I GDDGT I = (3.102) ¡dω2 ¢ ≈ r Tgb 

2 (ω) sin[φb(ω)] −GDDb cos[φb(ω)] 
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The GTI-reflections add up coherently when multiple reflections on chirped 
mirrors occur inside the laser over one round-trip, leading to pre- and post 
pulses if the mode-locking mechanism is not strong enough to suppress them 
sufficiently. Experimental results indicate that a residual reflection in the 
AR-coating of r <  0.01 and smaller, depending on the number of reflections 
per round-trip, is required so that the pre- and post pulses are sufficiently 
suppressed. This corresponds to an AR-coating with less than 10−4 residual 
power reflectivity, which can only be achieved over a very limited range, as 
discussed above. 
Over a limited wavelength range of 350 nm centered around 800 nm low 

residual power reflectivities as small as 10−4 have been achieved effectively 
after reoptimization of the AR-coating section and the double-chirped section 
to form a combined matching section of higher matching quality. For even 
larger bandwidth, approaching an octave, a residual power reflectivity of 
10−4 is no longer possible [68]. A way out of this limitation is offered by the 
observation, that a coherent subtraction of the pre- and post-pulses to first 
order in r is possible by reflections  on a mirror pair M1 and  M2,  see  Figure  
3.20 (a) and (b). A series of two reflections on a mirror with reflectivity 
(3.97) and on a similar mirror with an additional phase shift of π between 
the AR-coating and the back-mirror, having a reflectivity (3.97) where z is 
replaced by −z, leads to a coherent subtraction of the first order GTI-effects. 
The resulting total reflectivity of the two reflections is given by the product 
of the individual complex reflectivities assuming the same AR-coating µ ¶2 

t 1 − z ∗2 
i2φb(ω)ρtot,2 = − e (3.103) 

t∗ 1 − z2 

Now, the GTI-effects scale like the power reflectivity of the AR-coating r2 

instead of the amplitude reflectivity r, which constitutes a tremendous im-
provement, since it is possible to design AR-coatings to the low index material 
Si02 of the mirror with a residual power reflectivity between 0.001 and 0.01 
while covering one octave of bandwidth [68]. However, there does not exist 
a single physical layer which generates a phase shift of π/2 during one pas-
sage for all frequency components contained in an octave. Still, a layer with 
a quarter wave thickness at the center frequency is a good starting design. 
Then the back-mirror MB in the Mirror M2 can be reoptimized to take care 
of the deviation from a quarter wave thickness further away from the center 
frequency, because the back-mirror acts as a highly dispersive medium where 
the phase or group delay can be designed at will. 
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Figure 3.22: Reflectivity of the mirror with pump window shown as thick solid 
line with scale to the left. The group delay design goal for perfect dispersion 
compensation of a prismless Ti:sapphire laser is shown as thick dash-dotted 
line with scale to the right. The individual group delay of the designed 
mirrors is shown as thin line and its average as a dashed line, which is almost 
identical with the design goal over the wavelength range form 650-1200 nm. 
The measured group delay, using white light interferometry, is shown as the 
thick solid line from 600-1100 nm. Beyond 1100nm the sensitivity of Si-
detector used prevented further measurements. 

Figure by MIT OCW. 
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Figure 3.23 shows in the top graph the designed reflectivity of both mir-
rors of the pair in high resolution taking into account the absorption in the 
layers. The graph below shows the reflectivity of the mirror, which has in ad-
dition high transmission between 510-550 nm for pumping of the Ti:sapphire 
crystal. Each mirror consists of 40 layer pairs of SiO2 and TiO2 fabricated 
using ion-beam sputtering [74, 75]. Both mirror reflectivities cover more than 
one octave of bandwidth from 580 nm to 1200 nm or 250 to 517 THz, with 
an average reflectivity of about 99.9% including the absorption in the layers. 
In addition, the mirror dispersion corrects for the second and higher order 
dispersion of all intracavity elements such as the Ti:sapphire crystal and the 
thin, small angle, BaF2 wedges, for fine adjustment of the dispersion from 650 
nm to 1200 nm within the 12 bounces occurring in one roundtrip. The choice 
for the lower wavelength boundary in dispersion compensation is determined 
and limited by the pump window of Ti:sapphire. The dispersion measure-
ment was performed using white light interferometry [77], up to about 1100 
nm because of the silicon detector roll-off. The oscillations in the group delay 
of each mirror are about 10 times larger than those of high quality DCMs 
covering 350 nm of bandwidth [?]. However, in the average group delay of 
both mirrors the oscillations are ideally suppressed due to cancellation by 
more than a factor of ten. Therefore, the effective residual reflectivity of the 
mirror pair covering one  octave,  r2 , is even smaller than that of conventional 
DCMs. 

Methods for active dispersion compensation 

Various schemes for active pulse compression have been developed based 
on the use of liquid-crystal modulators (LCM), acousto-optic modulators 
(AOM), and mechanically deformable mirrors. 

Dispersion compensation using liquid crystal modulators A pulse 
shaping technique [84] based on the use of a LCM for pulse compression offers 
the advantage of a large bandwidth (300-1500 nm) and in situ adaptive phase 
control, see Figure3.23. In 1997 Yelin et al. [85] demonstrated an adaptive 
method for femtosecond pulse compression based on LCM. Strongly chirped 
80-fs pulses generated by an oscillator were sent in a 4-f pulse shaper com-
posed of a pair of thin holographic transmission gratings. A programmable 
one-dimensional LCM, placed in the Fourier plane of the shaper, was used 
as an updatable filter for pulse spectral manipulation. Pulses as short as 

http:Figure3.23
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Grating Lens Lens 
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f f f 

Figure 3.23: Grating Pair and LCM pulse shaper according to Weiner and 
Heritage [88]. To shape amplitude and phase two pulse shapers with an 
amplitude and phase mask each are necessary. 

Figure by MIT OCW. 

11 fs (transform-limited duration: 9 fs) have been obtained, employing an 
optimization algorithm for adaptive compression based on a search in the 
two-dimensional space of second- and third-order dispersion coefficients. In 
2001, Karasawa et al. [86] demonstrated pulse compression, down to 5 fs, of 
broadband pulses from an argon-filled hollow fiber, using only a LCM for 
phase compensation. More recently [51], pulses as short as 3.8 fs have been 
achieved through a closed-loop combination of a liquid-crystal spatial light 
modulator for adaptive pulse compression and spectral-phase interferome-
try for direct electric-field reconstruction (SPIDER) [87] measurements as 
feedback signal. 
One problem of the method is pixelization in the Fourier plane owing 

to the technology of the liquid-crystal active matrix. Diffraction on pixel  
edges and absorption by the black matrix introduce parasitic effects. The re-
quirement that the actual spectral modulation should approximate a smooth 
function despite the fixed, finite size of the individual modulator elements, 
limits the temporal range over which pulse compression can be achieved [88]. 
Other problems are related to the optical damage of the LCM, which limits 
the maximum pulse energy, and to the high losses introduced by the device. 
Various nonpixelated devices have been proposed: Dorrer et al. have re-

ported on an optically addressed LCM (liquid crystal light valve) [89]. The 
light valve consists of two continuous transparent electrodes and continuous 
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layers of a nematic twisted liquid crystal and of photoconductive Bi12SiO20 

(BSO). A local variation of illumination of the BSO layer (in the blue green 
spectral region) induces a change in conductivity. When a voltage is applied 
between the two electrodes, the variation of the BSO conductivity results 
in a change in the voltage drop across the liquid crystal layer. As the bire-
fringence of the liquid crystal is voltage dependent, a local variation of the 
refractive index is created, which translates into a variation of the optical 
phase of the local spectral component. The light valve is addressed by using 
a display device. Pixelation effects are avoided because the light valve itself 
is a continuous device. The control of the light valve is more complicated 
than for the electrically addressed LCM. Moreover, due to its limited spatial 
frequency response, the spectral resolution is limited. 

Dispersion compensation using acousto-optic modulators 

In 1997 Tournois proposed an acousto-optic programmable dispersive filter 
(AOPDF), to provide large dispersion-compensation ranges[91]. The device 
is based on a collinear acousto-optic interaction in a birefringent uniaxial 
crystal, see Figure 3.24. The acoustic frequency is a variable function of time 
and provides control over the group delay of the diffracted optical pulse. At 
the same time, the spectral amplitude of the diffracted pulse is driven by 
the intensity of the acoustic signal. As demonstrated in Ref. [91], the optical 
output Eout(t) of the AOPDF is proportional to the convolution of the optical 
input, Ein(t), and the scaled acoustic signal: 

Eout(t) ∝ Ein(t) ⊗ S(t/α) (3.104) 

where the scaling factor α = ∆n(V/c) is the ratio  of  the speed  of  sound  
to the speed of light times the index difference between the ordinary and 
the extraordinary waves. Therefore, by generating the proper function S(t), 
it is possible to generate any arbitrary convolution with a temporal reso-
lution given by the inverse of the filter bandwidth. Such device have been 
used in kilohertz chirped-pulse amplification laser chains compensating for 
gain narrowing and residual phase errors with the AOPDF, resulting in the 
generation of 17-fs transform-limited pulses [92]. The total throughput is 10-
50%, depending on the bandwidth of the device. Devices approaching one 
octave in bandwidth are possible. 
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Image removed due to copyright restrictions. 

Figure 3.24: Acousto-optic programable pulse shaper. One element can shape 
amplitude and phase of the pulse. 

Dispersion compensation using deformable mirrors 

Mechanically deformable mirrors can be used for active dispersion control, 
as proposed by Heritage et al. [93]. More recently, pulse compression has 
been achieved using an electrostatically deformable, gold-coated, silicon ni-
tride membrane mirror,  placed  in  the Fourier  plane of a  4f zero-dispersion 
stretcher [94]. The membrane was suspended over an array of 39 actuator 
electrodes. The potential applied to each actuator generates an electrostatic 
attraction between the membrane and the electrode, thus inducing a defor-
mation of the mirror surface, which translates into a modulation of the phase 
of the spectral components of the input pulse. The total phase difference is 
φ = 2(2π)∆z/λ, where  ∆z is the deflection of the mirror. The minimum 
radius of curvature of the mirror membrane is given by R = T/P , where  T 
is the membrane tension and P is the maximum electrostatic pressure. This 
limitation of the membrane curvature restricts the possibility of the mir-
ror correction of higher-order phases. The main advantages of this method 
are the following: the phase modulation is smoothly varying; reduced losses 
due to the high reflectivity (97%) of the mirror; relatively high actuator den-
sity. Experiments have been performed with a mode-locked Ti:sapphire laser, 
where the deformable mirror recompressed a 15 fs pulse, previously stretched 
to 90 fs by dispersion in glass, back to approximately the bandwidth limit 
[94]. 
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Recently, dispersion control over a bandwidth of ∼ 220 THz has been 
demonstrated by A. Baltuška et al. [95] using a compressor consisting of 
a pair of chirped mirrors and a grating dispersion line with a computer-
controlled flexible mirror positioned in the focal plane. The total throughput 
of the pulse shaper was less than 12% because of the low diffraction efficiency 
of the grating. Using this compressor, the visible-near-IR pulses, generated 
by optical parametric amplification, were compressed to a 4-fs duration. 

3.7.5 Hollow Fiber Compression Technique 

Single mode fiber only allows compression of low energy pulses. In 1996 
the group of DeSilvestri in Milan [48] developed a technique that enables 
the generation of few-cycle light pulses with energies in the millijoule range. 
The technique is based on propagation of laser pulses in a hollow fiber filled 
with noble gases (hollow fiber compression technique), see Figure 3.25.The 
modes of the hollow fiber are leaky modes, i.e. they experience radiation loss. 
However, there is one mode, the EH11mode, which has considerably less loss 
than the higher order modes. This mode is used for pulse compression. The 
nonlinear index in the fiber can be controlled with the gas pressure. Typical 
fiber diameters are 100-500 µm and typical gas pressures are in the range of 
0.1-3bar. As in the case of fiber compression it is important to consider the 
optimization of nonlinear interaction and dispersion. Both the medium and 
waveguide dispersion has to be taken into account. For more detail see ref. 
[107]. 

Figure 3.25: Hollow fiber compression technique [48] 
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For the time being, the hollow fiber compression technique is the only 
way to generate sub-10fs millijoule pulses. This will change soon with the 
advent of parametric chirped pulse amplification. 

3.8 Appendix: Sech-Algebra 

The hyperbolic secant is defined as 

1
sech(x) =  (3.105) 

cosh(x) 

See Figure 3.26 
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Figure 3.26: Hyperbolic functions 
Figure by MIT OCW. 

cosh2(x)− sinh2(x) = 1  (3.106) 

sech2(x) = 1− tanh2(x) 

d 
sech(x) = −tanh(x)sech(x)

dx 
d2 £ ¤ 
sech(x) = sech(x) 1− 2sech2(x)

dx2 

(3.107) 

(3.108) 

(3.109) 
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sech(x)dx = π (3.110) 
−∞Z +∞ 

sech2(x)dx = 2  (3.111) Z 
−∞ 

+∞ π2 

x 2sech2(x)dx = (3.112) 
6−∞ R 

function f(t) −jωtdtFourier-Transform f̃(ω) =  f(t)e 
sech(t) πsech(π ω)

2 
sech2(t) πω 

sinh( π ω)
2 

sech3(t) 1 (1 + ω2) πsech(π ω)
2 2 

sech5(t) 1 (ω4 + 10ω2 + 9)  πsech(π ω)
24 2 

tanh(t)sech(t) −jπωsech(π ω)
2 

tanh2(t)sech(t) 1 (1 − ω2) πsech(π ω)
2 2 

tanh3(t)sech(t) −j ω (5 − ω2) πsech(π ω)
6 2 

tanh(t)sech3(t) −j ω (1 + ω2) πsech(π ω)
6 2 

tanh2(t)sech3(t) 1 1(1 + ω2) πsech(π ω) − (ω4 + 10ω2 + 9)  πsech(π ω)
2 2 24 2 

ttanh(t)sech(t) ω) − ωπ
2 

πsech(π tanh(π ω)sech(π ω)
2 2 2 2 

ttanh2(t)sech(t) ω) − π
2−jωπsech(π (1 − ω2) tanh(π ω)sech(π ω)

2 4 2 2 

ttanh3(t)sech(t) 1 ω) − ωπ
2 

(5 − 3ω2) πsech(π (5 − ω2) tanh(π ω)sech(π ω)
6 2 12 2 2 

ttanh(t)sech3(t) 1 ω) − ωπ
2 

(1 + 3ω2) πsech(π (1 + ω2) tanh(π ω)sech(π ω)
6 2 12 2 2 

tsech(t) −j π2 
tanh(π ω)sech(π ω)

6 2 2 

tsech3(t) −jωπsech(π ω) − j π
2 
(1 + ω2) tanh(π ω)sech(π ω)

2 4 2 2 

3.9 Summary 

We found, that the lowest order reversible linear effect, GVD, together with 
the lowest order reversible nonlinear effect in a homogeneous and isotropic 
medium, SPM, leads to the Nonlinear Schrödinger Equation for the envelope 
of the wave. This equation describes a Hamiltonian system. The equation 
is integrable, i.e., it does possess an infinite number of conserved quantities. 
The equation has soliton solutions, which show complicated but persistent os-
cillatory behavior. Especially, the fundamental soliton, a sech-shaped pulse, 
shows no dispersion which makes them ideal for long distance optical commu-
nication. Due to the universality of the NSE, this dynamics is also extremely 
important for modelocked lasers once the pulses become so short that the 
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spectra experience the dispersion and the peak powers are high enough that 
nonlinear effects become important. In general, this is the case for sub-
picosecond pulses. Further, we found a perturbation theory, which enables 
us to decompose a solution of the NSE close to a fundamental soliton as a 
fundamental soliton and continuum radiation. We showed that periodic per-
turbations of the soliton may lead to side-band generation, if the nonlinear 
phase shift of the soliton within a period of the perturbation becomes com-
parable to π/4. Soliton perturbation theory will also give the frame work for 
studying noise in mode-locked lasers later. 
A medium with positive dispersion and self-phase modulation with the 

same sign can be used for pulse compression. The major problem in pulse 
compression is to find a compressor that can that exactly inverts the group 
delay caused by spectral broadening. Depending on bandwith this can be 
achieved by grating, prism, chirped mirrors, puls shapers, AOPDFs or a 
combination thereof. 
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Chapter 4 

Laser Dynamics (single-mode) 

Before we start to look into the dynamics of a multi-mode laser, we should 
recall the technically important regimes of operation of a ”single-mode” laser. 
The term ”single-mode” is set in apostrophes, since it doesn’t have to be 
really single-mode. There can be several modes running, for example due to 
spatial holeburning, but in an incoherent fashion, so that only the average 
power of the beam matters. For a more detailed account on single-mode 
laser dynamics and Q-Switching the following references are recommended 
[1][3][16][4][5]. 

4.1 Rate Equations 

In section 2.5, we derived for the interaction of a two-level atom with a laser 
field propagating to the right the equations of motion (2.171) and (2.172), 
which are given here again: 

µ ¶
∂ 1 ∂ N~ 
+ A(z, t) =  w (z, t)A(z, t), (4.1) 

∂z vg ∂t 4T2Es 

w − w0 |A(z, t)|2 

ẇ = − + w(z, t) (4.2) 
T1 Es 

where T1 is the energy relaxation rate, vg the group velocity in the host 
material where the two level atoms are embedded, Es = IsT1, the saturation 
fluence [J/cm2] , of the medium.and Is the saturation intensity according to 
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128 CHAPTER 4. LASER DYNAMICS (SINGLE-MODE) 

Eq.(2.145) ⎡ ⎤¯̄̄
� �̂ME ̄̄̄  

−12 ⎢⎣ ⎥⎦2T1T2ZF ¯̄̄
�̂E ̄̄̄  
2Is = , 

~2 

which relates the saturation intensity to the microscopic parameters of the 
transition like longitudinal and transversal relaxation rates as well as the 
dipole moment of the transition. 

Figure 4.1: Rate equations for the two-level atom 

In many cases it is more convenient to normalize (4.1) and (4.2) to the 
populations in level e and g or 2 and 1, respectively, N2 and N1, and the 
density of photons, nL, in the mode interacting with the atoms and traveling 
at the corresponding group velocity, vg, see Fig. 4.1. The intensity I in a 
mode propagating at group velocity vg with a mode volume V is related to 
the number of photons NL stored in the mode with volume V by 

NL 1 
I = hfL vg = hfLnLvg, (4.3) 

2∗V 2∗ 

where hfL is the photon energy. 2∗ = 2 for a linear laser resonator (then 
only half of the photons are going in one direction), and 2∗ = 1 for a ring 
laser. In this first treatment we consider the case of space-independent rate 
equations, i.e. we assume that the laser is oscillating on a single mode and 
pumping and mode energy densities are uniform within the laser material. 
With the interaction cross section σ defined as 

hfL
σ = , (4.4) 

2∗IsT1 



    

        

    
         

 

              
              

             

   
       

   

               
           

             
            

                
                

             
                 

               
              

              
                 

            
               
             

 
      

  

   
        

   

              
           

4.1. RATE EQUATIONS 129 

and multiplying Eq. (??) with the number  of  atoms in  the mode,  we obtain  

d (N2 − N1)
(N2 − N1) = − − σ (N2 − N1) vgnL +Rp (4.5) 

dt T1 

Note, vgnL is the photon flux, thus σ is the stimulated emission cross section 
between the atoms and the photons. Rp is the pumping rate into the upper 
laser level. A similar rate equation can be derived for the photon density 

d nL lg σvg
nL = − + [N2 (nL + 1)− N1nL] . (4.6) 

dt τ p L Vg 

Here, τ p is the photon lifetime in the cavity or cavity decay time and the 
one in Eq.(4.6) accounts for spontaneous emission which is equivalent to 
stimulated emission by one photon occupying the mode. Vg is the volume of 
the active gain medium. For a laser cavity with a semi-transparent mirror 
with transmission T , producing a small power loss 2l = − ln(1− T ) ≈ T (for 
small T ) per round-trip in the cavity, the cavity decay time is τp = 2l/TR , 
if TR = 2

∗L/c0 is the roundtrip-time in linear cavity with optical length 2L 
or a ring cavity with optical length L. The optical length L is the sum of the 

group optical length in the gain medium ng lg and the remaining free space cavity 
length la. Internal losses can be treated in a similar way and contribute to 
the cavity decay time. Note, the decay rate for the inversion in the absence 
of a field, 1/T1, is not only due to spontaneous emission, but is also a result of 
non radiative decay processes. See for example the four level system shown 
in Fig. 4.2. In the limit, where the populations in the third and first level 
are zero, because of fast relaxation rates, i.e. T32, T10 → 0, we obtain 

d
N2 = −N2 − σvgN2nL +Rp (4.7) 

dt τL 

d nL lg σvg
nL = − + N2 (nL + 1) . (4.8) 

dt τ p L Vg 

where τL = T21 is the lifetime of the upper laser level. Experimentally, the 
photon number and the inversion in a laser resonator are not 
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3 N 3 
T32 

2 N 2 

R p T21 

1 N 1 
T10 

0 N 0 

Figure 4.2: Vier-Niveau-Laser 

very convenient quantities, therefore, we normalize both equations to the 
lg σvground-trip amplitude gain g = N2TR experienced by the light and the 
L 2Vg 

circulating intracavity power P = I · Aeff 

d g − g0 gP 
g = − − (4.9) 

dt τL Esat 

d 1 2g
P = − P + (P + Pvac) , (4.10) 

dt τ p TR 

with 

hfL
Es = IsAeff τL = (4.11) 

2∗σ 
Psat = Esat/τL (4.12) 

Pvac = hfLvg/2 ∗ L = hfL/TR (4.13) 
2∗ vgRp

g0 = στL, (4.14) 
2Aeff c0 

the small signal round-trip gain of the laser. Note, the factor of two in front 
of gain and loss is due to the fact, the g and l are gain and loss with respect to 
amplitude. Eq.(4.14) elucidates that the figure of merit that characterizes the 
small signal gain achievable with a certain laser material is the στL-product. 

http:Eq.(4.14
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Laser Medium 
Wave-
length 
λ0(nm) 

Cross 
Section 
σ (cm2) 

Upper-St. 
Lifetime 
τL (µs) 

Linewidth 
∆fFWHM  = 
2 (THz) 
T2 

Typ 
Refr. 
index 
n 

Nd3+:YAG 1,064 4.1 · 10−19 1,200 0.210 H 1.82 
Nd3+:LSB 1,062 1.3 · 10−19 87 1.2 H 1.47 (ne) 
Nd3+:YLF 1,047 1.8 · 10−19 450 0.390 H 1.82 (ne) 
Nd3+:YVO4 1,064 2.5 · 10−19 50 0.300 H 2.19 (ne) 
Nd3+:glass 1,054 4 · 10−20 350 3 H/I 1.5 
Er3+:glass 1,55 6 · 10−21 10,000 4 H/I 1.46 
Ruby 694.3 2 · 10−20 1,000 0.06 H 1.76 
Ti3+:Al2O3 660-1180 3 · 10−19 3 100 H 1.76 
Cr3+:LiSAF 760-960 4.8 · 10−20 67 80 H 1.4 
Cr3+:LiCAF 710-840 1.3 · 10−20 170 65 H 1.4 
Cr3+:LiSGAF 740-930 3.3 · 10−20 88 80 H 1.4 
He-Ne 632.8 1 · 10−13 0.7 0.0015 I ∼1 
Ar+ 515 3 · 10−12 0.07 0.0035 I ∼1 
CO2 10,600 3 · 10−18 2,900,000 0.000060 H ∼1 
Rhodamin-6G 560-640 3 · 10−16 0.0033 5 H 1.33 
semiconductors 450-30,000 ∼ 10−14 ∼ 0.002 25 H/I 3 - 4  

Table 4.1: Wavelength range, cross-section for stimulated emission, upper-
state lifetime, linewidth, typ of lineshape (H=homogeneously broadened, 
I=inhomogeneously broadened) and index for some often used solid-state 
laser materials, and in comparison with semiconductor and dye lasers. 
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The larger this product the larger is the small signal gain g0 achievable with 
a certain laser material. Table 4.1 
From Eq.(2.145) and (4.4) we find the following relationship between the 

interaction cross section of a transition and its microscopic parameters like 
linewidth, dipole moment and energy relaxation rate 

ˆ
hfL 2T2 |M� E� |2 

σ = = . 
~2ZF 

2IsatT1 |˜̂E | 

This equation tells us that broadband laser materials naturally do show 
smaller gain cross sections, if the dipole moment is the same. 

4.2 Built-up of Laser Oscillation and Contin-
uous Wave Operation 

If Pvac ¿ P ¿ Psat = Esat/τL, than g = g0 and we obtain from Eq.(4.10),  
neglecting Pvac 

dP dt 
= 2 (g0 − l) (4.15) 

P TR 

or 
2(g0−l) TR .P (t) = P (0)e 

t 

(4.16) 

The laser power builts up from vaccum fluctuations until it reaches the sat-
uration power, when saturation of the gain sets in within the built-up time 

TR Psat TR Aeff TR
TB = ln = ln . (4.17) 

2 (g0 − l) Pvac 2 (g0 − l) στL 

Some time after the built-up phase the laser reaches steady state, with the 
saturated gain and steady state power resulting from Eqs.(4.9-4.10), neglect-
ing in the following the spontaneous emission, and for 

dt
d = 0 :  

g0 
gs = = l (4.18) 

1 +  Ps ³Psat ´ 
Ps = Psat 

g0 − 1 , (4.19) 
l 

http:Eqs.(4.9-4.10
http:andweobtainfromEq.(4.10
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Image removed due to copyright restrictions. 

Please see: 
Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Figure 4.3: Built-up of laser power from spontaneous emission noise. 

4.3 Stability and Relaxation Oscillations 

How does the laser reach steady state, once a perturbation has occured? 

g = gs +∆g (4.20) 

P = Ps +∆P (4.21) 

Substitution into Eqs.(4.9-4.10) and linearization leads to 

d∆P Ps 
= +2  ∆g (4.22) 

dt TR 

d∆g gs 1 
= − ∆P − ∆g (4.23) 

dt Esat τ stim 

1 1 
¡ ¢ 

where = 1 +  Ps is the stimulated lifetime. The perturbations 
τstim τL Psat  

decay or grow like µ ¶ µ ¶
∆P0 st∆P 

= e . (4.24) 
∆g ∆g0 

which leads to the system of equations (using gs = l) µ ¶ Ã !µ ¶
∆P0 −s 2

T
P 
R

s ∆P0A = TR 1 = 0. (4.25) 
∆g0 − − − s ∆g0Esat2τ p τstim 

http:Eqs.(4.9-4.10
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There is only a solution, if the determinante of the coefficient matrix vanishes, 
i.e. µ ¶

1 Ps 
s + s + = 0, (4.26) 

τ stim Esatτ p 

which determines the relaxation rates or eigen frequencies of the linearized 
system sµ ¶2

1 1 Ps 
s1/2 = − ± − . (4.27) 

2τ stim 2τ stim Esatτ p 

Introducing the pump parameter r = 1 +  Ps , which tells us how often we 
Psat 

pump the laser over threshold, the eigen frequencies can be rewritten as Ã s ! 
1 4 (r − 1) τ stim 

s1/2 = − 1 ± j − 1 , (4.28) 
2τ r τstim p s µ ¶2 
r (r − 1) r 

= − ± j − (4.29) 
2τL τLτ p 2τL 

There are several conclusions to draw: 

• (i): The stationary state (0, g0) for g0 < l and (Ps, gs) for g0 > l are 
always stable, i.e. Re{si} < 0. 

• (ii): For lasers pumped above threshold, r > 1, the relaxation rate 
becomes complex, i.e. there are relaxation oscillations s 

s1/2 = − 
1 ± j 

1 
. (4.30) 

2τ stim τ stimτ p 

with frequency ωR equal to the geometric mean of inverse stimulated 
lifetime and photon life time s 

1 
ωR = . (4.31) 

τ stimτ p 

There is definitely a parameter range of pump powers for laser with 
long upper state lifetimes, i.e. r < 1 

4τL τp 
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• If the laser can be pumped strong enough, i.e. r can be made large 
enough so that the stimulated lifetime becomes as short as the cavity 
decay time, relaxation oscillations vanish. 

The physical reason for relaxation oscillations and later instabilities is, 
that the gain reacts to slow on the light field, i.e. the stimulated lifetime is 
long in comparison with the cavity decay time. 

Example: diode-pumped Nd:YAG-Laser 

λ0 = 1064 nm, σ = 4 · 10−20 cm 2, Aeff = π (100µm × 150µm) , r  = 50  

τL = 1.2 ms, l = 1%, TR = 10ns 

From Eq.(4.4) we obtain: 

hfL kW 
Isat = = 3.9 , Psat = IsatAeff = 1.8 W, Ps = 91.5W 

στL cm2 s 
1τL 5 −1τ stim = = 24µs, τ p = 1µs, ωR = = 2 · 10 s . 

r τ stimτ p 

Figure 4.4 shows the typically observed fluctuations of the output of a solid-
state laser with long upperstate life time of several 100 µs in  the time and  
frequency domain. 
One can also define a quality factor for the relaxation oscillations by the 

ratio of imaginary to real part of the complex eigen frequencies 4.29 

s 
4τL (r − 1)

Q = ,
τ p r2 

which can be as large a several thousand for solid-state lasers with long 
upper-state lifetimes in the millisecond range. 
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Image removed due to copyright restrictions. 

Please see: 
Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Figure 4.4: Typically observed relaxation oscillations in time and frequency 
domain. 

4.4 Q-Switching 

The energy stored in the laser medium can be released suddenly by increasing 
the Q-value of the cavity so that the laser reaches threshold. This can be 
done actively, for example by quickly moving one of the resonator mirrors in 
place or passively by placing a saturable absorber in the resonator [1, 16]. 
Hellwarth was first to suggest this method only one year after the invention of 
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Image removed due to copyright restrictions. 

Please see: 

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Figure 4.5: Gain and loss dynamics of an actively Q-switched laser. 

the laser. As a rough orientation for a solid-state laser, the following relation 
for the relevant time scales is generally valid 

τL À TR À τ p. (4.32) 

4.4.1 Active Q-Switching 

Fig. 4.5 shows the principle dynamics of an actively Q-switched laser. The 
laser is pumped by a pump pulse with a length on the order of the upper-
state lifetime, while the intracavity losses are kept high enough, so that 
the laser can not reach threshold. Therefore, the laser medium acts as an 
energy storage. The energy only relaxes by spontenous and nonradiative 
transitions. Then suddenly the intracavity loss is reduced, for example by 
a rotating cavity mirror. The laser is pumped way above threshold and the 
light field builts up exponentially with the net gain until the pulse energy 
comes close to the saturation energy of the gain medium. The gain saturates 
and is extracted, so that the laser is shut off by the pulse itself. 
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A typical actively Q-switched pulse is asymmetric: The rise time is pro-
portional to the net gain after the Q-value of the cavity is actively switched 
to a high value. The light intensity growths proportional to 2g0/TR. When  
the gain is depleted, the fall time mostly depends on the cavity decay time 
τ p. For short Q-switched pulses a short cavity length, high gain and a large 
change in the cavity Q is necessary. If the Q-switch is not fast, the pulse 
width may be limited by the speed of the switch. Typical electro-optical and 
acousto-optical switches are 10 ns and 50 ns, respectively 

Image removed due to copyright restrictions. 

Please see: 

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Figure 4.6: Asymmetric actively Q-switched pulse. 

For example, with a diode-pumped Nd:YAG microchip laser [6] using an 
electro-optical switch based on LiT aO3 Q-switched pulses as short as 270 ps 
at repetition rates of 5 kHz, peak powers of 25 kW at an average power of 
34 mW, and pulse energy of 6.8 µJ have been generated (Figure 4.7). 
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Image removed due to copyright restrictions. 

Please see: 

Kafka, J. D., and T. Baer. "Mode-locked erbium-doped fiber laser with soliton pulse shaping." Optics Letters 
14 (1989): 1269-1271. 

Figure 4.7: Q-switched microchip laser using an electro-optic switch. The 
pulse is measured with a sampling scope [8] 

Similar results were achieved with Nd:YLF [7] and the corresponding 
setup is shown in Fig. 4.8. 

laser output 
crystal A/O Q-switch coupler 

diode 
laser 
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Figure 4.8: Set-up of an actively Q-switched laser. 
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4.4.2 Single-Frequency Q-Switched Pulses 

Q-switched lasers only deliver stable output if they oscillate single frequency. 
Usually this is not automatically achieved. One method to achieve this is by 
seeding with a single-frequency laser during Q-switched operation, so that 
there is already a population in one of the longitudinal modes before the 
pulse is building up. This mode will extract all the energy before the other 
modes can do, see Figure 4.9 

Image removed due to copyright restrictions. 

Please see: 

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Figure 4.9: Output intenisity of a Q-switched laser without a) and with 
seeding b). 

Another possibility to achieve single-mode output is either using an etalon 
in the cavity or making the cavity so short, that only one longitudinal mode 
is within the gain bandwidth (Figure 4.10). This is usually only the case if 
the cavity length is on the order of a view millimeters or below.The microchip 
laser [6][11][10] can be combined with an electro-optic modulator to achieve 
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very compact high peak power lasers with sub-nanosecond pulsewidth (Figure 
4.7). 

Image removed due to copyright restrictions. 

Please see: 
Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Figure 4.10: In a microchip laser the resonator can be so short, that there is 
only one longitudinal mode within the gain bandwidth. 
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4.4.3 Theory of Active Q-Switching 

We want to get some insight into the pulse built-up and decay of the actively 
Q-switched pulse. We consider the ideal situation, where the loss of the laser 
cavity can be instantaneously switched from a high value to a low value, i.e. 
the quality factor is switched from a low value to a high value, respectively 
(Figure: 4.11) 

Pumping Interval 

Cavity Loss 

Q-switch 

t 

Laser output 
pulse 

g(t) ∝ N(t) I ∝ Nth(t) 

nL(t) ∝ P(t) 

Nf 

Ni 

Pulse Output 
Interval 

Figure 4.11: Acitve Q-Switching dynamics assuming an instantaneous 
switching [16]. 

Figure by MIT OCW. 

Pumping Interval: 

During pumping with a constant pump rate Rp, proportional to the small 
signal gain g0, the inversion is built up. Since there is no field present, the 
gain follows the simple equation: 

d g − g0 
g = − , (4.33) 

dt τL 

or 
−t/τL ),g(t) =  g0(1 − e (4.34) 
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Pulse Built-up-Phase: 

Assuming an instantaneous switching of the cavity losses we look for an 
approximate solution to the rate equations starting of with the initial gain 
or inversion gi = hfLN2i/(2Esat) =  hfLNi/(2Esat), we can savely leave the 
index away since there is only an upper state population. We further assume 
that during pulse built-up the stimulated emission rate is the dominate term 
changing the inversion. Then the rate equations simplify toτ 

d gP 
g = − (4.35) 

dt Esat p 

d 2(g − l)
P = P, (4.36) 

dt TR 

resulting in µ ¶
dP 2Esat l 

= − 1 . (4.37) 
dg TR g 

We use the following inital conditions for the intracavity power P (t = 0) = 0  
and initial gain g(t = 0) = gi = r · l. Note, r means how many times the laser 
is pumped above threshold after the Q-switch is operated and the intracavity 
losses have been reduced to l. Then 4.37 can be directly solved and we obtain µ ¶

2Esat g(t)
P (t) =  gi − g(t) + l ln . (4.38) 

TR gi 

From this equation we can deduce the maximum power of the pulse, since 
the growth of the intracavity power will stop when the gain is reduced to the 
losses, g(t)=l, (Figure 4.11) 

2lEsat 
Pmax = (r − 1− ln r) (4.39) 

TR 

Esat 
= (r − 1− ln r) . (4.40) 

τ p 

This is the first important quantity of the generated pulse and is shown 
normalized in Figure 4.12. 
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Figure 4.12: Peak power of emitted pulse as function of pump parameter. 

Next, we can find the final gain gf , that is reached once the pulse emission 
is completed, i.e. that is when the right side of (4.38) vanishes µ µ ¶¶ 

gi − gf + l ln 
gf 

= 0  (4.41) 
gi 

Using the pump parameter r = gi/l, this  gives as an expression for  the ratio  
between final and initial gain or between final and initial inversion µ ¶

gf 1 gf
1− + ln = 0, (4.42) 

gi r giµ ¶
Nf 1 Nf

1− + ln = 0, (4.43) 
Ni r Ni 

which depends only on the pump parameter. Assuming further, that there 
are no internal losses, then we can estimate the pulse energy generated by 

EP = (Ni − Nf )hfL. (4.44) 

This is also equal to the output coupled pulse energy since no internal losses 
are assumed. Thus, if the final inversion gets small all the energy stored in 
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Figure 4.13: Energy extraction efficiency as a function of pump power. 

the gain medium can be extracted. We define the energy extraction efficiency 
η 

Ni − Nf
η = , (4.45) 

Ni 

that tells us how much of the initially stored energy can be extracted using 
eq.(4.43) 

η + 
1 
ln (1 − η) = 0. (4.46) 

r 
This efficiency is plotted in Figure 4.13. 
Note, the energy extraction efficiency only depends on the pump param-

eter r. Now, the emitted pulse energy can be written as 

EP = η(r)NihfL. (4.47) 

and we can estimate the pulse width of the emitted pulse by the ratio between 
pulse energy and peak power using (4.40) and (4.47) 

τPulse  = 
EP 

2lPpeak 

η(r) NihfL 
= τ p 

(r − 1 − ln r) 2lEsat 

= 
η(r) gi

τ p 
(r − 1 − ln r) l 

η(r) · r 
τ p . 
(r − 1 − ln r) 

(4.48) 

http:eq.(4.43
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Figure 4.14: Normalized pulse width as a function of pump parameter. 

The pulse width normalized to the cavity decay time τ p is  shown in Figure  
4.14. 

4.4.4 Passive Q-Switching 

In the case of passive Q-switching the intracavity loss modulation is per-
formed by a saturable absorber, which introduces large losses for low inten-
sities of light and small losses for high intensity. 

Relaxation oscillations are due to a periodic exchange of energy stored in 
the laser medium by the inversion and the light field. Without the saturable 
absorber these oscillations are damped. If for some reason there is two much 
gain in the system, the light field can build up quickly. Especially for a low 
gain cross section the backaction of the growing laser field on the  inversion is  
weak and it can grow further. This growth is favored in the presence of loss 
that saturates with the intensity of the light. The laser becomes unstabile, 
the field intensity growth as long as the gain does not saturate below the net 
loss, see Fig.4.15. 

http:Fig.4.15
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Loss 

Pulse 

Gain 

Figure 4.15: Gain and loss dynamics of a passively Q-switched laser 

Now, we want to show that the saturable absorber leads to a destabiliza-
tion of the relaxation oscillations resulting in the giant pulse laser. 
We extend our laser model by a saturable absorber as shown in Fig. 4.16 

P-
P+- P - - P 

P+ 
Tout       =2l 

A eff,L A eff,A 

τ  , E L τ  , EAL A 

qg 

Figure 4.16: Simple laser model described by rate equations. We assume 
small output coupling so that the laser power within one roundtrip can be 
considered position independent. Neglecting standing wave effects in the 
cavity, the field density is related to twice the circulating power P + or P − . 

Rate equations for a passively Q-switched laser 

We make the following assumptions: First, the transverse relaxation times 
of the equivalent two level models for the laser gain medium and for the 
saturable absorber are much faster than any other dynamics in our system, 
so that we can use rate equations to describe the laser dynamics. Second, we 
assume that the changes in the laser intensity, gain and saturable absorption 
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are small  on  a time scale on  the order  of  the round-trip  time  TR in the cavity, 
(i.e. less than 20%). Then, we can use the rate equations of the laser as 
derived above plus a corresponding equation for the saturable loss q similar 
to the equation for the gain. 

TR 
dP 

= 2(g − l − q)P (4.49) 
dt 
dg g − g0 gTRP 

TR = − − (4.50) 
dt TL EL 

dq q − q0 qTRP 
TR = − − (4.51) 

dt TA EA 

where P denotes the laser power, g the amplitude gain per roundtrip, l the 
linear amplitude losses per roundtrip, g0 the small signal gain per roundtrip 
and q0 the unsaturated but saturable losses per roundtrip. The quanti-
ties TL = τL/TR and TA = τA/TR are the normalized upper-state life-
time of the gain medium and the absorber recovery time, normalized to 
the round-trip time of the cavity. The energies EL = hνAeff,L/2

∗σL and 
EA = hνAeff,A/2

∗σA are the saturation energies of the gain and the ab-
sorber, respectively. . 
For solid state lasers with gain relaxation times on the order of τL ≈ 100 

µs or more, and cavity round-trip times TR ≈ 10 ns, we obtain TL ≈ 104 . 
Furthermore, we assume absorbers with recovery times much shorter than 
the round-trip time of the cavity, i.e. τA ≈ 1 − 100 ps, so that typically 
TA ≈ 10−4 to 10−2 . This is achievable in semiconductors and can be en-
gineered at will by low temperature growth of the semiconductor material 
[20, 30]. As long as the laser is running cw and single mode, the absorber will 
follow the instantaneous laser power. Then, the saturable absorption can be 
adiabatically eliminated, by using eq.(4.51) 

q0 EA 
q = with PA = , (4.52) 

1 +  P/PA τA 

and back substitution into eq.(4.49). Here, PA is the saturation power of 
the absorber. At a certain amount of saturable absorption, the relaxation 
oscillations become unstable and Q-switching occurs. To find the stability 
criterion, we linearize the system 

TR 
dP 

= (g − l − q(P ))P (4.53) 
dt 
dg g − g0 gTRP 

TR = − − . (4.54) 
dt TL EL 

http:eq.(4.49
http:eq.(4.51
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Stationary solution 

As in the case for the cw-running laser the stationary operation point of the 
laser is determined by the point of zero net gain 

gs = l + qs 
g0 q0 

= l + . (4.55) 
1 + Ps/PL 1 + Ps/PA 

The graphical solution of this equation is shown in Fig. 4.17 

go 

l+qo 

l 

g =l+q 

sg 

l+qs 

s s 

P 

Figure 4.17: Graphical solution of the stationary operating point. 

Stability of stationary operating point or the condition for Q-
switching 

For the linearized system, the coefficient matrix corresponding to Eq.(4.25) 
changes only by the saturable absorber [23]: µ ¶ µ ¶ µ ¯ ¶−2 dq ¯ d Ps 2Ps 

dt 
∆
∆ 
P
g0
0 ∆

∆ 
P
g0
0 dP cw 

−TR = A , with A = TR 
(4.56) −gsTR 

EL τstim 

The coefficient matrix A does have eigenvalues with negative real part, if and 
only if its trace is negative and the determinante is positive which results in 

http:Eq.(4.25
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two conditions 

dq 
¯̄̄̄

< 
r PA EL−2P with and , (4.57) r = 1 +  PL = 

dP TL PL τLcw 

and 

dq 
¯̄̄̄
 

r 
dP TLcw 

+ 2gs 
r − 1 

> 0 (4.58) . 
TL 

After cancelation of TL we end up with 

¯̄̄̄
 

¯̄̄̄
 

¯̄
dq¯̄ < 

¯̄̄̄
 

¯̄̄̄
 

¯̄̄̄
 

dgs 
. (4.59) 

dP dP cw cw 

For a laser which starts oscillating on its own, relation 4.59 is automatically 
fulfilled since the small signal gain is larger than the total losses, see Fig. 
4.17. Inequality (4.57) has a simple physical explanation. The right hand 
side of (4.57) is the relaxation time of the gain towards equilibrium, at a 
given pump power and constant laser power. The left hand side is the decay 
time of a power fluctuation of the laser at fixed gain.  If  the gain can  not  
react fast enough to  fluctuations of the laser power, relaxation oscillations 
grow and result in passive Q-switching of the laser. 

As can be seen from Eq.(4.55) and Eq.(4.57), we obtain 

¯̄̄̄
¯̄̄
 

< rs 

¯̄̄̄
 

P 
χPLdq PA−2TLP = 2TLq0 ³ ´ 2 with χ = , (4.60) 

dP PLcw P1 +
χPL cw 

where χ is an effective ”stiffness” of the absorber against cw saturation. The 
stability relation (4.60) is visualized in Fig. 4.18. 

http:Eq.(4.57
http:Eq.(4.55
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Image removed due to copyright restrictions. 

Please see: 
Kaertner, Franz, et al. "Control of solid state laser dynamics by semiconductor devices." Optical Engineering 
34, no. 7 (July 1995): 2024-2036. 

Figure 4.18: Graphical representation of cw-Q-switching stability relation for 
different products 2q0TL. The cw-stiffness used for the the plots is χ = 100. 

The tendency for a laser to Q-switch increases with the product q0TL and 
decreases if the saturable absorber is hard to saturate, i.e. χ À 1. As  can  be  
inferred from Fig. 4.18 and eq.(4.60), the laser can never Q-switch, i.e. the 
left side of eq.(4.60) is always smaller than the right side, if the quantity 

2q0TL
MDF  = < 1 (4.61) 

χ 

is less than 1. The abbreviation MDF stands for mode locking driving force, 
despite the fact that the expression (4.61) governs the Q-switching instabil-
ity. We will see, in the next section, the connection of this parameter with 
mode locking. For solid-state lasers with long upper state life times, already 
very small amounts of saturable absorption, even a fraction of a percent, 
may lead to a large enough mode locking driving force to drive the laser into 
Q-switching. Figure 4.19 shows the regions in the χ − P/PL - plane  where  
Q-switching can occur for fixed MDF  according to relation (4.60).  The area  
above the corresponding MDF-value is the Q-switching region. For MDF < 
1, cw-Q-switching can not occur. Thus, if a cw-Q-switched laser has to be 
designed, one has to choose an absorber with a MDF >1. The further the op-
eration point is located in the cw-Q-switching domain the more pronounced 
the cw-Q-switching will be. To understand the nature of the instability we 
look at the eigen solution and eigenvalues of the linearized equations of mo-

http:accordingtorelation(4.60
http:eq.(4.60
http:eq.(4.60
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Image removed due to copyright restrictions. 

Please see: 
Kaertner, Franz, et al. "Control of solid state laser dynamics by semiconductor devices." Optical Engineering 
34, no. 7 (July 1995): 2024-2036. 

Figure 4.19: For a given value of the MDF, cw-Q-switching occurs in the area 
above the corresponding curve. For a MDF-value less than 1 cw-Qswitching 
can not occur. 

tion 4.56 
d
µ

∆P0(t)
¶ ¶µ

∆P0(t) (4.62) = s 
dt ∆g0(t) ∆g0(t) 

which results in the eigenvalues µs 

± j A11A22 − A12A21 − 

¶2
A11 + A22 A11 + A22 (4.63) sTR = . 

2 2 

With the matrix elements according to eq.(4.56) we get ¯̄
 

vuut 

dq Ps − 1− 2 
TR dP cw τstim s = ± jωQ (4.64) 

− 

2 Ã ¯̄ !2¯̄̄̄
 

dq− 2 − 1 
r − 1 Ps2 dq r TR dP cw τstim − .(4.65) ωQ Ps += 

TR dP τL τ pτL 2 cw 

where the pump parameter is now defined as the ratio between small signal 
gain the total losses in steady state, i.e. r = g0/(l + qs). This somewhat 
lengthy expression clearly shows, that when the system becomes unstable, 

http:eq.(4.56


   

   
              

 

  
  

 

   
    

  

            
              

            
            

            

   

              
        

              
 

  
   

 
      

        
   

            
             
       

4.4. Q-SWITCHING 153 ¯̄ À τ p, there is a growing oscillation with fre-−2 dq Ps > TR , with τLτstim dP cw 
quency ss 

r − 1 1 
ωQ ≈ ≈ . (4.66) 

τ pτL τ pτ stim 

That is, passive Q-switching can be understood as a destabilization of the 
relaxation oscillations of the laser. If the system is only slightly in the instable 
regime, the frequency of the Q-switching oscillation is close to the relaxation 
oscillation frequency. If we define the growth rate γQ, introduced by the 
saturable absorber as a prameter, the eigen values can be written as 

γQ 

vuut 
Ã !2− 1¶µ

r − 11 1 r− ± j 
γQ τstim − (4.67) γQ +s = . 

2 τ stim τL τ pτL 2 

Figure 4.20 shows the root locus plot for a system with and without a sat-
urable absorber. The saturable absorber destabilizes the relaxation oscilla-
tions. The type of bifurcation is called a Hopf bifurcation and results in an 
oscillation. 

Figure 4.20: Root locus plot for the linearized rate equations. a) Without 
saturable absorber as a function of the pump parameter r; b) With saturable 
absorber as a function of γQ . 



      

             
            

          

            
         

             

154 CHAPTER 4. LASER DYNAMICS (SINGLE-MODE) 

As an example, we consider a laser with the following parameters: τL = 
250µs, TR = 4ns, 2l0 = 0.1, 2q0 = 0.005, 2g0 = 2, PL/PA = 100. The rate 
equations are solved numberically and shown in Figures4.21 and 4.22. 

Figure 4.21: Phase space plot of the rate equations. It takes several oscilla-
tions, until the steady state limit cycle is reached. 

Figure 4.22: Solution for gain and output power as a function of time. 

http:Figures4.21


       

     
  

          
              
           

            
              

            
           

           

       
 

          
          

            
        

               
              
             

            
         

              
            

             
            
             
             
              

              
           

              
           

               

4.5. EXAMPLE: SINGLE MODE CW-Q-SWITCHED MICROCHIP LASERS155 

4.5 Example: Single Mode CW-Q-Switched 
Microchip Lasers 

Q-switched microchip lasers are compact and simple solid-state lasers, which 
can provide a high peak power with a diffraction limited output beam. Due to 
the extremely short cavity length, typically less than 1 mm, single-frequency 
Q-switched operation with pulse widths well below a ns can be achieved. 
Pulse durations of 337 ps and 218 ps have been demonstrated with a passively 
Q-switched microchip laser consisting of a Nd:YAG crystal bonded to a thin 
piece of Cr4+:YAG [8, 9]. Semiconductor saturable absorbers were used to 
passively Q-switch a monolithic Nd:YAG laser producing 100 ns pulses [38]. 

4.5.1 Set-up of the Passively Q-Switched Microchip 
Laser 

Figure 4.23(a) shows the experimental set-up of the passively Q-switched 
microchip laser and Fig. 4.23(b) the structure of the semiconductor sat-
urable absorber [12, 13]. The saturable absorber structure is a so called 
anti-resonant Fabry-Perot saturable absorber (A-FPSA), because in a mi-
crochip laser the beam size is fixed by the thermal lens that builds up in 
the laser crystal, when pumped with the diode laser. Thus, one can use the 
top reflector of the A-FPSA to scale the effective saturation intensity of the 
absorber with respect to the intracavity power. The 200 or 220 µm thick  
Nd:YVO4 or Nd:LaSc3(BO3)4, (Nd:LSB) laser crystal [39] is sandwiched be-
tween a 10% output coupler and the A-FPSA. The latter is coated for high 
reflection at the pump wavelength of 808 nm and a predesigned reflectivity 
at the laser wavelength of 1.062 µ m, respectively. The laser crystals are 
pumped by a semiconductor diode laser at 808 nm through a dichroic beam-
splitter, that transmits the pump light and reflects the output beam at 1.064 
µm for  the  Nd:YVO4 or 1.062 µm for the Nd:LSB laser. To obtain short Q-
switched pulses, the cavity has to be as short as possible. The highly doped 
laser crystals with a short absorption length of only about 100µm lead to a 
short but still efficient microchip laser [13]. The saturable absorber consists 
of a dielectric top mirror and 18 pairs of GaAs/InGaAs MQW’s grown on a 
GaAs/AlAs Bragg-mirror. The total optical thickness of the absorber is on 
the order of 1 µm. Therefore, the increase of the cavity length due to the 
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(a) Nd:YVO  4 Microchip Laser
(3% doped) 
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Output Coupler R = t 
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@ 1062 nm 
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Diode Pump  Copper 
Laser Heat Sink 
@ 808 nm 

Dichroic Beamsplitter 
200 µm HT @ 808 nm 
Cavity Length HR @ 1062 nm 

(b) GaAs/InGaAs
MQW absorber 

GaAs/AlAs 
Bragg mirror 

GaAs 
Substrate 

mirror 
TiO  /SiO2 2 

I in 

I out 

Figure 4.23: /a) Experimental set-up of the cw-passively Q-switched 
Nd:YVO4 microchip-laser. (b) Structure of the anti-resonant Fabry-Perot 
semiconductor saturable absorber [37]. 
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1.0 

0.5 

0.0 

Figure 4.24: Single-Mode Q-switched pulse achieved with Nd:YVO4 mi-
crochip laser. 

absorber is neglegible. For more details see [12, 13]. Pulses as short as 56 ps, 
Fig. (4.24), have been achieved with Nd:LSB-crystals. 

4.5.2 Dynamics of a Q-Switched Microchip Laser 

The passively Q-switched microchip laser, shown in Fig. 4.23(a), is perfectly 
modelled by the rate equations (4.49) to (4.51). To understand the basic 
dependence of the cw-Q-switching dynamics on the absorber parameters, we 
performed numerical simulations of the Nd:LSB microchip laser, as shown 
in Fig. 4.23. The parameter set used, is given in Table 4.2. For these pa-
rameters, we obtain according to eq.(4.55) a mode locking driving force of 
MDF  = 685. This laser operates clearly in the cw-Q-switching regime as 
soon as the laser is pumped above threshold. Note, the Q-switching condi-
tion (4.61) has only limited validity for the microchip laser considered here, 
because, the cavity length is much shorter than the absorber recovery time. 
Thus the adiabatic elimination of the absorber dynamics is actually not any 
longer justified. Figures 4.25 and 4.26 show the numerical solution of the set 
of rate equations (4.49) to (4.51) on a microsecond timescale and a picosecond 
timescale close to one of the pulse emission events. 
No analytic solution to the set of rate equations is known. Therefore, 

optimization of Q-switched lasers has a long history [4, 5], which in general 
results in complex design criteria [5], if the most general solution to the rate 

http:eq.(4.55
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parameter value 
2 g0 0.7 
2 q0 0.03 
2 l 0.14 
TR 2.7 ps 
τL 87 µs 
τA 24 ps 
EL 20 µJ 
EA 7.7 nJ 

Table 4.2: Parameter set used for the simulation of the dynamics of the 
Q-switched microchip laser. 

(a) 20 0.20 

15 
0.18 

10 
0.16 

0.14 

5 
0.12 

0 0.10

 Power, P
 Gain, g
Loss, q 

30 35 40 45 50 55 
Time, µs 

Figure 4.25: Dynamics of the Q-switched microchip laser by numerical solu-
tion of the rate equatioins on a microsecond timescale. 
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Power, P
 Gain, g
Loss, q 

(b) 20 0.20 

0.18
15 

0.16 
10 

0.14 

5 
0.12 

0 0.10 

0 500 1000 1500 2000 
Time, ps 

Figure 4.26: Dynamics of the Q-switched microchip laser by numerical solu-
tion of the rate equatioins on a picosecond timescale. 

equations is considered. However, a careful look at the simulation results 
leads to a set of very simple design criteria, as we show in the following. 
As seen from Fig. 4.25, the pulse repetition time Trep is many orders of 
magnitude longer than the width of a Q-switched pulse. Thus, between two 
pulse emissions, the gain increases due to pumping until the laser reaches 
threshold. This is described by eq.(4.50), where the stimulated emission 
term can be neglected. Therfore, the pulse repetition rate is determined by 
the relation that the gain has to be pumped to threshold again gth = l + q0, 
if it is saturated to the value gf after pulse emission. In good approximation, 
gf = l− q0,  as long as it  is a  positive quantity.  If  Trep < τL, one can linearize 
the exponential and we obtain 

gth − gf = g0 
Trep (4.68) 
τL 

gth − gf 2q0
Trep = τL = τL . (4.69) 

g0 g0 

Figure 4.26 shows, that the power increases, because, the absorber saturates 
faster than the gain. To obtain a fast raise of the pulse, we assume an 
absorber which saturates much easier than the gain, i.e. EA ¿ EL, and  the  

http:eq.(4.50


      

             
               

            
               

       

     

             
              

           
   

   

      
    

    
 

  
  

            
           

           

         

 
  

   
    
 

 
 

  
   

   
    
 

 
 

  
 

           
                

            
              

            
             

160 CHAPTER 4. LASER DYNAMICS (SINGLE-MODE) 

recovery times of gain and absorption shall be much longer than the pulse 
width τ pulse, τA À τ pulse. Since, we assume a slow gain and a slow absorber, 
we can neglect the relaxation terms in eqs.(4.50) and (4.51) during growth 
and decay of the pulse. Then the equations for gain and loss as a function 
of the unknown Q-switched pulse shape fQ(t) 

P (t) =  EP fQ(t) (4.70) 

can be solved. The pulse shape fQ(t) is again normalized, such that its 
integral over time is one and EP is, therefore, the pulse energy. Analogous to 
the derivation for the Q-switched mode locking threshold in eqs.(4.84) and 
(4.85), we obtain ∙ Z ¸

EP
t 

q(t) =  q0 exp − fQ(t
0)dt0 , (4.71) ∙ 

EA Z−∞ ¸
EP

t 

g(t) =  gth exp − fQ(t
0)dt0 . (4.72) 

EL −∞ 

Substitution of these expressions into the eq.(4.49) for the laser power, and 
integration over the pulse width, determines the extracted pulse energy. The 
result is a balance between the total losses and the gain. 

l + qP (EP ) =  gP (EP ) (4.73) 

with h i 
1 − exp −E

E 
P

A 
qP (EP ) =  q0 EP 

, (4.74) 
EA h i 

1 − exp −E
E 
P

L 
gP (EP ) =  gth EP 

. (4.75) 
EL 

Because, we assumed that the absorber is completely saturated, we can 
set qP (EP ) ≈ 0. Figure 4.27 shows the solution of eq.(4.73), which is the 
pulse energy as a function of the ratio between saturable and nonsaturable 
losses s = q0/l. Also approximate solutions for small and large s are shown 
as the dashed curves. Thus, the larger the ratio between saturable and 
nonsaturable losses is, the larger is the intracavity pulse energy, which is not 
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http:eq.(4.49
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P
L

s = q 0  / l 

Figure 4.27: (–) Intracavity pulse energy as a function of the ratio between 
saturable and nonsaturable losses s. (- - -) Approximations for small and 
large values for  s.  

surprising. Note, the extracted pulse energy is proportional to the output 
coupling, which is 2l if no other losses are present. If we assume, s << 1, 
then, we can  use approximately  the low  energy  approximation  

q0
EP = 2EL 

l + q0 
. (4.76) 

The externally emitted pulse energy is then given by 

4lq
EP

ex = 2lEP = EL 
l + q 

0

0 
. (4.77) 

5 

4 

3 

2 

1 

0 
43210 

1+s 

____ 
(1+s) 

2s 

Thus, the total extracted pulse energy is completely symmetric in the sat-
urable and non saturable losses. For a given amount of saturable absorption, 
the extracted pulse energy is maximum for an output coupling as large as 
possible. Of course threshold must still be reached, i.e. l + q0 < g0. Thus,  
in  the following,  we assume  l > q0 as in Fig. 4.26. The absorber is immedi-
atelly bleached, after the laser reaches threshold. The light field growth and  
extracts some energy stored in the gain medium, until the gain is saturated 
to the low loss value l. Then the light field decays again, because the gain 
is below the loss. During decay the field can saturate the gain by a similar 
amount as during build-up, as long as the saturable losses are smaller than 



      

             
              

            
         

 

 
    

  

             
            

    
   

          
    

            
              

            
      

 
    

 

           

 
      

 

           
           

              
        

              
           

             
         

                  
             

            
               

               

162 CHAPTER 4. LASER DYNAMICS (SINGLE-MODE) 

the constant output coupler losses l, which we shall assume in the following. 
Then the pulse shape is almost symmetric as can be seen from Fig. 4.26(b) 
and is well approximated by a secant hyperbolicus square for reasons that 
will become obvious in a moment. Thus, we assume µ ¶ 

fQ(t) =  
1 
sech2 t

. (4.78) 
2τP τ p 

With the assumption of an explicite pulse form, we can compute the pulse 
width by substitution of this ansatz into eq.(4.49) and using (4.71), (4.72) µ ¶ ∙ µ µ ¶¶¸

2TR t EP t− tanh = gth exp − 1 + tanh  − l. (4.79) 
τP τ p 2EL τ p 

Again, we neglect the saturated absorption. If we expand this equation up 
to first order in EP /EL and compare coefficients, we find from the constant 
term the energy (4.77), and from the tanh-term we obtain the following 
simple expression for the pulse width 

TR
τP = 2  . (4.80) 

q0 

For the FWHM pulse width of the resulting sech2-pulse we obtain 

TR
τP,F W HM = 3.5 . (4.81) 

q0 

Thus, for optimium operation of a Q-switched microchip laser, with respect 
to minimum pulse width and maximum extracted energy in the limits consid-
ered here, we obtain a very simple design criterium. If we have a maximum 
small signal round-trip gain g0,  we  should design an absorber with  q0 some-
what smaller than g0/2 and an output coupler with q0 < l < g0 − q0, so  that  
the laser still fullfills the cw-Q-switching condition. It is this simple opti-
mization, that allowed us to reach the shortest pulses every generated from a 
cw-Q-switched solid-state laser. Note, for a maximum saturable absorption 
of 2 q0 = 13%, a cavity roundtip time of TR = 2.6 ps for the Nd:YVO4 laser, 
one expects from (4.81) a pulse width of about τP = 70ps, which  is  close to  
what we observed in the experiment above. We achieved pulses between 56 
and 90 ps [13]. The typical extracted pulse energies were on the order of EP 

= 0.1 - 0.2 µJ for pulses of about 60ps [13]. Using a saturation energy of 
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Figure 4.28: Laser output power as a function of time, when operating in the 
Q-switched mode-locked regime. 

about EL = 30  µJ and an output coupler loss of 2l = 0.1, we  expect, accord-
exing to (4.77), a maximum extracted pulse energy of EP = 2  µJ. Thus, we 

have a deviation of one order of magnitude, which clearly indicates that the 
absorber still introduces too much of nonsaturable intracavity losses. Low-
ering of these losses should lead to µJ - 50 ps pulses from this type of a 
very simple and cheap laser, when compared with any other pulse generation 
technique. 

4.6 Q-Switched Mode Locking 

To understand the regime of Q-switched mode locking, we reconsider the rate 
equations (4.49) to (4.51). Fig. 4.28 shows, that we can describe the laser 
power on two time scales. One is on the order of the Q-switching envelope 
and occurs on multiple round-trips in the laser cavity, T = mTR. Therefore,  
it is on the order of microseconds. The other time scale t is a short time scale 
on the order of the pulse width, i.e. picoseconds. Assuming a normalized 
pulse shape fn(t) for the n-th pulse such that 

Z TR/2 

fn(t − nTR)dt = 1, (4.82) 
−TR/2 



      

          

 
         

 

                
             

             
              

             
            

            
              

      
  

    

        
  

            
  

  

    
 

      
 

    
   

 

  

            
              

          
            

            
             

 
          

 
     

     
   

            
             

         
            

164 CHAPTER 4. LASER DYNAMICS (SINGLE-MODE) 

we can make the following ansatz for the laser power 

∞X 
P (T, t) =  EP (T ) fn(t − nTR). (4.83) 

n=−∞ 

Here, EP (T = mTR) is the pulse energy of the m-th pulse, which only changes 
appreciably over many round-trips in the cavity. The shape of the m-th pulse, 
fm(t), is not yet of further interest. For simplicity, we assume that the mode-
locked pulses are much shorter than the recovery time of the absorber. In this 
case, the relaxation term of the absorber in Eq.(4.52) can be neglected during 
the duration of the mode-locked pulses. Since the absorber recovery time is 
assumed to be much shorter than the cavity round-trip time, the absorber 
is unsaturated before the arrival of a pulse. Thus, for the saturation of the 
absorber during one pulse, we obtain ∙ Z ¸

EP (T ) t 

q(T = mTR, t) =  q0 exp − fm(t
0)dt0 . (4.84) 

EA −TR/2 

Then, the loss in pulse energy per roundtrip can be written as h i 
−EP (T )Z TR/2 1 − exp 

qP (T ) =  fm(t)q(T = mTR, t)dt = q0 
EA 

. (4.85) 
EP (T )

−TR/2 EA 

Eq. (4.85) shows that the saturable absorber saturates with the pulse energy 
and not with the average intensity of the laser, as in the case of cw-Q-
switching (4.52). Therefore, the absorber is much more strongly bleached 
at the same average power. After averaging Eqs.(4.49) and (4.50) over one 
round-trip, we obtain the following two equations for the dynamics of the 
pulse energy and the gain on a coarse grained time scale T : 

dEP
TR = 2(g − l − qP (EP ))EP , (4.86) 

dT 
dg g − g0 gEP

TR = − − . (4.87) 
dT TL EL 

This averaging is allowed, because the saturation of the gain medium within 
one pulse is negligible, due to the small interaction cross section of the 
solid-state laser material. Comparing Eqs.(4.49), (4.50) and (4.52) with 
(4.84), (4.86) and (4.87), it becomes obvious that the stability criterion (4.53) 

http:Eqs.(4.49
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4.6. Q-SWITCHED MODE LOCKING 165 

also applies to Q-switched mode locking if we replace the formula for cw-
saturation of the absorber (4.52) by the formula for pulsed saturation (4.85). 
Then, stability against Q-switched mode locking requires 

dqP 
¯̄̄̄

< 
r 
¯̄̄̄

−2EP (4.88) ,
dEP TLcw−mod cw−mod 

with h i³ ´ 

dqP 
¯̄̄̄
 

1− exp −EP 1 + EP 
EA EA−2EP = 2q0 EP 

. (4.89) 
EA 

dEP cw−mod 

When expressed in terms of the average power P = EP /TR, similar  to  
Eq.(4.60), we obtain h i³ ´ 

dqP 
¯̄̄̄
 

1− exp − P 1 +  P 
χP PL 

P 

χP PL−2TLEP = 2TLq0 , (4.90) 
dEP cw−mod χP PL 

where χP = χTA describes an effective stiffness of the absorber compared 
with  the gain when the  laser is  cw-mode-locked at  the  same  average  power  
as the cw laser. Thus, similar to the case of cw-Q-switching and mode locking 
it is useful to introduce the driving force for Q-switched mode locking 

2q0TL
QMDF = . (4.91) 

χP 

Figure 4.29 shows the relation (4.88) for different absorber strength. In 
going from Fig. 4.18 to Fig. 4.29, we used TA = 0.1. We see, that the 
short normalized recovery time essentially leads to a scaling of the abscissa, 
when going from Fig. 4.18 to Fig. 4.29 while keeping all other parameters 
constant. Comparing Eqs.(4.61) with (4.91), it follows that, in the case of 
cw-mode locking, the absorber is more strongly saturated by a factor of 
1/TA, which can easily be as large as 1000. Therefore, the Q-switched mode 
locking driving force is much larger than the mode locking driving force, 
MDF, Accordingly, the tendency for Q-switched mode locking is significantly 
higher than for cw Q-switching. However, now, it is much easier to saturate 
the absorber with an average power well below the damage threshold of the 
absorber (Fig. 4.29). Therefore, one is able to leave the regime of Q-switched 
mode locking at a large enough intracavity power. 

http:Eqs.(4.61
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Image removed due to copyright restrictions. 

Please see: 
Kaertner, Franz, et al. "Control of solid state laser dynamics by semiconductor devices." Optical Engineering 
34, no. 7 (July 1995): 2024-2036. 

Figure 4.29: Visualization of the stability relations for Q-switched mode lock-
ing for different products 2q0TL. The assumed stiffness for pulsed operation 
is χP = 10, which corresponds to TA = 0.1. The functional form of the 
relations for cw Q-switching and Q-switched mode locking is very similar. 
The change in the stiffness, when going from cw to pulsed saturation, thus 
essentially rescales the x-axis. For low-temperature grown absorbers, TA can 
be as small as 10−6 

Image removed due to copyright restrictions. 

Please see: 
Kaertner, Franz, et al. "Control of solid state laser dynamics by semiconductor devices." Optical Engineering 
34, no. 7 (July 1995): 2024-2036. 

Figure 4.30: Self-Starting of mode locking and stability against Q-switched 
mode locking 



   

           
           

           
            

            
            

 
    

 

             
              

            
            

             
            

              
           

  

            
           

           
           

              
             
               
           

           
         
           

              
            

           
            

           
           

4.7. SUMMARY 167 

We summarize our results for Q-switched mode locking in Fig. 4.30. 
It shows the stability boundary for Q-switched mode locking according to 
eq.(4.88), for different strengths of the saturable absorber, i.e. different values 
2q0TL. One may also derive minimum critical mode locking driving force for 
self-starting modelocking of the laser MDFc due to various processes in the 
laser [24][25][27][28]. Or, with the definition of the pulsed stiffness, we obtain 

2q0TL
χp,c ≤ TA. (4.92) 

MDFc 

Thus, for a self-starting laser which shows pure cw-mode locking, we have to 
design the absorber such that its MDF is greater than this critical value. Or 
expressed differently, the pulsed stiffness has to be smaller than the critical 
value χp,c, at  a  fixed value for the absorber strength q0. There  is  always  
a trade-off: On one hand, the mode locking driving force has to be large 
enough for self-starting. On the other hand the saturable absorption has to 
be small enough, so that the laser can be operated in a parameter regime 
where it is stable against Q-switching mode locking, see Fig. (4.30). 

4.7 Summary 

Starting from a simple two level laser and absorber model, we characterized 
the dynamics of solid-state lasers mode-locked and Q-switched by a saturable 
absorber. The unique properties of solid-state laser materials, i.e. their long 
upper-state life time and their small cross sections for stimulated emission, 
allow for a separation of the laser dynamics on at least two time scales. 
One process is the energy build-up and decay, which occurs typically on a 
time scale of the upper state lifetime or cavity decay time of the laser. The 
other process is the pulse shaping, which occurs within several roundtrips 
in the cavity. Separating these processes, we can distinguish between the 
different laser dynamics called cw-Q-switching, Q-switched mode locking and 
cw-mode locking. We found the stability boundaries of the different regimes, 
which give us guidelines for the design of absorbers for a given solid state 
laser to favour one of these regimes. Semiconductor absorbers are a good 
choice for saturable absorbers to modelock lasers, since the carrier lifetime 
can be engineered by low temperature growth [20]. When the pulses become 
short enough, the laser pulse saturates the absorber much more efficiently, 
which stabilizes the laser against undesired Q-switched mode locking. It has 

http:eq.(4.88
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been demonstrated experimentally, that this technique can control the laser 
dynamics of a large variety of solid-state lasers, such as Nd:YAG, Nd:YLF, 
Nd:YV04, [18] in the picosecond regime. 
With semiconductor devices and soliton formation due to negative GVD 

and SPM, we can use similar semiconductor absorbers to modelock the lasers 
in the femtosecond regime [35]. The stability criteria derived here can be ap-
plied to both picosecond and femtosecond lasers. However, the characteristics 
of the absorber dynamics may change drastically when going from picosecond 
to femtosecond pulses [36]. Especially, the saturation energy may depend not 
only on excitation wavelength, but also on the pulsewidth. In addition there 
may be additional loss mechanismes for the  pulse,  for example  due to soliton  
formation there are additional filter losses of the pulse which couple to the 
energy of the pulse via the area theorem. This has to be taken into account, 
before applying the theory to fs-laser systems, which will be discussed in 
more detail later. 
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Chapter 5 

Active Mode Locking 

For simplicity, we assume, that the laser operates in the transverse fundamen-
tal modes and, therefore, we only have to treat the longitudinal modes of the 
laser similar to a simple plane parallel Fabry-Perot resonator (Figure: 5.1). 
We consider one polarization of the field only, however, as we will say later 
for some mode-locked laser polarization dynamics will become important. 

The task of mode-locking  is to get  as  many  of  the longitudinal  modes  
lasing in a phase synchronous fashion, such that the superposition of all 
modes represents a pulse with a spatial extent much shorter than the cavity. 
The pulse will then propagate at the group velocity corresponding to the 
center frequency of the pulse. 

Figure 5.1: Fabry-Perot resonator 
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5.1 The Master Equation of Mode Locking 

Lets consider for the moment the cold cavity (i.e. there is only a simple 
linear medium in the cavity no lasing). The most general solution for the 
intracavity field is a superpositon of left- and rightward running waves 

∞X( ) 
j(Ωnt+Knz)E(left)(z, t) = Re Ê 

ne , (5.1) 
n=0 

and ( )∞ 

E(right)(z, t) = Re j(Ωnt−Knz) 
X 

Ê 
ne . (5.2) 

n=0 

The possible values for  the wavenumbers are  Kn = nπ/L, resulting from the 
boundary conditions on metallic mirrors or periodicity after one roundtrip in 
the cavity.  If  the mirrors  are perfectly reflecting, the leftward and rightward 
moving waves Eqs.(5.1) and (5.2) contain the same information and it is 
sufficient to treat only one of them. Usually one of the cavity mirrors is 
not perfectly reflecting in order to couple out light, however, this can be 
considered a perturbation to the ideal mode structure. 
We consider the modes in Eq.(5.2) as a continuum and replace the sum 

by an integral ½Z ∞ 

E(right)(z, t) =
1 ˆ j(Ω(K)t−Kz)dKE(K) 

¾ 

Re (5.3) e 
2π K=0 

with 
Ê(Km) = Ê 

m2L. (5.4) 

Eq.(5.3) is similar to the pulse propagation discussed in chapter 2 and de-
scribes the pulse propagation in the resonator. However, here it is rather 
an initial value problem, rather than a boundary value problem. Note, the 
wavenumbers of the modes are fixed, not the frequencies. To emphasize this 
even more, we introduce a new time variable T = t and a local time frame 
t0 = t − z/υg,0, instead of the propagation distance z, where υg,0 is the group 
velocity at the central wave number Kn0 of the pulse ¶−1 ̄̄¯̄̄

.υg,0 = 
∂ω  ̄̄̄¯ = 

µ
∂k 

∂k ∂ωk=0 

(5.5) 
ω=0 
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For introduction of a slowly varying envelope, we shift the frequency and 
wavenumber by the center frequency ω0 = Ωn0 and center wave number 
k0 = Kn0 

k = K − Kn0 , (5.6) 

ω(k) =  Ω(Kn0 + k)− Ωn0 , (5.7) 

Ê(k) =  Ê(Kn0 + k), (5.8) 

The temporal evolution of the pulse is than determined by (Z ∞1 ˆ j(ω(k)t−kz)dkE(k)e 

) 

E(right)(z, t) =  ej(ω0t−k0z). (5.9) Re 
2π −Kn0 →−∞ 

Analogous to chapter 2, we define a slowly varying field envelope, that is 
already normalized to the total power flow in the beam Z ∞Aeff 1 

Ê(k)ej(ω(k)t−kz)dk. (5.10) 

r 

A(z, t) =  
2π2Z0 −∞ 

With the retarded time t0 and time T , we obtain analogous to Eq. (2.184). 

¶∞ n 

E(k)e 

X 

Z ∞Aeff 1 ˆ j((ω(k)−υg,0k)T +kυg,0t0 
r 

A(T, t0) =  (5.11) dk. 
2π2Z0 −∞ 

which can be written as ¯̄̄̄
 

µ
∂A(T, t0) ∂n 

A(T, t0),= j Dn −j (5.12) TR 
∂t0∂T (GDD) n=2 

2Lwith the dispersion coefficients per resonator round-trip TR = 
υg,0 

Dn = 
2L ∂n−1υg(k) 

n!υn+1 ∂kn−1 
g,0 

¯̄̄̄
¯ (5.13) . 
k=0 

The dispersion coefficients (5.13) look somewhat suspicious, however, it is 
not difficult to show, that they are equivalent to derivatives of the roundtrip 
phase φR(Ω) =

Ω 
c n(Ω)2L in the resonator at the center frequency ¯̄̄̄

¯ , 
1 ∂nφR 

(n)
(Ω)− (5.14) Dn = 

n! ∂Ωn 
Ω=ω0 
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Sofar, only the lossless resonator is treated. The gain and loss can be mod-
elled by adding a term like 

∂A(T, t0) ̄̄̄¯ = −lA(T, t0) (5.15) TR 
∂T (loss) 

where l is the amplitude loss per round-trip. In an analogous manner we can 
write for  the gain  

∂A(T, t0) ̄̄̄¯ ¶µ
∂2 

A(T, t0), (5.16) TR = g(T ) +Dg 
∂t02∂T (gain) 

where g(T ) is the gain and and Dg is the curvature of the gain at the maxi-

g 

mum of the Lorentzian lineshape. 

Dg = 
g(T ) 
Ω2 

(5.17) 

Dg is the gain dispersion. g(T ) is an average gain, which can be computed 
from the rate equation valid for each unit cell in the resonator. The dis-
tributed gain obeys the equation 

∂g(z, t) g − g0 |A(z, t)|2 

= − − g , (5.18) 
∂t τL EL 

where EL is the saturation energy EL = 
2 
hν 
∗σ 
L

L 
Aeff , τL the upper state lifetime 

and σL the gain cross section. For typical solid-state lasers, the intracavity 
pulse energy is much smaller than the saturation energy. Therefore, the gain 
changes within one roundtrip are small. Furthermore, we assume that the 
gain saturates spatially homogeneous, g(z, t0) = g(t0). Then, the equation for 
the average gain g(T ) can be found by averageing (5.18) over one round-trip 
and we obtain 

∂g(T ) g − g0 W (T ) 
= − − g , (5.19) 

∂T τL ELTR 

where W (T ) is  the intracavity  pulse energy at time  t = T Z TR/2 Z ∞ 

W (T ) =  |A(T, t0)|2dt0 ≈ |A(T, t0)|2dt0 . (5.20) 
t0=−TR/2 −∞ 
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Figure 5.2: Actively modelocked laser with an amplitude modulator 
(Acousto-Optic-Modulator). 

Taking all effects into account, the linear ones: loss, dispersion, gain and 
gain dispersion, as well as the nonlinear ones like saturable absorption and 
self-phase modulation, we end up with the master equation of modelocking 

∞ µ ¶X ∂n∂A(T, t0) n 

TR = −lA(T, t0) + j Dn j A(T, t0)
∂T ∂t 

n=2 ¶µ 
1 ∂2 

+ g(T ) 1 +  A(T, t0) (5.21) 
Ω2 
g ∂t

02 

− q(T, t0)A(T, t0)− jδ|A(T, t0)|2A(T, t0). 
To keep notation simple, we replace t0 by t again. This equation was first 
derived by Haus [4] under the assumption of small changes in pulse shape 
per round-trip and per element passed within one round-trip. 

5.2 Active Mode Locking by Loss Modula-
tion 

Active mode locking was first investigated in 1970 by Kuizenga and Siegman 
using a gaussian pulse analyses, which we want to delegate to the exercises 
[3]. Later in 1975 Haus [4] introduced the master equation approach (5.21). 
We follow the approach of Haus, because it also shows the stability of the 
solution. 
We introduce a loss modulator into the cavity, for example an acousto-

optic modulator, which periodically varias the intracavity loss according to 
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Image removed due to copyright restrictions. 

Please see: 
Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Figure 5.3: Schematic representation of the master equation for an actively 
mode-locked laser. 

q(t) =  M (1 − cos(ωM t)). The modulation frequency has to be very precisely 
tuned to the resonator round-trip time, ωM = 2π/TR, see Fig.5.2. The 
modelocking process is then described by the master equation ∙ ¸

∂A ∂2 

TR = g(T ) +  Dg − l − M (1 − cos(ωM t)) A. (5.22) 
∂T ∂t2 

neglecting GDD and SPM. The equation can be interpreted as the total pulse 
shaping due to gain, loss and modulator, see Fig.5.3. 
If we fix the gain in Eq. (5.22) at its stationary value, what ever it might 

be, Eq.(5.22) is a linear p.d.e, which can be solved by separation of variables. 
The pulses, we expect, will have a width much shorter than the round-trip 
time TR. They will be located in the minimum of the loss modulation where 
the cosine-function can be approximated by a parabola and we obtain ∙ ¸

∂A ∂2 

TR = g − l + Dg − Mst
2 A. (5.23) 

∂T ∂t2 

Ms is the modulation strength, and corresponds to the curvature of the loss 
modulation in the time domain at the minimum loss point 

Dg = 
g
, (5.24) 

Ω2 
g 

Mω2 

Ms = M . (5.25) 
2 

http:Eq.(5.22
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The differential operator on the right side of (5.23) corresponds to the Schrödinger-
Operator of the harmonic oscillator problem. Therefore, the eigen functions 
of this operator are the Hermite-Gaussians 

λnT/TRAn(T, t) =  An(t)e , (5.26) s 
tWn − 
2 

An(t) =  
2n 
√ Hn(t/τa)e 2τ2 

a , (5.27) 
πn!τa 

where τa defines the width of the Gaussian. The width is given by the fourth 
root of the ratio between gain dispersion and modulator strength q 

τa = 4 Dg/Ms. (5.28) 

Note, from Eq. (5.26) we can follow, that the gain per round-trip of each 
eigenmode is given by λn (or in general the real part of λn), which are given 
by 

λn = gn − l − 2Msτ
2 
a(n + 

1
). (5.29) 
2 

The corresponding saturated gain for each eigen solution is given by 

1 
gn = , (5.30) 

1 +
P
W 
LT 
n

R 

where Wn is the energy of the corresponding solution and PL = EL/τL the 
saturation power of the gain. Eq. (5.29) shows that for given g the eigen 
solution with n = 0, the ground mode, has the largest gain per roundtrip. 
Thus, if there is initially a field distribution which is a superpostion of all 
eigen solutions, the ground mode will grow fastest and will saturate the gain 
to a value 

gs = l +Msτ
2 
a. (5.31) 

such that λ0 = 0 and consequently all other modes will decay since λn < 0 for 
n ≥ 1. This also proves the stability of the ground mode solution [4]. Thus 
active modelocking without detuning between resonator round-trip time and 
modulator period leads to Gaussian steady state pulses with a FWHM pulse 
width 

∆tFWHM  = 2 ln 2τa = 1.66τa. (5.32) 
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The spectrum of the Gaussian pulse is given by Z ∞ 
˜ iωtdtA0(ω) =  A0(t)e (5.33) q−∞ 

√ (ωτa)
2 

2= πWnτae − , (5.34) 

and its FWHM is 
1.66 

∆fFWHM  = . (5.35) 
2πτa 

Therfore, the time-bandwidth product of the Gaussian is 

∆tFWHM  · ∆fFWHM  = 0.44. (5.36) 

The stationary pulse shape of the modelocked laser is due to the parabolic 
loss modulation (pulse shortening) in the time domain and the parabolic 
filtering (pulse stretching) due to the gain in the frequency domain, see Figs. 
5.4 and 5.5. The stationary pulse is achieved when both effects balance. 
Since external modulation is limited to electronic speed and the pulse width 
does only scale with the inverse square root of the gain bandwidth actively 
modelocking typically only results in pulse width in the range of 10-100ps. 

Figure 5.4: (a) Loss modulation gives pulse shortening in each roundtrip 
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Figure 5.5: (b) the finite gain bandwidth gives pulse broadening in each 
roundtrip. For a certain pulse width there is balance between the two pro-
cesses. 

For example: Nd:YAG; 2l = 2g = 10%, Ωg = π∆fFWHM  = 0.65 THz, 
M = 0.2, fm = 100 MHz,Dg = 0.24 ps2,Ms = 4 · 1016s−1, τ p ≈ 99 ps. 
With the pulse width (5.28), Eq.(5.31) can be rewritten in several ways 

Dg 1 1Dg
gs = l +Msτ

2 
a = l + = l + Msτ

2 
a + , (5.37) 

τ 2 
a 2 2 τ 2 

a 

which means that in steady state the saturated gain is lifted above the loss 
level l, so that many modes in the laser are maintained above threshold. 
There is additional gain necessary to overcome the loss of the modulator due 
to the finite temporal width of the pulse and the gain filter due to the finite 
bandwidth of the pulse. Usually 

gs − l Msτ
2 

= a ¿ 1, (5.38) 
l l 

since the pulses are much shorter than the round-trip time and the stationary 
pulse energy can  therefore be computed from  

gs =
1 
Ws 

= l. (5.39) 
1 +

PLTR 

http:Eq.(5.31
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1-M 

MM 

f fn0-1 f n0 f n0+1 

Figure 5.6: Modelocking in the frequency domain: The modulator transvers 
energy from each mode to its neighboring mode, thereby redistributing en-
ergy from the center to the wings of the spectrum. This process seeds and 
injection locks neighboring modes. 

The name modelocking originates from studying this pulse formation process 
in the frequency domain. Note, the term 

−M [1 − cos(ωM t)] A 

does generate sidebands on each cavity mode present according to 

−M [1 − cos(ωM t)] exp(jωn0 t)∙ ¸ 

= −M exp(jωn0 t) − 
1 
exp(j(ωn0 t − ωM t)) − 

1 
exp(j(ωn0 t + ωM t)) ∙ 

2 2 ¸ 

= M − exp(jωn0 t) +  
1 
exp(jωn0−1t) +  

1 
exp(jωn0+1t)2 2 

if the modulation frequency is the same as the cavity round-trip frequency. 
The sidebands generated from each running mode is injected into the neigh-
boring modes which leads to synchronisation and locking of neighboring 
modes, i.e. mode-locking, see Fig.5.6 

5.3 Active Mode-Locking by Phase Modula-
tion 

Side bands can also be generated by a phase modulator instead of an am-
plitude modulator. However, the generated sidebands are out of phase with 



        

               
             

              
  

  
  

            
  

             
           

    
           

 
     

         
 

 
    

       
  

 

              
            

                
      

 
   

       

            

  

              
           

            
     

  
  

           
  

             
                

5.4. ACTIVE MODE LOCKING WITH ADDITIONAL SPM 183 

the carrier, which leads to a chirp on the steady state pulse. We can again 
use the master equation to study this type of modelocking. All that changes 
is that the modulation becomes imaginary, i.e. we have to replace M by jM 
in Eq.(5.22) ∙ ¸

∂2 

TR 
∂A 

= g(T ) +  Dg − l − jM (1 − cos(ωMt)) A. (5.40) 
∂T ∂t2 

The imaginary unit can be pulled through much of the calculation and we 
arrive at the same Hermite Gaussian eigen solutions (5.26,5.27), however, the 
parameter τa becomes τ 0 a and is now complex and not quite the pulse width qp

τa 
0 = 4 −j 4 Dg/Ms. (5.41) 

The ground mode or stationary solution is given by s 
Ws t2 

√1− (1+j)
2τ2 2A0(t) =  √ e a , (5.42) 

2n πn!τ 0 a p
with τa = 4 Dg/Ms as before. We end up with chirped pulses. How does 
the pulse shortening actually work, because the modulator just puts a chirp 
on the pulse, it does actually not shorten it? One can easily show, that if a 
Gaussian pulse with chirp parameter β 

2 − t √1 (1+jβ)
2τ2 2A0(t) ∼ e a , (5.43) 

has a chirp β >  1, subsequent filtering is actually shortening the pulse. 

5.4  ActiveMode Locking with Additional SPM  

Due to the strong focussing of the pulse in the gain medium also additional 
self-phase modulation can become important. Lets consider the case of an 
actively mode-locked laser with additional SPM, see Fig. 5.7. One can write 
down the corresponding master equation ∙ ¸

∂A ∂2 

TR = g(T ) +  Dg − l − Mst
2 − jδ|A|2 A. (5.44) 

∂T ∂t2 

Unfortunately, there is no analytic solution to this equation. But it is not 
difficult to guess what will happen in this case. As long as the SPM is not 

http:5.26,5.27
http:Eq.(5.22
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Figure 5.7: Active mode-locking with SPM 

excessive, the pulses will experience additional self-phase modulation, which 
creates a chirp on the pulse. Thus one can make an ansatz with a chirped 
Gaussian similar to (5.43) for the steady state solution of the master equation 
(5.44) 

2t− (1+jβ)+jΨT/TR 
aA0(t) =  Ae 2τ2 (5.45) 

Note, we allow for an additional phase shift per roundtrip Ψ, because the 
added SPM does not leave the phase invariant after one round-trip. This is 
still a steady state solution for the intensity envelope. Substitution into the 
master equation using the intermediate result 

½ ¾ 
∂2 t2 12 −A0(t) =  (1 + jβ) (1 + jβ) A0(t). (5.46) 
∂t2 τ 4 

a τ 2 
a 

leads to ½ ∙ ¸ 

jΨA0(t) =  g − l + Dg 
t2 

(1 + jβ)2 − 
1 
(1 + jβ) (5.47)

τ 4 
a τ 2 

a¾ 
τ 2 
a−Mst

2 − jδ |A|2 e 
− t

2 

A0(t). 

http:j�)(5.47


        

            
             

   
   

             
   

  
 

               
             

           
               

              
       

  
 

 
    

 

      
 
 

 
 

            
 

       
 
   

 
      

 
 

           

 

    
 

  
     

   

 

      
          

               
            

              
           

5.4. ACTIVE MODE LOCKING WITH ADDITIONAL SPM 185 

To find an approximate solution we expand the Gaussian in the bracket, 
which is a consequency of the SPM to first order in the exponent. ∙ ¸ µ ¶

t2 1 t2 

jΨ = g − l +Dg (1 + jβ)2 − (1 + jβ) − Mst
2 − jδ |A|2 1− . 

τ 4 τ 2 τ 2 
a a a 

(5.48) 
This has to be fulfilled for all times, so we can compare coefficients in front 
of the constant terms and the quadratic terms, which leads to two complex 
conditions. This leads to four equations for the unknown pulsewidth τa, 
chirp β, round-trip phase Ψ and the necessary excess gain g − l. With the 
nonlinear peak phase shift due to SPM, φ0 = δ |A|2 . Real and Imaginary 
parts of the quadratic terms lead to 

0 =  
D

τ 4 
g ¡
1− β2

¢ − Ms, (5.49) 
a 

Dg φ00 = 2β + , (5.50) 
τ 4 
a τ 2 

a 

and the constant terms give the excess gain and the additional round-trip 
phase. 

Dg
g − l = , (5.51) 

τ 2 
a ∙ ¸ 

Ψ = Dg − 
1 
β − φ0. (5.52) 

τ 2 
a 

The first two equations directly give the chirp and pulse width. 

φ0τ
2 
aβ = − (5.53) 

2Dg 

Dg
τ 4 
a = 

φ2 . (5.54) 
+ 0Ms 4Dg 

However,  one has  to  note,  that this simple analysis does not give  any hint  
on the stability of these approximate solution. Indeed computer simulations 
show, that after an additional pulse shorting of about a factor of 2 by SPM 
beyond the pulse width already achieved by pure active mode-locking on its 
own, the SPM drives the pulses unstable [5]. This is one of the reasons, 
why very broadband laser media, like Ti:sapphire, can not simply generate 
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Figure 5.8: Acitve mode-locking with additional soliton formation 

femtosecond pulses via active modelocking. The SPM occuring in the gain 
medium for very short pulses drives the modelocking unstable. Additional 
stabilization measures have to be adopted. For example the addition of 
negative group delay dispersion might lead to stable soliton formation in the 
presence of the active modelocker. 

5.5 Active Mode Locking with Soliton For-
mation 

Experimental results with fiber lasers [8, 9, 11] and solid state lasers [10] 
indicated that soliton shaping in the negative GDD regime leads to pulse 
stabilization and considerable pulse shorting. With sufficient negative dis-
persion and self-phase modulation in the system and picosecond or even 
femtosecond pulses, it is possible that the pulse shaping due to GDD and 
SPM is much stronger than due to modulation and gain filtering, see Fig. 
5.8. The resulting master equation for this case is 

∙ ¸
∂2 

TR = g + (Dg − j |D|) − l − M (1 − cos(ωM t)) − jδ|A|2 A. (5.55) 
∂A 
∂T ∂t2 



        

             
     

 
       

 
  

          
  

           
   

   
  

    
  

 

            
     

  

   
  

              
             
         

 
    

 

           
            
       

  
   

        
    

           

  

            
               

             
      

 
  

             
   

                
       

5.5. ACTIVE MODE LOCKING WITH SOLITON FORMATION 187 

For the case, that soliton formation takes over, the steady state solution a 
soliton plus a continuum contribution ¡ ¢ 

jpt −jθA(T, t) =  a(x)e + ac(T, t) e (5.56) 

with Z T 

a(x) =  A sech(x), and x = 
1
(t + 2D p(T 0)dT 0 − t0) (5.57) 

τ 0 

where ac is the continuum contribution. The phase is determined by Z T µ ¶ 

θ(T ) =  θ0(T ) − 
D 1 − p(T 0)2 dT 0 , (5.58) 
TR 0 τ(T 0)2 

whereby we always assume that the relation between the soliton energy and 
soliton width is maintained (3.9) 

|D| δA(T )2 

= . (5.59) 
τ(T )2 2 

We also allow for a continuous change in the soliton amplitude A or energy 
W = 2A2τ and the soliton variables phase θ0, carrier frequency p and timing 
t0. φ0 is the soliton phase shift per roundtrip 

|D|
φ0 = . (5.60) 

τ 2 

However, we assume that the changes in carrier frequency, timing and 
phase stay small. Introducing (5.56) into (5.55) we obtain according to the 
soliton perturbation theory developed in chapter 3.5 ∙ ¸

∂ac ∂W ∂∆θ ∂∆p ∂∆t 
TR + fw + fθ + fp + ft

∂T ∂T ∂T ∂T ∂T 
= φ0L (ac + ∆pfp) +  R(a + ∆pfp + ac) (5.61) 

−MωM sin(ωMτx)∆ta(x) 

The last term arises because the active modelocker breaks the time invariance 
of the system and leads to a restoring force pushing the soliton back to its 
equilibrium position. L, R are the operators of the linearized NSE and of 
the active mode locking scheme, respectively µ 

∂2 ¶ 

R = g 1 +  
1 − l − M (1 − cos(ωMτx)) , (5.62) 

Ω2 
gτ
2 ∂x2 

The vectors fw, fθ, fp and ft describe the change in the soliton when the soliton 
energy, phase, carrier frequency and timing varies. 
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5.5.1 Stability Condition 

We want to show, that a stable soliton can exist in the presence of the 
modelocker and gain dispersion if the ratio between the negative GDD and 
gain dispersion is sufficiently large. From (5.61) we obtain the equations of 
motion for the soliton parameters and the continuum by carrying out the 
scalar product with the corresponding adjoint functions. Specifically, for the 
soliton energy we get 

∂W 
µ 

g π2 ¶ 

= 2 g − l − − Mω2 τ 2 W (5.63) TR 
∂T 2τ 2 M3Ω 24g 

f (+)+ < |Rac > .w 

We see that gain saturation does not lead to a coupling between the soliton 
and the continuum to first order in the perturbation, because they are or-
thogonal to each other in the sense of the scalar product (3.36). This also 
means that to first order the total field energy is contained in the soliton. 

Thus to zero order the stationary soliton energy W0 = 2A
2
0τ is determined 

by the condition that the saturated gain is equal to the total loss due to the 
linear loss l, gain  filtering and modulator loss 

π2 g 
g − l = Mω2 

M τ
2 + (5.64) 

24 2τ 23Ωg 

with the saturated gain 

g0 
g = . (5.65) 

1 +  W0/EL 

Linearization around this stationary value gives for the soliton perturbations 



        

  
   

    
     

  

 
 

      
     

 
    

 
   

 
  

   
       

   

 

         
   

 
   

      

 
      

    
           

   
 

     

            
              
            

           
      

               
             

       

       

            
             

             
            

              

5.5. ACTIVE MODE LOCKING WITH SOLITON FORMATION 189 

Ã µ ¶
∂∆W g W0 1 

TR = 2 − + 
∂T (1 + W0/EL) EL 3Ω2 

gτ
2 ! 

∆W+ < f (+)+ 
π2 

Mω2 τ2 
w |Rac >M (5.66) 

12 

∂∆θ (+)|RacTR = < fθ > (5.67) 
∂T 
∂∆p 4g 

∆p + < f (+)TR = − 
τ 2 p |Rac > (5.68) 

∂T 3Ω2 
g 

∂∆t π2 

TR = − Mω2 τ 2∆t + 2|D|∆pM∂T 6 
(+)|Rac+ < ft > (5.69) 

and for the continuum we obtain 

∂g(k) (+)|Rac = jΦ0(k
2 + 1)g(k)+ < f >TR k∂T 

(+)|R (a0(x) +  ∆w fw+ < fk + ∆p fp) > 

− < fk 
(+)|MωM sin(ωM τx)a0(x) > .∆t (5.70) 

Thus the action of the active modelocker and gain dispersion has several 
effects. First, the modelocker leads to a restoring force in the timing of the 
soliton (5.69). Second, the gain dispersion and the active modelocker lead to 
coupling between the perturbed soliton and the continuum which results in 
a steady excitation of the continuum. 
However, as we will see later, the pulse width of the soliton, which can be 

stabilized by the modelocker, is not too far from the Gaussian pulse width 
by only active mode locking. Then relation 

ωM τ ¿ 1 ¿ Ωgτ (5.71) 

is fulfilled. The weak gain dispersion and the weak active modelocker only 
couples the soliton to the continuum, but to first order the continuum does 
not couple back to the soliton. Neglecting higher order terms in the matrix 
elements of eq.(5.70) [6] results in a decoupling of the soliton perturbations 
from the continuum in (5.66) to (5.70). For a laser far above threshold, i.e. 

http:eq.(5.70


      

          
           
               

            
           

       
 

  

           
   

  
              

 

   
 

     

          

     

             
             

               
               

             
            

           
            

             
          

            
           

          

       

     

              
   

190 CHAPTER 5. ACTIVE MODE LOCKING 

W0/EL >> 1, gain saturation always stabilizes the amplitude perturbation 
and eqs.(5.67) to (5.69) indicate for phase, frequency and timing fluctuations. 
This is in contrast to the situation in a soliton storage ring where the laser 
amplifier compensating for the loss in the ring is below threshold [14]. 
By inverse Fourier transformation of (5.70) and weak coupling, we obtain 

for the associated function of the continuum ∙ 
∂G g ∂2 

TR = g − l + jΦ0 + (1 − jDn)
∂T Ω2 

g ∂t2 ¸ ½ 
(+)|Ra0(x) >−M (1 − cos(ωM t)) G + F−1 < fk (5.72) ¾ 

− < fk 
(+)|MωM sin(ωM τx)a0(x) > ∆t 

where Dn is the dispersion normalized to the gain dispersion 

Dn = |D|Ω2 
g/g. (5.73) 

Note, that the homogeneous part of the equation of motion for the continuum, 
which governs the decay of the continuum, is the same as the homogeneous 
part of the equation for the noise in a soliton storage ring at the position 
where no soliton or bit is present [14]. Thus the decay of the continuum is 
not affected by the nonlinearity, but there is a continuous excitation of the 
continuum by the soliton when the perturbing elements are passed by the 
soliton. Thus under the above approximations the question of stability of 
the soliton solution is completely governed by the stability of the continuum 
(5.72). As we can see from (5.72) the evolution of the continuum obeys 
the active mode locking  equation  with  GVD  but  with  a  value  for the  gain  
determined by (5.64). In the parabolic approximation of the cosine, we obtain 
again the Hermite Gaussians as the eigensolutions for the evolution operator 
but the width of these eigensolutions is now given by p

τ c = τa 
4 (1 − jDn) (5.74) 

and the associated eigenvalues are 

M τ
2
p 1 

λm = jΦ0 + g − l − Mω2 
a (1 − jDn)(m + ). (5.75) 

2 

http:eqs.(5.67


        

              
  

 

   
 

 

    

 
 

 
 

 

    

 
 

    
 
  

             
            

     
  

      
   

          
              

   

 
         

 

               
            

   

   

          
            

              
            

     

 
    

5.5. ACTIVE MODE LOCKING WITH SOLITON FORMATION 191 

The gain is clamped to the steady state value given by condition (5.64) and 
we obtain " 

λm = +jΦ0 + 
1p

DgMs
3 

³ ´ 2τa 

τ 
+ 

π2 

4 

³ ´ −2τa 

τ 
(5.76) # p

−6 (1 − jDn)(m + 
1 
)
2 

. 

Stability is achieved when all continuum modes see a net loss per roundtrip, 
Re{λm} < 0 for m ≥ 0, i.e. we get from (5.76) 

µ ¶2³ ´ 2 π2 pτa 
+ 

τ
< 3Re{ (1 − jDn)}. (5.77) 

τ 4 τa 

Relation (5.77) establishes a quadratic inequality for the pulse width reduc-
tion ratio ξ = (τa/τ )2 , which is a measure for the pulse width reduction due 
to soliton formation 

p π2 

ξ2 − 3Re{ (1 − jDn)}ξ + < 0. (5.78) 
4 

As has to be expected, this inequality can only be satisfied if we have a 
minimum amount of negative normalized dispersion so that a soliton can be 
formed at all 

Dn,crit = 0.652. (5.79) 

Therefore our perturbation ansatz gives only meaningful results beyond this 
critical amount of negative dispersion. Since ξ compares the width of a 
Gaussian with that of a secant hyperbolic it is more relevant to compare the 
full width half maximum of the intensity profiles [?] of the corresponding 
pulses which is given by p1.66 

R = ξ. (5.80) 
1.76 
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Image removed due to copyright restrictions. 

Please see: 
Kaertner, F., D. Kopf, and U. Keller. "Solitary-pulse stabilization and shortening in actively mode-locked lasers." 
Journal of the Optical Society of America B 12, no. 3 (March 1995): 486. 

Figure 5.9: Pulsewidth reduction as a function of normalized dispersion. 
Below Dn,crit = 0.652 no stable soliton can be formed. 

Figure 5.9 shows the maximum pulse width reduction R allowed by the 
stability criterion (5.78) as a function of the normalized dispersion. The crit-
ical  value for  the pulse width  reduction  is  Rcrit ≈ 1.2. For large normalized 
dispersion Fig. 1 shows that the soliton can be kept stable at a pulse width 
reduced by up to a factor of 5 when the normalized dispersion can reach a 
value of 200. Even at a moderate negative dispersion of Dn = 5, we  can  
achieve a pulsewidth reduction by a factor of 2. For large normalized disper-
sion the stability criterion (5.78) approaches asymptotically the behavior r r 

9D 1.66 9Dn 4 n
ξ <  or R <  . (5.81) 

2 1.76 2 

Thus, the possible pulse-width reduction scales with the fourth root of the 
normalized dispersion indicating the need of an excessive amount of disper-
sion necessary to maintain a stable soliton while suppressing the continuum. 
The physical reason for this is that gain filtering and the active modelocker 
continuously shed energy from the soliton into the continuum. For the soli-
ton the action of GVD and SPM is always in balance and maintains the 
pulse shape. However, as can be seen from (5.72), the continuum, which can 
be viewed as a weak background pulse, does not experience SPM once it is 
generated and therefore gets spread by GVD. This is also the reason why 
the eigenstates of the continuum consist of long chirped pulses that scale 



        

             
              

            
              

      
           
          

            
               

            
              

            
             

            
            

            
              

   
     

 

              
     

 
  

 

   
   

      
 

 

      
  

           
 

  

     
   

            
            

5.5. ACTIVE MODE LOCKING WITH SOLITON FORMATION 193 

also with the fourth root of the dispersion (5.74). Then, the long continuum 
pulses suffer a much higher loss in the active modulator in contrast to the 
short soliton which suffers reduced gain when passing the gain medium due 
to its broader spectrum. The soliton is stable as long as the continuum sees 
less roundtrip gain than the soliton. 
In principle by introducing a large amount of negative dispersion the 

theory would predict arbitrarily short pulses. However, the master equation 
(5.55) only describes the laser system properly when the nonlinear changes of 
the pulse per pass are small. This gives an upper limit to the nonlinear phase 
shift Φ0 that the soliton can undergo during one roundtrip. A conservative 
estimation of this upper limit is given with Φ0 = 0.1. Then the action of 
the individual operators in (5.55) can still be considered as continuous. Even 
if one considers larger values for the maximum phase shift allowed, since in 
fiber lasers the action of GVD and SPM occurs simultaneously and therefore 
eq.(5.55) may describe the laser properly even for large nonlinear phase shifts 
per roundtrip, one will run into intrinsic soliton and sideband instabilities for 
Φ0 approaching 2π [30, 31]. Under the condition of a limited phase shift per 
roundtrip we obtain 

|D|
τ 2 = . (5.82) 

Φ0 

Thus from (5.32), the definition of ξ, (5.81) and (5.82) we obtain for the 
maximum possible reduction in pulsewidth s 

1.66 (9Φ0/2)2 

Rmax = 12 (5.83) 
1.76 Dg Ms 

and therefore for the minimum pulsewidth s 
2D2 

τmin = 6 g 
. (5.84) 

9Φ0 Ms 

The necessary amount of normalized negative GVD is then given by s 
2 

3 (9Φ0/2)
2 

Dn = . (5.85) 
9 Dg Ms 

Eqs.(5.83) to (5.85) constitute the main results of this paper, because they 
allow us to compute the possible pulse width reduction and the necessary 

http:Eqs.(5.83
http:eq.(5.55
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Image removed due to copyright restrictions. 

Please see: 
Kaertner, F., D. Kopf, and U. Keller. "Solitary-pulse stabilization and shortening in actively mode-locked lasers." 
Journal of the Optical Society of America B 12, no. 3 (March 1995): 486. 

Table 5.1: Maximum pulsewidth reduction and necessary normalized GVD 
for different laser systems. In all cases we used for the saturated gain g = 0.1 
and the soliton phase shift per roundtrip Φ0 = 0.1. For the broadband gain 
materials the last column indicates rather long transient times which calls 
for regenerative mode locking. 
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negative GVD for a given laser system. Table (5.1) shows the evaluation of 
these formulas for several gain media and typical laser parameters. 
Table 5.1 shows that soliton formation in actively mode-locked lasers may 

lead to considerable pulse shortening, up to a factor of 10 in Ti:sapphire. Due 
to the 12th root in (5.83) the shortening depends mostly on the bandwidth 
of the gain material which can change by several orders of magnitude for the 
different laser materials. The amount of negative dispersion for achieving this 
additional pulse shortening is in a range which can be achieved by gratings, 
Gires-Tournois interferometers, or prisms. 
Of course, in the experiment one has to stay away from these limits 

to suppress the continuum sufficiently. However, as numerical simulations 
show, the transition from stable to instable behaviour is remarkably sharp. 
The reason for this can be understood from the structure of the eigenvalues 
for the continuum (5.76). The time scale for the decay of transients is given 
by the inverse of the real part of the fundamental continuum mode which 
diverges at the transition to instability. Nevertheless, a good estimate for 
this transient time is given by the leading term of the real part of (5.76) 

τ trans 1 3 
= ≈ p (5.86) 

TR Re{λ0} DgMsR2 

This transient time is also shown in Table (5.1) for different laser systems. 
Thus these transients decay, if not too close to the instability border, on time 
scales from approximately 1,000 up to some 100,000 roundtrips, depending 
strongly on the gain bandwidth and modulation strength. Consequently, to 
first order the eigenvalues of the continuum modes, which are excited by the 
right hand side of (5.72), are purely imaginary and independent of the mode 
number, i.e. λn ≈ jΦ0. Therefore, as long as the continuum is stable, the 
solution to (5.72) is given by ½−j (+)

G(x) =  F−1 < fk |Ra0(x) > 
Φ0 ¾ 

(+)|xa0(− Msτ
2 < fk x) > 

∆t
. (5.87) 

τ 

Thus, in steady state the continuum is on the order of 

A0 Dg A0|G(x)| ≈ 
τ 2 
= . (5.88) 

Φ0 Dn 
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which demonstrates again the spreading of the continuum by the dispersion. 
Equation (5.88) shows that the nonlinear phase shift of the solitary pulse 
per round trip has to be chosen as large as possible. This also maximizes 
the normalized dispersion, so that the radiation shed from the soliton into 
the continuum changes the phase rapidly enough such that the continuum 
in steady state stays small. Note that the size of the generated continuum 
according to (5.88) is rather independent of the real part of the lowest eigen-
value of the continuum mode. Therefore, the border to instability is very 
sharply defined. However, the time scale of the transients at the transition 
to instability can become arbitrarily long. Therefore, numerical simulations 
are only trustworthy if the time scales for transients in the system are known 
from theoretical considerations as those derived above in (5.86). The simu-
lation time for a given laser should be at least of the order of 10 times τ trans 

or even longer, if operated close to the instability point, as we will see in the 
next section. 

5.5.2 Numerical simulations 

Table 5.1 shows that soliton formation in actively mode-locked lasers may 
lead to considerable pulse shortening, up to a factor of 10 in Ti:sapphire. We 
want to illustrate that at the example of a Nd:YAG laser, which is chosen 
due to its moderate gain bandwidth, and therefore, its large gain dispersion. 
This will limit the pulsewidth reduction possible to about 3, but the decay 
time of the continuum (5.86) (see also Table 5.1) is then in a range of 700 
roundtrips so that the steady state of the mode-locked laser can be reached 
with moderate computer time, while the approximations involved are still 
satisfied. The system parameters used for the simulation are shown in table 
5.2. For the simulation of eq.(5.55) we use the standard split-step Fourier 
transform method. Here the discrete action of SPM and GDD per roundtrip 
is included by choosing the integration step size for the T integration to be 
the roundtrip time TR. We used a discretisation of 1024 points over the 
bandwidth of 1THz, which corresponds to a resolution in the time domain 
of 1ps. The following figures, show only one tenth of the simulated window 
in time and frequency. 
Figure 5.10 shows the result of the simulation starting with a 68-ps-long 

Gaussian pulse with a pulse energy of W = 40 nJ for  Dn = 24, i.e. D = -17  
ps2. For  the  given  SPM  coefficient this should lead to stable pulse shortening 
by a factor of R = 2.8. Thus after at least a few thousand roundtrips the 

http:eq.(5.55
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parameter value 
l 
g0 

PL 

Ωg 

ωM 

TR 

M 
δ 
D 

0.1 
1 
1W 

2π · 60GHz 
2π · 0.25GHz 

4ns 
0.2 

1.4 · 10−4W −1 

2−17ps2 / − 10ps 

Table 5.2: Parameters used for numerical simulations 

Image removed due to copyright restrictions. 

Please see: 
Kaertner, F., D. Kopf, and U. Keller. "Solitary-pulse stabilization and shortening in actively mode-locked lasers." 
Journal of the Optical Society of America B 12, no. 3 (March 1995): 486. 

Figure 5.10: Time evolution of the pulse intensity in a Nd:YAG laser for the 
parameters in Table 5.2, D = −17ps2, for  the  first 1,000 roundtrips in the 
laser cavity, starting with a 68ps long Gaussian pulse. 
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laser should be in steady state again with a FWHM pulsewidth of 24 ps. 
Fig. 5.10 shows the pulse evolution over the first thousand round-trips, i.e. 
4µs real time. The long Gaussian pulse at the start contains an appreciable 
amount of continuum. The continuum part of the solution does not experi-
ence the nonlinear phase shift due to SPM in contrast to the soliton. Thus 
the soliton interferes with the continuum periodically with the soliton period 
of Tsoliton/TR = 2π/φ0 = 20π. This is the reason for the oscillations of the 
pulse amplitude seen in Fig. 5.10 which vanish with the decay of the con-
tinuum. Note also that the solitary pulse is rapidly formed, due to the large 
nonlinear phase shift per roundtrip. Figure 5.11 shows the simulation in time 
and frequency domain over 10,000 roundtrips. The laser reaches steady state 
after about 4,000 roundtrips which corresponds to 6 × τ trans and the final 
pulsewidth is 24 ps in exact agreement with the predictions of the analytic 
formulas derived above. 
Lower normalized dispersion of Dn = 15  or  D = -10  ps2 only allows for 

a reduction in pulsewidth by R = 2.68. However, using the same amount of 
SPM as before we leave the range of stable soliton generation. 
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Image removed due to copyright restrictions. 

Please see: 
Kaertner, F., D. Kopf, and U. Keller. "Solitary-pulse stabilization and shortening in actively mode-locked lasers." 
Journal of the Optical Society of America B 12, no. 3 (March 1995): 486. 

Figure 5.11: Time evolution of the intensity (a) and spectrum (b) for the 
same parameters as Fig. 2 over 10,000 roundtrips. The laser reaches steady 
state after about 4,000 rountrips. 
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Image removed due to copyright restrictions. 

Please see: 
Kaertner, F., D. Kopf, and U. Keller. "Solitary-pulse stabilization and shortening in actively mode-locked lasers." 
Journal of the Optical Society of America B 12, no. 3 (March 1995): 486. 

Figure 5.12: (a) Time evolution of the intensity in a Nd:YAG laser for the 
parameters in Table 5.2 over the first 1,000 round-trips. The amount of 
negative dispersion is reduced to D = −10ps2 , starting again from a 68ps 
long pulse. The continuum in this case does not decay as in Fig. 5.2 and 5.3 
due to the insufficient dispersion. (b) Same simulation over 50,000 round-
trips. 
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Figure 5.12(a) shows similar to Fig. 5.10 the first 1, 000 roundtrips in 
that case. Again the solitary pulse is rapidly formed out of the long Gaussian 
initial pulse. But in contrast to the situation in Fig. 5.10, the continuum does 
not any longer decay on this time scale. The dispersion is too low to spread 
the continuum rapidly enough. The continuum then accumulates over many 
roundtrips as can be seen from Fig. 5.12(b). After about 10,000 roundtrips 
the continuum has grown so much that it extracts an appreciable amount of 
energy from the soliton. But surprisingly the continuum modes stop growing 
after about 30,000 roundtrips and a new quasi stationary state is reached. 

5.5.3 Experimental Verification 

The theory above explains very well the ps Ti:saphire experiments [10] in 
the regime where the pulses are stabilized by the active modelocker alone. 
Gires-Tournois interferometers were used to obtain large amounts of negative 
GDD to operate the laser in the stable soliton regime derived above. Here 
we want to discuss in more detail the experimental results obtained recently 
with a regeneratively, actively mode-locked Nd:glass laser [7], resulting in 310 
fs. If SPM and GVD could be neglected, the weak modelocker would produce 
Gaussian pulses with a FWHM of τa,F W HM = 10 ps. However, the strong 
SPM prevents stable pulse formation. The negative dispersion available in 
the experiment is too low to achieve stable soliton formation, because the 
pulse width of the soliton at this power level is given by τ = 4|D|/(δW ) = 
464 fs, for the example discussed. The normalized dispersion is not large 
enough to allow for such a large pulse width reduction. Providing enough 
negative dispersion results in a 310 fs perfectly sech-shaped soliton-like pulse 
as shown in Fig. 5.13. A numerical simulation of this case would need millions 
of roundtrips through the cavity until a stationary state is reached. That 
means milliseconds of real time, but would necessitate days of computer 
time. Also the transition to instable behaviour has been observed, which is 
the characteristic occurence of a short solitary fs-pulse together with a long 
ps-pulse due to the instable continuum as we have found in the numerical 
simulation for the case of a Nd:YAG laser (see Fig. 5.12(b)). Figure 5.14 
shows the signal of a fast detector diode on the sampling oscilloscope. The 
detector has an overall bandwidth of 25GHz and therefore can not resolve 
the fs-pulse, but can resolve the width of the following roughly 100ps long 
pulse. 
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Image removed due to copyright restrictions. 

Please see: 
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Journal of the Optical Society of America B 12, no. 3 (March 1995): 486. 

Figure 5.13: Autocorrelation of the actively mode-locked pulse (solid line) 
and corresponding sech2 fit (dashed line) with additional soliton formation. 

Image removed due to copyright restrictions. 

Please see: 
Kaertner, F., D. Kopf, and U. Keller. "Solitary-pulse stabilization and shortening in actively mode-locked lasers." 
Journal of the Optical Society of America B 12, no. 3 (March 1995): 486. 

Figure 5.14: Sampling signal of fast detector when the mode-locked laser 
operates at the transition to instability. The short fs pulse can not be resolved 
by the detector and therefore results in a sharp spike corresponding to the 
detector response time. In advance of the fs-pulse travels a roughly 100ps 
long pulse. 
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5.6 Summary 

The main result of this section is, that pure active mode-locking with an 
amplitude modulator leads to Gaussian pulses. The width is inverse propor-
tional to the square root of the gain bandwdith. A phase modulator leads 
to chirped Gaussian pulses. A soliton much shorter than the Gaussian pulse 
due to pure active mode locking can be stabilized by an active modelocker. 
This finding also has an important consequence for passive mode locking. It 
implies that a slow saturable absorber, i.e. an absorber with a recovery time 
much longer than the width of the soliton, is enough to stabilize the pulse, 
i.e. to modelock the laser. 
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5.7 Active Modelocking with Detuning 

So far, we only considered the case of perfect synchronism between the round-
trip of the pulse in the cavity and the external modulator. Technically, 
such perfect synchronism is not easy to achieve. One way would be to do 
regenerative mode locking, i.e. a part of the output signal of the modelocked 
laser is detected, the beatnote at the round-trip frequency is filtered out from 
the detector, and sent to an amplifier, which drives the modulator. This 
procedure enforces synchronism if the cavity length undergoes fluctuations 
due to  acoustic vibrations and  thermal expansion.  
Nevertheless, it is interesting to know how sensitive the system is against 

detuning between the modulator and the resonator. It turns out that this 
is a physically and mathematically rich situation, which applies to many 
other phenomena occuring in externally driven systems, such as the transi-
tion from laminar to turbulent flow in hydrodynamics. This transition has 
puzzled physicists for more than a hundred years [1]. During the last 5 to 
10 years, a scenario for the transition to turbulence has been put forward 
by Trefethen and others [2]. This model gives not only a quantitative de-
scription of the kind of instability that leads to a transition from laminar, 
i.e. highly ordered dynamics, to turbulent flow, i.e.  chaotic  motion, but  also  
an intuitive physical picture why turbulence is occuring. Such a picture is 
the basis for many laser instabilities especially in synchronized laser systems. 
According to this theory,  turbulence  is  due to strong transient  growth  of  
deviations from a stable stationary point of the system together with a non-
linear feedback mechanism. The nonlinear feedback mechanism couples part 
of the amplified perturbation back into the initial perturbation. Therefore, 
the perturbation experiences strong growth repeatedly. Once the transient 
growth is large enough, a slight perturbation from the stable stationary point 
renders the system into turbulence. Small perturbations are always present 
in real systems in the form of system intrinsic noise or environmental noise 
and, in computer simulations, due to the finite precision. The predictions 
of the linearized stability analysis become meaningless in such cases. The 
detuned actively modelocked laser is an excellent example of such a system, 
which in addition can be studied analytically. The detuned case has been 
only studied experimentally [3][4] or numerically [5] so far. Here, we con-
sider an analytical approach. Note, that this type of instability can not be 
detected by a linear stability analysis which is widely used in laser theories 
and which  we  use in this  course very often to prove stable pulse formation. 
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One has to be aware that such situations may arise, where the results of a 
linearized stability analysis have only very limited validity. 
The equation of motion for the pulse envelope in an actively modelocked 

laser with detuning can be writen as ∙ 
∂A(T, t) ∂2 

TM = g(T ) − l + Df (5.89) 
∂T ∂t2 ¸ 

−M (1 − cos(ωM t)) + Td 
∂

A(T, t). 
∂t 

Here, A(T, t) is the pulse envelope as before. There is the time T which is 
coarse grained on the time scale of the resonator round-trip time TR and 
the time t, which resolves the resulting pulse shape. The saturated gain is 
denoted by g(T ) and left dynamical, because we no longer assume that the 
gain and field dynamics reaches a steady state eventually. The curvature of 
the intracavity losses in the frequency domain, which limit the bandwidth of 
the laser, is given by Df .and left fixed for simplicity. M is the depth of the 
loss modulation introduced by the modulator with angular frequency ωM = 
2π/TM , where TM is the modulator period. Note that Eq.(5.89) describes the 
change in the pulse between one period of modulation. The detuning between 
resonator round-trip time and the modulator period is Td = TM − TR.This 
detuning means that the pulse hits the modulator with some temporal off-set 
after one round-trip, which can be described by adding the term Td 

∂
∂t
A in the 

master equation.The saturated gain g obeys a separate ordinary differential 
equation 

∂g(T ) g(T ) − g0 W (T ) 
= − − g . (5.90) 

∂T τL PL 

As before, g0 is the small signal gain due to the pumping, PL the saturationR 
power of the gain medium, τL the gain relaxation time and W (T ) =  
|A(T, t)|2 dt the total field energy stored in the  cavity  at  time  T . 
As before, we expect pulses with a pulse width much shorter than the 

round-trip time in the cavity and we assume that they still will be placed 
in time near the position where the modulator introduces low loss (Figure 
5.15), so that we can still approximate the cosine by a parabola ∙ ¸

∂2 
2TM 

∂A 
= g − l + Df − Mst + Td 

∂ 
A. (5.91) 

∂T ∂t2 ∂t 

http:Eq.(5.89
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Stationary Pulse 

Net Gain Window 
g =l 

Saturation 
Gain 

Growing 
Perturbation 

Modulator losses 

t 

A B 

A B 

Figure 5.15: Drifting pulse dynamics in a detuned actively modelocked laser 
for the situation, where the modulator period is larger than the cavity round-
trip time. The displacement A is caused by the mismatch between the cavity 
round-trip time and the modulator period. The displacement B is due to 
unequal losses experienced by the front and the back of the pulse in the 
modulator. The gain saturates to a level where a possible stationary pulse 
experiences no net gain or loss, which opens up a net gain window following 
the pulse. Perturbations within that window get amplified while drifting 
towards the stationary pulse. 

Figure by MIT OCW. 

Here, Ms =Mω2 /2 is the curvature of the loss modulation at the point M 

of  minimum  loss as before.  The time t is  now  allowed to range  from  −∞ to 
+∞, since the modulator losses make sure that only during the physically 
allowed range −TR/2¿ t ¿ TR/2 radiation can build up. 
In the case of vanishing detuning, i.e. Td = 0, the  differential operator 

on the right side of (5.91), which generates the dynamics and is usually 
called a evolution operator L,ˆ correspondes to the Schrödinger operator of 
the harmonic oscillator. Therefore, it is useful to introduce the creation and 
annihilation operators µ ¶ µ ¶

1 ∂ t 1 ∂ tτa † τa 
â = √ + , â = √ − + , (5.92) 

2 ∂t τa 2 ∂t τa 
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4with τa = Df/Ms. The evolution operator L̂ is then given by µ ¶p

L̂ = g − l − 2 DfMs â† â+ 
1 

(5.93) 
2 

and the evolution equation (5.91) can be written as 

∂A ˆTM = LA. (5.94) 
∂T 

Consequently, the eigensolutions of this evolution operator are the Hermite-
Gaussians, which we used already before 

λnT/TMAn(T, t) =  un(t)e (5.95) s 
Wn − 

2 

aun(t) =  √ Hn(t/τa)e 2 
t

τ2 (5.96) 
2n πn!τa 

and τa is the pulsewidth of the Gaussian.(see Figure 5.16a) 
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Figure 5.16: Lower order eigenmodes of the linearized system for zero detun-
ing, ∆ = 0, (a) and for a detuning, ∆ = 0.32, in (b). 

Figure by MIT OCW. 

The eigenmodes are orthogonal to each other because the evolution op-
erator is hermitian in this case. 
The round-trip gain of the eigenmode un(t) is given by its eigenvalue (or 

in general by the real part of the eigenvalue) which is given by λn = gn −³ p ´ −1 R 
l − 2 DfMs(n +0.5) where gn = g0 1 + P

W 
LT 
n

R 
, with Wn = |un(t)|2 dt. 
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The eigenvalues prove that, for a given pulse energy, the mode with n = 0, 
which we call the ground mode, experiences the largest gain. Consequently, 
the ground mode will saturate the gain  to a value such  that  λ0 = 0 in steady 
state and all other modes experience net loss, λn < 0 for n >  0, as discussed 
before. This is a stable situation as can be shown rigorously by a linearized 
stability analysis [6]. Thus active modelocking with perfect synchronization 
produces Gaussian pulses with a 1/e—half width of the intensity profile given 
by τa. 
In the case of non zero detuning Td, the situation becomes more complex. 

The evolution operator, (5.93), changes to ∙ ¸p ¡ ¢ 1 
L̂ 
D = g − l − 2 Df Ms â† − ∆ (â +∆) + (  +∆2) (5.97)

2 

with the normalized detuning 

1 Td
∆ = p . (5.98) 

2 2Df Ms τa 

Introducing the shifted creation and annihilation operators, b̂† = â† +∆ and 
b̂ = â +∆, respectively, we obtain ³ ´ p

L̂ 
D = ∆g − 2 Df Ms b̂†b̂ − 2∆b̂ (5.99) 

with the excess gain p 1 
∆g = g − l − 2 Df Ms( +∆2) (5.100) 

2 

due to the detuning. Note, that the resulting evolution operator is not any £ ¤ 
longer hermitian and even not normal, i.e. A, A† 6= 0, which causes the 
eigenmodes to become nonnormal [8]. Nevertheless, it is an easy excercise to 
compute the eigenvectors and eigenvalues of the new evolution operator in 
terms of the eigenstates of b̂†b̂, |li , which are the Hermite Gaussians centered 
around ∆. The eigenvectors |ϕ i to L̂ 

D are found by the ansatz n Xn 
n − ln n n|ϕ i = c |li , with c = √ cl . (5.101) n l l+1 

2∆ l + 1  
l=0 p

The new eigenvalues are λn = gn − l − 2 Df Ms(∆
2 + n + 0.5). By inspec-

tion, it is again easy to see, that the new eigenstates form a complete basis in 

http:�2)(5.97
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L2(IR). However, the eigenvectors are no longer orthogonal to each other. The 
eigensolutions as a function of time are given as a product of a Hermite Poly-h √ i 

p − (t− 2∆τa)2 

nomial and a shifted Gaussian un(t) = ht |ϕ i ∼ Hn(t/τa) ex  .n 2τ2 
a 

Again, a linearized stability analysis shows that the ground mode, i.e.|ϕ0i , 
a Gaussian, is a stable stationary solution. Surprisingly, the linearized anal-
ysis predicts stability of the ground mode for all values of the detuning in 
the parabolic modulation and gain approximation. This result is even inde-
pendent from the dynamics of the gain, i.e. the upper state lifetime of the 
active medium, as long as there is enough gain to support the pulse. Only √ 
the position of the maximum of the ground mode, 2∆ · τa, depends on the 
normalized detuning. 
Figure 5.15 summarizes the results obtained so far. In the case of de-

tuning, the center of the stationary Gaussian pulse is shifted away from the 
position of minimum loss of the modulator. Since the net gain and loss within 
one round-trip in the laser cavity has to be zero for a stationary pulse, there 
is a long net gain window following the pulse in the case of detuning due 
to the necessary excess gain. Figure 2 shows a few of the resulting lowest 
order eigenfunctions for the case of a normalized detuning ∆ = 0 in (a) and 
∆ = 0.32 in (b). These eigenfunctions are not orthogonal as a result of the 
nonnormal evolution operator 

5.7.1 Dynamics of the Detuned Actively Mode-locked 
Laser 

To get insight into the dynamics of the system, we look at computer simu-
lations for a Nd:YLF Laser with the parameters shown in Table 5.3 Figures 

EL = 366 µJ g0 = 0.79 
τL = 450 µs Ms = 2.467 · 1017s−2 

−26 2Ωg = 1.12 THz  Dg = 2 · 10 s 
TR = 4 ns τ a = 17 ps 
l = 0.025 λ0 = 1.047 µm 
M = 0.2 

Table 5.3: Data used in the simulations of a Nd:YLF laser. 

5.17 show the temporal evolution of the coefficient cn,when the master equa-
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tion is decomposed into Hermite Gaussians centered at t=0 according to 
Eq.(5.96). 

∞X 
A(T, t) =  cn(T ) un(t) 

n=0 

1 

0.5 

0 

-0.5 

0 1 2 3 4 5 6 
resonator roundtrips / 10000 

Figure 5.17: Coefficients of the envelope in a Hermite-Gaussian-Basis, as 
a function of resonator round-trips. The normalized detuning is ∆ = 3.5.  
The simulation starts from the steady state without detuning. The curve 
starting at 1 is the ground mode. To describe a shifted pulse, many modes 
are necessary. 

Figure 5.18 and 5.19 shows the deviation from the steady state gain and 
the pulse envelope in the time domain for a normalized detuning of ∆ = 3.5. 
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Figure 5.18: Gain as a function of the number of roundtrips. It changes to a 
higher level. 

https://Eq.(5.96
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Figure 5.19: Temporal evolution of the pusle envelope. The pulse shifts √ 
slowly into the new equilibrium position at 2 ∆ = 4.9 in agreement with 
the simulation. 

Figures 5.20 to 5.22 show  the  same  quantities  for a slightly  higher  nor-
malized detuning of ∆ = 4. 

-0.5 

0 

0.5 

1 

0 5 10 15 20 
resonator roundtrips / 10000 

Figure 5.20: Temporal evolution of the coefficients in a Hermite-Gaussian 
Basis at a normalized detuning of ∆ = 4. Almost peridoically short in-
terrupting events of the otherwise regular motion can be easily recognized 
(Intermittent Behavior). Over an extended period time between such events 
the laser approaches almost a steady state. 
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Figure 5.22: Time evolution of pulse envelope. 
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Figure 5.21: Temporal evolution of deviation from quasi steady state gain. 

The pictures clearly show that the system does not approach a steady 
state anymore, but rather stays turbulent, i.e. the dynamics is chaotic. 

5.7.2 Nonnormal Systems and Transient Gain 

To get insight into the dynamics of a nonnormal time evolution, we consider 
the following two-dimensional nonnormal system 

du 
= Au, u(0) = u0, u(t) =  e At u0 (5.102) 

dt 
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Figure 5.23: Decomposition of an initial perturbation in the eigen basis. 

with µ 
a 
¶ µ ¶ µ ¶−1 

† −1 0 £ † ¤ a a 1
2 2 2A = ⇒ A = a , A,A = = 06 . 
0 −1 

2 −1 4 1 a 
(5.103) 

The parameter a scales the strength of the nonnormality, similar to the 
detuning ∆ in the case of a modelocked laser or the Reynolds number in 
hydrodynamics, where the linearized Navier-Stokes Equations constitute a 
nonnormal system. 
The eigenvalues and vectors of the linear system are µ ¶ µ ¶

1 1 1 a 
λ1 = − , v1 = , λ2 = −1, v2 = √ (5.104) 

0 2 −12 1 + a 

The eigenvectors build a complete system and every initial vector can be 
decomposed in this basis. However, for large a, the two eigenvectors become 
more and more parallel, so that a decomposition of a small initial vector 
almost orthogonal to the basis vectors needs large components (Figure 5.23) 
The solution is 

At −t/2 →− −t →− u(t) = e u0 = c1e v 1 + c2 e v 2. 

Since the eigenvalues are negative, both contributions decay, and the 
system is stable. However, one eigen component decays twice as fast than 
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the other one. Of importance to us is the transient gain that the system is 
showing due to the fact of near parallel eigen vectors. Both coefficients c1 

and c2 are large. When one of the components decays, the other one is still 
there and the resulting vector 

→−1 − u(t → 2) ≈ c1e v 1. 

can be much larger then the initial perturbation during this transient phase. 
This is transient gain. It can become arbitrarily large for large a. 

5.7.3 The Nonormal Behavior of the Detuned Laser h 
L̂D, 

i 
L̂ 
D 
† ∼ ∆, increases with detuning. The nonnormality of the operator, 

p 

Figure 5.24 shows the normalized scalar products between the eigenmodes 
for different values of the detuning 

hϕ 

¯̄̄̄
¯ 

¯̄̄̄
¯ hϕ |ϕ im n (5.105) C(m, n) =  . |ϕ i hϕ |ϕ im m n n 

°°° 
°°° 

The eigenmodes are orthogonal for zero detuning. The orthogonality vanishes 
with increased detuning. The recursion relation (5.101) tells us that the 
overlap of the new eigenmodes with the ground mode increases for increasing 

This corresponds to the parallelization of the eigenmodes of the 
e 

detuning. 
L̂D tlinearzed problem which leads to large transient gain, , in a nonnormal 

situation [2]. Figure 5.24d shows the transient gain for an initial perturbation 
from the stationary ground mode calculated by numerical simulations of the 
linearized system using an expansion of the linearized system in terms of Fock 
states to the operator b̂. A normalized detuning of ∆ = 3  already leads to 
transient gains for perturbations of the order of 106 within 20, 000 round-trips 
which lead to an enormous sensitivity of the system against perturbations. 
An analytical solution of the linearized system neglecting the gain saturation 
shows that the transient gain scales with the detuning according to exp(2∆2). 
This strong super exponential growth with increasing detuning determines 
the dynamics completely.  
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Image removed due to copyright restrictions. 

Please see: 

Kaertner, F. X., et al. "Turbulence in Mode-locked Lasers". Physical Review Letters 82, no. 22 
(May 1999): 4428-4431. 

Figure 5.24: Scalar products of eigenvectors as a function of the eigenvector 
index for the cases ∆ = 0 shown in (a),  ∆ = 1 in (b) and ∆ = 3 in (c). (d) 
shows the transient gain as a funtion of time for these detunings computed 
and for ∆ = 2, from the linearized system dynamics. 

Image removed due to copyright restrictions. 

Please see: 
Kaertner, F. X., et al. "Turbulence in Mode-locked Lasers". Physical Review Letters 82, no. 22 
(May 1999): 4428-4431. 

Figure 5.25: Critical detuning obtained from numerical simulations as a func-
tion of the normalized pumping rate and cavity decay time divided by the 
upper-state lifetime. The crititcal detuning is almost independent of all laser 
parameters shown. The mean critical detuning is ∆ ≈ 3.65. 
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Figure 5.25 shows the surface of the transition to turbulence in the pa-
rameter space of a Nd:YLF laser, i.e. critical detuning ∆, the pumping rate 
r = g0/l and the ratio between the cavity decay time Tcav = TR/l and the 
upper state lifetime τL. In this model, we did not inlcude the spontaneous 
emission. 
The transition to turbulence always occurs at a normalized detuning of 

about ∆ ≈ 3.7 which gives a transient gain exp(2∆2) = 1012 . This means that 
already uncertainties of the numerical integration algorithm are amplified to 
a perturbation as large as the stationary state itself.To prove that the system 
dynamics becomes really chaotic, one has to compute the Liapunov coefficient 
[9]. The Liapunov coefficient describes how fast the phase space trajectores 
separate from each other, if they start in close proximity. It is formally 
defined in the  following way.  Two  trajectories  y(t) and z(t) start in close 
vicinity at t = t0 

ky(t0)− z(t0)k = ε = 10−4 . (5.106) 

Then, the system is run for a certain time ∆t and the logarithmic growth 
rate, i.e. Liapunov coefficient, of the distance between both trajectories is 
evaluated using µ ¶ky(t0 +∆t)− z(t0 +∆t)k 

λ0 = ln  (5.107) 
ε 

For the next iteration the trajectory z(t) is rescaled along the distance be-
tween y(t0 +∆t) and z(t0 +∆t) according to 

y(t0 +∆t)− z(t0 +∆t) 
z(t1) = y(t0 +∆t) + ε . (5.108) ky(t0 +∆t)− z(t0 +∆t)k 

The new points of the trajectories z(t1 +∆t) and y(t1 +∆t) = y(t0 +2∆t) are 
calculated and a new estimate for the Liapunov coefficient λ1 is calculated 
using Eq.(5.107) with new indices. This procedure is continued and the 
Liapunov coefficient is defined as the  average of all  the approximations  over  
a long enough  iteration,  so that its  changes are  below  a  certain  error bound  
from iteration to iteration. 

N 
1 X 

λ = λn (5.109) 
N 

n=0 

Figure 5.26 shows the Liapunov coefficient of the Nd:YLF laser discussed 
above, as a function of the normlized detuning. When the Liapunov coef-
ficient becomes positive, i.e. the system becomes exponentially sensitive to 

http:itself.To


  

 

  

            
            

     

       

             
              

            
             

            
           

          
           

           
           
            

            
              
              

              
          

            

    

220 BIBLIOGRAPHY 

small changes in the initial conditions, the system is called chaotic. The 
graph clearly indicates that the dynamics is chaotic above a critical detuning 
of about ∆c ≈ 3.7. 

Image removed due to copyright restrictions. 

Please see: 
Kaertner, F. X., et al. "Turbulence in Mode-locked Lasers". Physical Review Letters 82, no. 22 
(May 1999): 4428-4431. 

Figure 5.26: Liapunov coefficient over normalized detuning. 

In the turbulent regime, the system does not reach a steady state, because 
it is nonperiodically interrupted by a new pulse created out of the net gain 
window, see Figure 5.15, following the pulse for positive detuning. This pulse 
saturates the gain and the nearly formed steady state pulse is destroyed and 
finally replaced by a new one. The gain saturation provides the nonlinear 
feedback mechanism, which strongly perturbs the system again, once a strong 
perturbation grows up due to the transient linear amplification mechanism. 
The critical detuning becomes smaller if additional noise sources, such as 

the spontaneous emission noise of the laser amplifier and technical noise 
sources are taken into account. However, due to the super exponential 
growth, the critical detuning will not depend strongly on the strength of 
the noise sources. If the spontaneous emission noise is included in the sim-
ulation, we obtain the same shape for the critical detuning as in Fig. 5.25, 
however the critical detuning is lowered to about ∆c ≈ 2. Note that this crit-
ical detuning is very insensitive to any other changes in the parameters of the 
system. Therefore, one can expect that actively mode-locked lasers without 
regenerative feedback run unstable at a real detuning, see (5.98) given by p

Td = 4  2Df Msτa (5.110) 
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For the above Nd:YLF laser, using the values in Table 5.3 results in a relative 
precision of the modulation frequency of 

Td 
= 1.7 · 10−6 . 

TR 

The derived value for the frequency stability can easily be achieved and 
maintained with modern microwave synthesizers. However, this requires that 
the cavity length of Nd:YLF laser is also stable to this limit. Note that the 
thermal expansion coefficient for steel is 1.6 · 10−5/K. 
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Chapter 6 

Passive Modelocking 

As we have seen in chapter 5 the pulse width in an actively modelocked laser 
is inverse proportional to the fourth root of the curvature in the loss modu-
lation. In active modelocking one is limited to the speed of electronic signal 
generators. Therefore, this curvature can never be very strong. However, if 
the pulse can modulate the absorption on its own, the curvature of the ab-
sorption modulationcan become large, or in other words the net gain window 
generated by the pulse can be as short as the pulse itself. In this case, the 
net gain window shortens with the pulse. Therefore, passively modelocked 
lasers can generate much shorter pulses than actively modelocked lasers. 
However, a suitable saturable absorber is required for passive modelock-

ing. Depending on the ratio between saturable absorber recovery time and fi-
nal pulse width, one may distinguish between the regimes of operation shown 
in Figure 6.1, which depicts the final steady state pulse formation process. 
In a solid state laser with intracavity pulse energies much lower than the sat-
uration energy of the gain medium, gain saturation can be neglected. Then 
a fast saturable absorber must be present that opens and closes the net gain 
window generated by the pulse immediately before and after the pulse. This 
modelocking principle is called fast saturable absorber modelocking, see Fig-
ure 6.1 a). 
In semiconductor and dye lasers usually the intracavity pulse energy ex-

ceeds the saturation energy of the gain medium and so the the gain medium 
undergoes saturation. A short net gain window can still be created, almost 
independent of the recovery time of the gain, if a similar but unpumped 
medium is introduced into the cavity acting as an absorber with a somewhat 
lower saturation energy then the gain medium. For example, this can be 
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Image removed due to copyright restrictions. 

Please see: 

Kartner, F. X., and U. Keller. "Stabilization of soliton-like pulses with a slow saturable absorber." 
Optics Letters 20 (1990): 16-19. 

Figure 6.1: Pulse-shaping and stabilization mechanisms owing to gain and 
loss dynamics in passively mode-locked lasers: (a) using only a fast saturable 
absorber; (b) using a combination of gain and loss saturation; (c) using a 
saturable absorber with a finite relaxation time and soliton formation. 

arranged for by stronger focusing in the absorber medium than in the gain 
medium. Then the absorber bleaches first and opens a net gain window, 
that is closed by the pulse itself by bleaching the gain somewhat later, see 
Figure 6.1 b). This principle of modelocking is called slow-saturable absorber 
modelocking. 

When modelocking of picosecond and femtosecond lasers with semicon-
ductor saturable absorbers has been developed it became obvious that even 
with rather slow absorbers, showing recovery times of a few picoseconds, one 
was able to generate sub-picosecond pulses resulting in a significant net gain 
window after the pulse, see Figure 6.1 c). From our investigation of active 
modelocking in the presence of soliton formation, we can expect that such a 
situation may  still be stable up to a certain  limit in the presence of strong  
soliton formation. This is the case and this modelocking regime is called 
soliton modelocking, since solitary pulse formation due to SPM and GDD 
shapes the pulse to a stable sech-shape despite the open net gain window 
following the pulse. 
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6.1 Slow Saturable Absorber Mode Locking 

Due to the small cross section for stimulated emission in solid state lasers, 
typical intracavity pulse energies are much smaller than the saturation energy 
of the gain. Therefore, we neglected the effect of gain saturation due to one 
pulse sofar, the gain only saturates with the average power. However, there 
are gain media which have large gain cross sections like semiconductors and 
dyes, see Table 4.1, and typical intracavity pulse energies may become large 
enough to saturate the gain considerably in a single pass. In fact, it is this 
effect, which made the mode-locked dye laser so sucessful. The model for the 
slow saturable absorber mode locking has to take into account the change 
of gain in the passage of one pulse [1, 2]. In the following, we consider a 
modelocked laser, that experiences in one round-trip a saturable gain and a 
slow saturable absorber. In the dye laser, both media are dyes with different 
saturation intensities or with different focusing into the  dye jets so that gain  
and loss may show different saturation energies. The relaxation equation of 
the gain, in the limit of a pulse short compared with its relaxation time, can 
be approximated by 

dg |A(t)|2 

= −g (6.1) 
dt EL 

The coefficient EL is the saturation energy of the gain. Integration of the 
equation shows, that the gain saturates with the pulse energy E(t) 

Z t 
E(t) =  dt|A(t)|2 (6.2) 

−TR/2 

when passing the gain 

g(t) =  gi exp [−E(t)/EL] (6.3) 

where gi is the initial small signal gain just before the arrival of the pulse. A 
similar equation holds for the loss of the saturable absorber whose response 
(loss) is represented by q(t) 

q(t) =  q0 exp [−E(t)/EA] (6.4) 
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where EA is the saturation energy of the saturable absorber. If the back-
ground loss is denoted by l, the master equation of mode-locking becomes 

1 ∂
A = [gi (exp (−E(t)/EL)) A − lA− 

TR ∂T 
(6.5) 

q0 exp (−E(t)/EA)] A + 
Ω 
1 
2 ∂t
∂2
2 A 

f 

Here, we have replaced the filtering action of the gain Dg = 
Ω 
1 as2 
f 

produced by a separate fixed filter. An analytic solution to this integro-
differential equation can be obtained with one approximation: the exponen-
tials are expanded to second order. This is legitimate if the population deple-
tions of the gain and saturable absorber media are not excessive. Consider 
one of these expansions: ∙ ¸ 

2 q0 exp (−E(t)/EA) ≈ q0 1 − (E(t)/EA) +  
1
(E(t)/EA) . (6.6) 

2 

We only consider the saturable gain and loss and the finite gain bandwidth. 
Than the master equation is given by ∙ ¸

∂A(T, t) ∂2 

TR = g(t) − q(t) − l + Df A(T, t). (6.7) 
∂T ∂t2 

The filter dispersion, Df = 1/Ω2 
f , effectively models the finite bandwidth 

of  the laser,  that might  not be only due  to  the  finite gain bandwidth, but 
includes all bandwidth limiting effects in a parabolic approximation. Sup-
pose the pulse is a symmetric function of time. Then the first power of the 
integral gives an antisymmetric function of time, its square is symmetric. 
An antisymmetric function acting on the pulse A(t) causes a displacement. 
Hence, the steady state solution does not yield zero for the change per pass, 
the derivative 1 ∂A must be equated to a time shift ∆t of the pulse. When 

TR ∂T 
this is done one can confirm easily that A(t) =  Ao sech(t/τ) is a solution of 
(6.6) with constraints on its coefficients. Thus we, are looking for a "steady 
state" solution A(t, T ) =  Ao sech(τ

t + α
T
T ).Note, that α is the fraction of 
R 

the pulsewidth, the pulse is shifted in each round-trip due to the shaping by 
loss and gain. The constraints on its coefficients can be easily found using 
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the following relations for the sech-pulse Z t µ ¶
W t T 

E(t) =  dt|A(t)|2 = 1 + tanh(  + α ) (6.8) 
2 τ TR−TR/2 µ ¶2 µ ¶

W t T t T 
E(t)2 = 2 + 2tanh(  + α ) − sech2( + α ) (6.9) 

2 τ TR τ TR 

∂ t T 
TR A(t, T ) =  −α tanh( + α )A(t, T ) (6.10) 

∂T τ TR 

∂2 µ ¶
1 1 t T 

A(t, T ) =  1 − 2sech2( + α ) A(t, T ), (6.11) 
Ω2 
f ∂t

2 Ω2 
f τ
2 τ TR 

substituing them into the master equation (6.5) and collecting the coefficients 
in front of the different temporal functions. The constant term gives the 
necessary small signal gain " # " #µ ¶2 µ ¶2

W W W W 1 
gi 1 − + = l + q0 1 − + − . (6.12) 

Ω2 τ 22EL 2EL 2EA 2EA f 

The constant in front  of  the odd  tanh −function delivers the timing shift per 
round-trip " # " #µ ¶2 µ ¶2

∆t W W W W 
α = = gi − − q0 − . (6.13) 

τ 2EL 2EL 2EA 2EA 

And finally the constant in front of the sech2-function determines the pulsewidth 

Ω2
2 µ ¶

1 f W q0 gi 
= − (6.14) 

τ 2 8 EA 
2 EL 

2 

These equations have important implications. Consider first the equation for 
the inverse pulsewidth, (6.14). In order to get a real solution, the right hand 
side has to be positive. This implies that q0/EA 

2 > gi/EL 
2 . The  saturable  

absorber must saturate more easily, and, therefore more strongly, than the 
gain medium in order to open a net window of gain (Figure 6.2). 
This was accomplished in a dye laser system by stronger focusing into 

the saturable absorber-dye jet (Reducing the saturation energy for the sat-
urable absorber) than into the gain-dye jet (which was inverted, i.e. optically 
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Dynamics of a laser mode-locked with a slow saturable absorber. 
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            Figure 6.2: Dynamics of a laser mode-locked with a slow saturable absorber. 

Figure by MIT OCW. 
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pumped). Equation (6.12) makes a statement about the net gain before pas-
sage of the pulse. The net gain before passage of the pulse is " #µ ¶2

1 W W 
gi − q0 − l = − + gi − 

Ω2 τ 2 
f 2EL 2EL 

(6.15) " #µ ¶2 

−q0 
W − 

W
. 

2EA 2EA 

Using condition (6.14) this can be expressed as ∙ ¸ ∙ ¸
W W 1 

gi − q0 − l = gi − q0 + . (6.16) 
Ω2 τ 22EL 2EA f 

This gain is negative since the effect of the saturable absorber is larger than 
that of the gain. Since the pulse has the same exponential tail after passage 
as before, one concludes that the net gain after passage of the pulse is the 
same as before passage and thus also negative. The pulse is stable against 
noise build-up both in its front and its back. This principle works if the 
ratio between the saturation energies for the saturable absorber and gain 
χP = EA/EP is very small. Then the shortest pulsewidth achievable with a 
given system is 

4 EA 2 
τ = √ > √ . (6.17) 

q0Ωf W q0Ωf 

The greater sign comes from the fact that our theory is based on the ex-
pansion of the exponentials, which is only true for 

2 
W
EA 

< 1. If the filter 
dispersion 1/Ω2 

f that determines the bandwidth of the system is again re-
placed by an average gain dispersion g/Ω2 

g and assuming g = q0. Note that 
the modelocking principle of the dye laser is a very faszinating one due to 
the fact that actually non of the elements in the system is fast. It is the in-
terplay between two media that opens a short window in time on the scale of 
femtoseconds. The media themselves just have to be fast enough to recover 
completely between one round trip, i.e. on a nanosecond timescale. 
Over the last fifteen years, the dye laser has been largely replaced by 

solid state lasers, which offer even more bandwidth than dyes and are on top 
of that much easier to handle because they do not show degradation over 
time. With it came the need for a different mode locking principle, since the 
saturation energy of these broadband solid-state laser media are much higher 
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than the typical intracavity pulse energies. The absorber has to open and 
close the net gain window. 

6.2 Fast Saturable Absorber Mode Locking 

The dynamics of a laser modelocked with a fast saturable absorber is again 
covered by the master equation (5.21) [3]. Now, the losses q react instantly 
on the intensity or power P (t) = |A(t)|2 of the field 

q0 
q(A) =  , (6.18) |A|2 

1 +  
PA 

where PA is the saturation power of the absorber. There is no analytic 
solution of the master equation (5.21) with the absorber response (6.18). 
Therefore, we make expansions on the absorber response to get analytic 
insight. If the absorber is not saturated, we can expand the response (6.18) 
for small intensities 

q(A) = q0 − γ|A|2 , (6.19) 

with the saturable absorber modulation coefficient γ = q0/PA. The constant 
nonsaturated loss q0 can be  absorbed in the  losses  l0 = l + q0. The resulting 
master equation is, see also Fig. 6.3 

∙ ¸
∂A(T, t) ∂2 ∂2 

TR = g − l0 +Df + γ|A|2 + j D2 −j δ|A|2 A(T, t). (6.20) 
∂T ∂t2 ∂t2 
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Image removed due to copyright restrictions. 

Please see: 
Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Figure 6.3: Schematic representation of the master equation for a passively 
modelocked laser with a fast saturable absorber. 

Eq. (6.20) is a generalized Ginzburg-Landau equation well known from 
superconductivity with a rather complex solution manifold. 

6.2.1 Without GDD and SPM 

We consider first the situation without SPM and GDD, i.e. D2 =δ = 0 ∙ ¸
∂A(T, t) ∂2 

TR = g − l0 +Df + γ|A|2 A(T, t). (6.21) 
∂T ∂t2 

Up to the imaginary unit, this equation is still very similar to the NSE. To 
find the final pulse shape and width, we look for the stationary solution 

∂As(T, t)
TR = 0. 

∂T 

Since the equation is similar to the NSE, we try the following ansatz µ ¶ 

As(T, t) = As(t) = A0sech 
t

. (6.22) 
τ 
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Note, there is 

d 
sechx = − tanhx sechx, (6.23) 

dx 
d2 

sechx = tanh2 x sechx − sech3 x,
dx2 ¡ ¢ 

= sechx − 2 sech3 x . (6.24) 

Substitution of ansatz (6.22) into the master equation (6.21), assuming steady 
state, results in ∙ ∙ µ ¶¸

Df t 
0 =  (g − l0) +  

τ 2 
1− 2sech2 µ ¶¸ µ 

τ ¶
t t 

+γ|A0|2sech2 · A0sech . (6.25) 
τ τ 

Comparison of the coefficients with the sech- and sech3-expressions results 
in the conditions for the pulse peak intensity and pulse width τ and for the 
saturated gain 

Df 
=

1 
γ|A0|2 , (6.26) 

τ 2 2 
Df 

g = l0 − . (6.27) 
τ 2 

From Eq.(6.26) and with the pulse energy of a sech pulse, see Eq.(3.8), W = 
2|A0|2τ ,  

4Df
τ = . (6.28) 

γW 
Eq. (6.28) is rather similar to the soliton width with the exception that 
the conservative pulse shaping effects GDD and SPM are replaced by gain 
dispersion and saturable absorption. The soliton phase shift per roundtrip is 
replaced by the difference between the saturated gain and loss in Eq.(6.28). 
It is interesting to have a closer look on how the difference between gain and 

floss D
τ2 per round-trip comes about. From the master equation (6.21) we can 

derive an equation of motion for the pulse energy according to Z ∞∂W (T ) ∂ 
TR = TR |A(T, t)|2 dt (6.29) 

∂T ∂TZ ∞ ∙−∞ ¸ 

= TR A(T, t) ∗ ∂ A(T, t) + c.c. dt (6.30) 
∂T−∞ 

= 2G(gs,W  )W, (6.31) 

http:�A(T,t)+c.c.dt
http:Eq.(6.28
http:Eq.(6.26


       

             
            

   
     

           

  
 

      
        

     

  

  
         

  
        

      
  

    
      

 

         

         
 

  

    
 

              
            

            
           

           
      

     
 

   
 

    
  

6.2. FAST SATURABLE ABSORBER MODE LOCKING 235 

where G is the net energy gain per roundtrip, which vanishes when steady 
state is reached [3]. Substitution of the master equation into (6.30) with Z ∞ ¡ ¢ 

sech2 x dx = 2, (6.32) Z−∞∞ ¡ ¢ 
sech4 x dx =

4 
, (6.33) 
3 Z ∞ 

−∞ 

d2 Z ∞ µ ¶2 

− sechx (sechx) dx = 
d 
sechx dx =

2 
. (6.34) 

dx2 dx 3−∞ −∞ 

results in 

G(gs,W  ) =  gs − l0 − 
Df 

+
2 
γ|A0|2 (6.35) 

3τ 2 3 

= gs − l0 +
1 
γ|A0|2 = gs − l0 + 

Df 
= 0  (6.36) 

2 τ 2 

with the saturated gain 
g0 

gs(W ) =  
W (6.37) 

1 +
PLTR 

Equation (6.36) together with (6.28) determines the pulse energy 

g0 Df
(W ) =  = l0 − 

τ 2
gs W1 +

PLTR 

(γW )2 

= l0 − (6.38) 
16Dg 

Figure 6.4 shows the time dependent variation of gain and loss in a laser 
modelocked with a fast saturable absorber on a normalized time scale Here, 
we assumed that the absorber saturates linearly with intensity up to a max-
imum value q0 = γA20. If this maximum saturable absorption is completely 
exploited see Figure 6.5.The minimum pulse width achievable with a given 
saturable absorption q0 results from Eq.(6.26) 

Df q0 
= , (6.39) 

τ 2 2 

to be r 
2 1 

τ = . (6.40) 
q0 Ωf 

http:Eq.(6.26
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Image removed due to copyright restrictions. 

Please see: 
Kartner, F. X., and U. Keller. "Stabilization of soliton-like pulses with a slow saturable absorber." 
Optics Letters 20 (1990): 16-19. 

Figure 6.4: Gain and loss in a passively modelocked laser using a fast sat-
urable absorber on a normalized time scale x = t/τ . The absorber is assumed ³ ´ 

1− |A|
2 

to saturate linearly with intensity according to q(A) = q0 A2 . 
0 

Figure 6.5: Saturation characteristic of an ideal saturable absorber 



       

            
            

              
              

              
            

             
             

              
            

            
               

             
               

               
        

       
 

 
   

 

           
             

       

  
    

      

             
    

     

     
              

           
  

 
    

 
  

 
    

  
 

    
 

   
 

6.2. FAST SATURABLE ABSORBER MODE LOCKING 237 

Note that in contrast to active modelocking, now the achievable pulse width 
is scaling with the inverse gain bandwidth, which gives much shorter pulses. 
Figure 6.4 can be interpreted as follows: In steady state, the saturated gain is 
below loss, by about one half of the exploited saturable loss before and after 
the pulse. This means, that there is net loss outside the pulse, which keeps 
the pulse stable against growth of instabilities at the leading and trailing 
edge of the pulse. If there is stable mode-locked operation, there must be 
always net loss far away from the pulse, otherwise, a continuous wave signal 
running at the peak of the gain would experience more gain than the pulse 
and would break through. From Eq.(6.35) follows, that one third of the 
exploited saturable loss is used up during saturation of the aborber and 
actually only one sixth is used to overcome the filter losses due to the finite 
gain bandwidth. Note, there is a limit to the mimium pulse width, which 
comes about, because the saturated gain (6.27) is gs = l+ 

2
1 q0 and, therefore, 

from Eq.(6.40), if we assume that the finite bandwidth of the laser is set by 
the gain, i.e. Df = we obtain for q0 À l2 = Dg Ω 

g 

g 

1 
τmin = (6.41) 

Ωg 

for the linearly saturating absorber model. This corresponds to mode locking 
over the full bandwidth of the gain medium, since for a sech-shaped pulse, 
the time-bandwidth product is 0.315, and therefore, 

0.315 Ωg
∆fFWHM  = = . (6.42) 

1.76 · τmin 1.76 · π 

As an example, for Ti:sapphire this corresponds to Ωg = 270  THz, τmin = 3.7 
fs, τFWHM  = 6.5 fs. 

6.2.2 With GDD and SPM 

After  understanding  what happens without GDD  and  SPM, we look at the  
solutions of the full master equation (6.20) with GDD and SPM. It turns out, 
that there exist steady state solutions, which are chirped hyperbolic secant 
functions [4] µ µ ¶¶(1+jβ) 

jψT/TRAs(T, t) =  A0 sech 
t 

e , (6.43) µ ¶τ ∙ µ ¶ ¸ 

= A0sech 
t 
exp jβ ln sech 

t 
+ jψT/TR . (6.44) 

τ τ 

http:Eq.(6.40
http:Eq.(6.35


     

                
             

            
           

              
       

       
  

        
 

           
 

   

            
     

   
 

     
 

 

        
 

           
             

             
             

          

  
        

  

         

  
  

 
  

 
    

 

  
  

 
 

 
    

 

           
              

238 CHAPTER 6. PASSIVE MODELOCKING 

Where ψ is the round-trip phase shift of the pulse, which we have to allow for. 
Only the intensity of the pulse becomes stationary. There is still a phase-shift 
per round-trip due to the difference between the group and phase velocity 
(these effects have been already transformed away) and the nonlinear effects. 
As in the last section, we can substitute this ansatz into the master equation 
and compare coefficients. Using the following relations 

d ¡ ¢ db b−1f(x) = bf(x) f(x) (6.45) 
dx dx 

(1+jβ) (1+jβ)d 
(sechx) = − (1 + jβ) tanhx (sechx) , (6.46) 

dx 
d2 ¡ ¡ ¢ ¢(1+jβ)(sechx) = (1 + jβ)2 − 2 + 3jβ − β2 sech2 x (6.47) 
dx2 

(1+jβ)(sechx) . (6.48) 

in the master equation and comparing the coefficients to the same functions 
leads to two complex equations 

τ 
1 
2 
(Df + jD2)

¡
2 + 3jβ − β2

¢ 
= (γ − jδ) |A0|2 , (6.49) 

(1 + jβ)2 

l0 − (Df + jD2) =  g − jψ. (6.50) 
τ 2 

These equations are extensions to Eqs.(6.26) and (6.27) and are equivalent 
to four real equations for the phase-shift per round-trip ψ, the pulse width 
τ , the  chirp  β and the peak power |A0|2 or pulse energy. The imaginary 
part of Eq.(6.50) determines the phase-shift only, which is most often not of 
importance. The real part of Eq.(6.50) gives the saturated gain 

1− β2 2βD2 
g = l0 − Df + . (6.51) 

τ 2 τ 2 

The real part and imaginary part of Eq.(6.49) give 

1 £ ¡ ¢ ¤ 
τ 2 

Df 2− β2 − 3βD2 = γ|A0|2 , (6.52) 

1 £ ¡ ¢ ¤ 
τ 2 

D2 2− β2 + 3βDf = −δ|A0|2 . (6.53) 

We introduce the normalized dispersion, Dn = D2/Df , and the pulse width 
of the system without GDD and SPM, i.e. the width of the purely saturable 

http:Eq.(6.49
http:Eq.(6.50
http:Eq.(6.50
http:Eqs.(6.26


       

          
           

    

    

 
   

 
   

 

 

     

 
 

 
 

 
 

             
   

  
      

 

         

         
 

        

        
 

               
                

     
 

        
      

   
        

            
           

              
             

  
 

         
  

6.2. FAST SATURABLE ABSORBER MODE LOCKING 239 

absorber modelocked system, τ0 = 4Df /(γW ). Deviding Eq.(6.53) by (6.52) 
and introducing the normalized nonlinearity δn = δ/γ, we obtain a quadratic 
equation for the chirp, ¡ ¢ 

Dn 2− β2 + 3β ¡ ¢ = −δn, 
2− β2 − 3βDn 

or after some reodering 

3β δn +Dn 1 
= ≡ . (6.54) 

2− β2 −1 + δnDn χ 

Note that χ depends only on the system parameters. Therefore, the chirp is 
given by sµ ¶2 

β = −3 χ ± 
3 
χ + 2. (6.55) 

2 2 

Knowing the chirp, we obtain from Eq.(6.52) the pulsewidth 

τ 0 ¡ ¢ 
τ = 2− β2 − 3βDn , (6.56) 

2 

which, with Eq.(6.54), can also be written as 

3τ 0
τ = β (χ − Dn) (6.57) 

2 

In order to be physically meaning full the pulse width has to be a positive 
number, i.e. the product β (χ − Dn) has always to be greater than 0, which 
determines the root in Eq.(6.55) ⎧ q¡ ¢2⎨ −3 3χ + χ + 2, for χ > Dn2 q 2β = . (6.58) ¡ ¢2⎩ 3−3

2 χ − 
2 χ + 2, for χ < Dn 

Figure 6.6(a,b and d) shows the resulting chirp, pulse width and nonlinear 
round-trip phase shift with regard to the system parameters [4][5]. A neces-
sary but not sufficient criterion for the stability of the pulses is, that there 
must be net loss leading and following the pulse. From Eq.(6.51), we obtain 

1− β2 2βD2 
gs − l0 = − Df + < 0. (6.59) 

τ 2 τ 2 

http:Eq.(6.51
http:Eq.(6.55
http:Eq.(6.54
http:Eq.(6.52
http:Eq.(6.53
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If we define the stability parameter S 

S = 1− β2 − 2βDn > 0, (6.60) 

S has to be greater than zero, as shown in Figure 6.6 (d). 

Image removed due to copyright restrictions. 

Please see: 
Haus, H. A., J. G. Fujimoto, E. P. Ippen. "Structure for additive pulse modelocking." Journal of Optical 
Society of Americas B 8 (1991): 208. 

Figure 6.6: (a) Pulsewidth, (b) Chirp parameter, (c) Net gain following the 
pulse, which is related to stability. (d) Phase shift per pass. [4] 

Figure 6.6 (a-d) indicate that there are essentially three operating regimes. 
First, without GDD and SPM, the pulses are always stable. Second, if there 
is strong soliton-like pulse shaping, i.e. δn À 1 and −Dn À 1 the chirp is 
always much smaller than for positive dispersion and the pulses are soliton-
like. At last, the pulses are even chirp free, if the condition δn = −Dn is 
fulfilled. Then the solution is µ µ ¶¶

t jψT/TRAs(T, t) = A0 sech e , for δn = −Dn. (6.61) 
τ 



     

           
             
            

            
             

           
            

             
             

            
           

             
               

               
            

              
              

             
               

             
             

          

            
           

           
    

            
               

            
      

    

            
     

6.3. SOLITON MODE LOCKING 241 

Note, for this discussion we always assumed a positive SPM-coefficient. In 
this regime we also obtain the shortest pulses directly from the system, which 
can be a factor 2-3 shorter than by pure saturable absorber modelocking. 
Note that Figure 6.6 indicates even arbitrarily shorter pulses if the nonlinear 
index, i.e. δn is further increased. However, this is only an artificat of 
the linear approximation of the saturable absorber, which can now become 
arbitrarily large, compare (6.18) and (6.19). As we have found from the 
analysis of the fast saturable absorber model, Figure 6.4, only one sixth of 
the saturable absorption is used for overcoming the gain filtering. This is so, 
because the saturable absorber has to shape and stabilize the pulse against 
breakthrough of cw-radiation. With SPM and GDD this is relaxed. The 
pulse shaping can be done by SPM and GDD alone, i.e. soliton formation 
and the absorber only has to stabilize the pulse. But then all of the saturable 
absorption can be used up for stability, i.e. six times as much, which allows √ 
for additional pulse shorteing by a factor of about 6 = 2.5 in a parbolic 
filter situation. Note, that for an experimentalist a factor of three is a large 
number. This tells us that the 6.5 fs limit for Ti:sapphire derived above from 
the saturable absorber model can be reduced to 2.6 fs including GDD and 
SPM, which is about one optical cycle of 2.7 fs at a center wavelength of 
800nm. At that point all approximations, we have mode so far break down. 
If the amount of negative dispersion is reduced too much, i.e. the pulses 
become to short, the absorber cannot keep them stable anymore. 

If there is strong positive dispersion, the pulses again become stable and 
long, but highly chirped. The pulse can then be compressed externally, how-
ever not completely to their transform limit, because these are nonlinearly 
chirped pulses, see Eq.(6.43). 

In the case of strong solitonlike pulse shaping, the absorber doesn’t have 
to be really fast, because the pulse is shaped by GDD and SPM and the 
absorber has only to stabilize the soliton against the continuum. This regime 
has been called Soliton mode locking. 

6.3 Soliton Mode Locking 

If strong soliton formation is present in the system, the saturable absorber 
doesn’t have to be fast [6][7][8],  see  Figure  6.7.  The master equation descibing  

http:Eq.(6.43
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the mode locking process is given by 

∙ ¸
∂A(T, t) ∂2 

TR = g − l + (Df + jD) − jδ|A(T, t)|2 − q(T, t) A(T, t). 
∂T ∂t2 

(6.62) 
The saturable absorber obeys a separate differential equation that describes 
the absorber response to the pulse in each round trip 

∂q(T, t) q − q0 |A(T, t)|2 

= − − . (6.63) 
∂t τA EA 

Where τA is the absorber recovery time and EA the saturation energy. If the 
soliton shaping effects are much larger than the pulse 

Image removed due to copyright restrictions. 

Please see: 
Kartner, F. X., and U. Keller. "Stabilization of soliton-like pulses with a slow saturable absorber." 
Optics Letters 20 (1990): 16-19. 

Figure 6.7: Response of a slow saturable absorber to a soliton-like pulse. 
The pulse experiences loss during saturation of the absorber and filter losses. 
The saturated gain is equal to these losses. The loss experienced by the 
continuum, lc must be higher than the losses of the soliton to keep the soliton 
stable. 
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Image removed due to copyright restrictions. 

Please see: 
Kartner, F. X., and U. Keller. "Stabilization of soliton-like pulses with a slow saturable absorber." 
Optics Letters 20 (1990): 16-19. 

Figure 6.8: The continuum, that might grow in the opten net gain window 
following the pulse is spread by dispersion into the regions of high absorption. 

shaping due to the filter and the saturable absorber, the steady state 
pulse will be a soliton and continuum contribution similar to the case of 
active mode locking with strong soliton formation as discussed in section 5.5 µ ¶ 

Tt −jφ0 TRA(T, t) =  A sech( ) + ac(T, t) e (6.64) 
τ 

Figure 6.9: Normalized gain, soliton and continuum. The continuum is a 
long pulse exploiting the peak of the gain 



     

             
             
           

            
             

            
             

            
             

             
              

               
               

            
              

           
         

           
            

           
           

          
               

             
             

             
           

            
            

          

244 CHAPTER 6. PASSIVE MODELOCKING 

The continuum can be viewed as a long pulse competing with the soliton 
for the available gain. In the frequency domain, see Figure 6.9, the soliton 
has a broad spectrum compared to the continuum. Therefore, the continuum 
experiences the peak of the gain, whereas the soliton spectrum on average 
experiences less gain. This advantage in gain of the continuum has to be 
compensated for in the time domain by the saturable absorber response, see 
Figure 6.8. Whereas for the soliton, there is a balance of the nonlinearity 
and the dispersion, this is not so for the continuum. Therefore, the contin-
uum is spread by the dispersion into the regions of high absorption. This 
mechanism has to clean up the gain window following the soliton and caused 
by the slow recovery of the absorber. As in the case of active modelocking, 
once the soliton is too short, i.e. a too long net-gain window arises, the loss 
of the continuum may be lower than the loss of the soliton, see Figure 6.7 
and the continuum may break through and destroy the single pulse soliton 
solution. As a rule of thumb the absorber recovery time can be about 10 
times longer than the soliton width. This modelocking principle is especially 
important for modelocking of lasers with semiconductor saturable absorbers, 
which show typical absorber recovery times that may range from 100fs-100 
ps. Pulses as short as 13fs have been generated with semiconductor saturable 
absorbers [11]. Figure 6.10 shows the measured spectra from a Ti:sapphire 
laser modelocked with a saturable absorber for different values for the intra-
cavity dispersion. Lowering the dispersion, increases the bandwidth of the 
soliton and therefore its loss, while lowering at the same time the loss for the 
continuum. At some value of the dispersion the laser has to become unstabile 
by break through of the continuum. In the example shown, this occurs at 
a dispersion value of about D = −500fs2 . The continuum break-through is 
clearly visible by the additional spectral components showing up at the cen-
ter of the spectrum. Reducing the dispersion even further might lead again 
to more stable but complicated spectra related to the formation of higher 
order solitons. Note the spectra shown are time averaged spectra. 
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Figure 6.10: Measured (–) and simulated (- - -) spectra from a semiconduc-
tor saturable absorber modelocked Ti:sapphire laser for various values of the 
net intracavity dispersion. 

Figure by MIT OCW. 
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Figure 6.11: Measured (–-) and simulated (- - -) autocorrelations corre-
sponding to the spectra shown in Figure 6.10. 

Figure by MIT OCW. 
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The continuum leads to a background pedestal in the intensity autocor-
relation of the emitted pulse, see Figure 6.11. The details of the spectra and 
autocorrelation may strongly depend on the detailed absorber response. 

6.4 Dispersion Managed Soliton Formation 

The nonlinear Schrödinger equation describes pulse propagation in a medium 
with continuously distributed dispersion and self-phase-modulation. For 
lasers generating pulses as short as 10 fs and below, it was first pointed out by 
Spielmann et al. that large changes in the pulse occur within one roundtrip 
and that the ordering of the pulse-shaping elements within the cavity has a 
major effect on the pulse formation [9]. The discrete action of linear disper-
sion in the arms of the laser resonator and the discrete, but simultaneous, 
action of positive SPM and positive GDD in the laser crystal cannot any 
longer be neglected. The importance of strong dispersion variations for the 
laser dynamics was first discovered in a fiber laser and called stretched pulse 
modelocking [11]. The positive dispersion in the Er-doped fiber section of a 
fiber ring laser was balanced by a negative dispersive passive fiber. The pulse 
circulating in the ring was stretched and compressed by as much as a factor 
of 20 in one roundtrip. One consequence of this behavior was a dramatic 
decrease of the nonlinearity and thus increased stability against the SPM 
induced instabilities. The sidebands, due to periodic perturbations of the 
soliton, as discussed in section 3.6, are no longer observed (see Fig. 6.12). 

Image removed due to copyright restrictions. 

Please see: 
Tamura, K., E. P. Ippen, H. A. Haus, and L. E. Nelson. "77-fs pulse generation from a stretched-pulse 
mode-locked all-fiber ring laser." Optics Letters 18 (1993): 1080-1082. 

Figure 6.12: Spectra of mode-locked Er-doped fiber lasers operating in the 
conventional soliton regime, i.e. net negative dispersion and in the stretched 
pulse mode of operation at almost zero average dispersion [11]. 
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The energy of the output pulses could be increased 100 fold. The mini-
mum  pulsewidth was  63 fs,  with a bandwdith much broader  than the erbium  
gain bandwidth [12]. Figure 6.12 also shows the spectral enhancement of the 
fiber laser in the dispersion managed regime. The generation of ultrashort 
pulses from solid state lasers like Ti:sapphire has progressed over the past 
decade and led to the generation of pulses as short as 5 fs directly from the 
laser. At such short pulse lengths the pulse is streched up to a factor of ten 
when propagating through the laser crystal creating a dispersion managed 
soliton [10]. The spectra generated with these lasers are not of simple shape 
for many reasons. Here, we want to consider the impact on the spectral 
shape and laser dynamcis due to dispersion managed soliton formation. 

Ar-Ion-Laser 

DCMDCM 
M0 

a 

DCM P1 Ti:Sa L 
P2 

b 

D+ΔD 
2 

- D, SPM D-ΔD 
2 

-

Left Arm Laser Crystal Right Arm 

Figure 6.13: (a) Schematic of a Kerr-lens mode-locked Ti:sapphire laser: 
P’s, prisms; L, lens; DCM’s, double-chirped mirror; TiSa, Ti:sapphire. (b) 
Correspondence with dispersion-managed fiber transmission. 

Figure by MIT OCW. 

A mode-locked laser producing ultrashort pulses consists at least of a gain 
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medium (Ti:sapphire crystal) and dispersion balancing components (mirrors, 
prism pairs), see Fig. 6.13 a. The system can be decomposed into the res-
onator arms and the crystal, see Fig. 6.13 b. To achieve ultrashort pulses, 
the dispersion-balancing components should produce near-zero net dispersion 
while the dispersion element(s) individually produce significant group delay 
over the broad bandwidth of the laser pulse. This fact suggests an analogy 
with dispersion-managed pulse propagation along a dispersion-managed fiber 
transmission link [14]. A system with sufficient variation of dispersion can 
support solitary waves. One can show that the Kerr nonlinearity produces 
a self-consistent nonlinear scattering potential that permits formation of a 
perodic solution with a simple phase factor in a system with zero net dis-
persion. The pulses are analogous to solitons in that they are self-consistent 
solutions of the Hamiltonian (lossless) problem as the conventional solitons 
discussed above. But they are not secant hyperbolic in shape. Figure 6.14 
shows a numerical simulation of a self-consistent solution of the Hamiltonian 
pulse-propagation problem in a linear medium of negative dispersion and 
subsequent propagation in a nonlinear medium of positive dispersion and 
positive self-phase modulation, following the equation 

∂
A(z, t) =  jD(z) 

∂2 

A(z, t) − jδ(z)|A|2A(z, t) (6.65) 
∂z ∂t2 

In Fig. 6.15 the steady state intensity profiles are shown at the center of 
the negative dispersion segment over 1000 roundtrips. It is clear that the solu-
tion repeats itself from period to period, i.e. there is a new solitary wave that 
solves the piecewise nonlinear Schroedinger equation 6.65, dispersion man-
aged soliton. In contrast to the conventional soliton the dispersion mangaged 
soliton of equation 6.65 (with no SAM and no filtering) resemble Gaussian 
pulses down to about −10 dB from the peak, but then show rather compli-
cated structure, see Fig. 6.15.The dispersion map D(z) used is shown as an 
inset in Figure 6.14. One can additionally include saturable gain, Lorentzian 
gain filtering, and a fast saturable absorber. Figure 6.14 shows the behavior 
in one period (one round trip through the resonator) including these effects. 
The response of the  absorber  is  q(A) =  qo/(1 + |A|2/PA), with  qo = 0.01/mm 
and PA = 1  MW. The bandwidth-limited gain is modeled by the Lorentzian 
profile with gain bandwidth 2π×43 THz. The filtering and saturable absorp-
tion reduce the spectral and temporal side lobes of the Hamiltonian problem. 
As can be inferred from Fig. 6.14, the steady state pulse formation can be 
understood in the following way. By symmetry the pulses are chirp free in 
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Image removed due to copyright restrictions. 

Please see: 
Chen, Y., et al. "Dispersion managed mode-locking." Journal of Optical Society of Americas B 16 (1999): 1999-2004. 

Figure 6.14: Pulse shaping in one round trip. The negative segment has no 
nonlinearity. 

the middle of the dispersion cells. A chirp free pulse starting in the center of 
the gain crystal, i.e. nonlinear segment is spectrally broadened by the SPM 
and disperses in time due to the GVD, which generates a rather linear chirp 
over the pulse. After the pulse is leaving the crystal it experiences negative 
GVD during propagation through the left or right resonator arm, which is 
compressing the positively chirped pulse to its transform limit at the end of 
the arm, where an output coupler can be placed. Back propagation towards 
the crystal imposes a negative chirp, generating the time reversed solution of 
the nonliner Schrödinger equation (6.65). Therefore, subsequent propagation 
in the nonlinear crystal is compressing the pulse spectrally and temporally 
to its initial shape in the center of the crystal. The spectrum is narrower in 
the crystal than in the negative-dispersion sections, because it is negatively 
prechirped before it enters the SPM section and spectral spreading occurs 
again only after the pulse has been compressed. This result further explains 
that in a laser with a linear cavity, for which the negative dispersion is lo-
cated in only one arm of the laser resonator (i.e. in the prism pair and no 
use of chirped mirrors) the spectrum is widest in the arm that contains the 
negative dispersion . In a laser with a linear cavity, for which the negative 
dispersion is equally distributed in both arms of the cavity, the pulse runs 
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through the dispersion map twice per roundtrip. The pulse is short at each 
end of the cavity and, most importantly, the pulses are identical in each pass 
through the crystal, which exploits the saturable absorber action (Kerr-Lens 
Modelocking in this case, as will be discussed in the next chapter) twice 
per roundtrip, in contrast to an asymmetric dispersion distribution in the 
resonator arms. Thus a symmetric dispersion distribution leads to an effec-
tive saturable absorption that is twice as strong as an asymmetric dispersion 
distribution resulting in substantially shorter pulses. Furthermore, the dis-
persion swing between the negative and positive dispersion sections is only 
half, which allows for shorter dispersion-managed solitons operating at the 
same average power level. 

Image removed due to copyright restrictions. 

Please see: 
Chen, Y., et al. "Dispersion managed mode-locking." Journal of Optical Society of Americas B 16 (1999): 1999-2004. 

Figure 6.15: Simulation of the Hamiltonian problem. Intensity profiles at 
the center of the negatively dispersive segment are shown for successive 
roundtrips. The total extent in 1000 roundtrips. D = D(±) = ±60 fs2/mm, 
segment of crystal length L = 2 mm, τFWHM = 5.5 fs, δ = 0 for D < 0, δ = 1  
(MW mm)−1 for D > 0. [10]  
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To further illustrate the efficiency of the dispersion managed soliton for-
mation, we present a series of simulations that start with a linear segment 
of negative dispersion and a nonlinear segment of positive dispersion of the 
same magnitude, saturable absorber action, and filtering. 

Image removed due to copyright restrictions. 

Please see: 
Chen, Y., et al. "Dispersion managed mode-locking." Journal of Optical Society of Americas B 16 (1999): 1999-2004. 

Figure 6.16: Sequence of pulse profiles in the center of the negatively dis-
persive segment for three magnitudes of SPM. to = 3 fs, with solid curves 
(5.5 fs) for δ = 1 (MW mm)−1 , dashed-dotted curve (7 fs) for δ = 0.5 (MW 
mm)−1 , and dashed cuves for no SPM of δ = 0. The dispersion map is of 
Fig. 6.14. The output coupler loss is 3%.[10] 

The dashed curve in Figure 6.16 shows the pulse shape for gain, loss, 
saturable absorption and gain filtering only. We obtained the other traces 
by increasing the SPM while keeping the energy fixed through adjustment 
of the gain. As one can see, increasing the SPM permits shorter pulses. 
The shortest pulse can be approximately three times shorter than the pulse 
without SPM. The parameters chosen for the simulations are listed in the 
figure caption. In this respect, the behavior is similar to the fast saturable 
absorber case with conventional soliton formation as discussed in the last 
section. 
A major  difference in the dispersion managed soliton case is illustrated in 

Fig. 6.17. The figure shows the parameter ranges for a dispersion-managed 
soliton system (no gain, no loss, no filtering) that is unbalanced such as to 
result in the net dispersion that serves as the abscissa of the figure. Each 
curve gives the locus of energy versus net cavity dispersion for a stretching 
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ratio S = LD/τ 2 (or pulse width with fixed crystal length L). One can FWHM 

see that for pulse width longer than 8 fs with crystal length L = 2  mm, 
no solution of finite energy exists in the dispersion managed system for zero 
or positive net dispersion. Pulses of durations longer than 8 fs require net 
negative dispersion. Hence one can reach the ultrashort dispersion managed 
soliton operation at zero net dispersion only by first providing the system 
with negative dispersion. At the same energy, one can form a shorter pulse 
by reducing the net dispersion, provided that the 8 fs threshold has been 
passed. For a fixed dispersion swing ±D, the stretching increases quadrat-
ically with the spectral width or the inverse pulse width. Long pulses with 
no stretching have a sech shape. For stretching ratios of 3-10 the pulses are 
Gaussian shaped. For even larger stretching ratios the pulse spectra become 
increasingly more flat topped, as shown in Fig. 6.16. 

Image removed due to copyright restrictions. 

Please see: 
Chen, Y., et al. "Dispersion managed mode-locking." Journal of Optical Society of Americas B 16 (1999): 1999-2004. 

Figure 6.17: Energy of the pulse in the lossless dispersion-managed system 
with stretching S = LD/τ 2 or for a fixed crystal length L and pulsewidth FWHM 

as parameters; D = 60 fs2/mm for Ti:sapphire at 800 nm [10]. 

To gain insight into the laser dynamics and later on in their noise and 
tuning behavior, it is advantageous to formulate also a master equation ap-
proach for the dispersion managed soliton case [16]. Care has to be taken of 
the fact that the Kerr-phase shift is produced by a pulse of varying amplitude 
and width as it circulates around the ring. The Kerr-phase shift for a pulse 



      

        
             

    

  
       

 

             
            

          
           

             
     

  
   

  
 

     
 

   
 

 
  

       

         
             

             
           

             
          

           
           
              

            
            

          
             

            
          

            
             

             

6.4. DISPERSION MANAGED SOLITON FORMATION 253 

of constant width, δ|a|2 had  to be replaced by a phase profile that mimics 
the average shape of the pulse, weighted by its intensity. Therefore, the SPM 
action is replaced by 

δ|A|2 = δo|Ao|2 

µ 

1 − µ
t2 ¶ 

(6.66) 
τ 2 

where Ao is the pulse amplitude at the position of minimum width. The 
Kerr-phase profile is expanded to second order in t. The  coefficient δo and 
µ are evaluated variationally. The saturable absorber action is similarly 
expanded. Finally, the net intracavity dispersion acting on average on the 
pulse is replaced by the effective dispersion Dnet in the resonator within one 
roundtrip. The master equation becomes Ã ! 

∂ 1 ∂2 

TR A = (g − l)A + + jDnet A 
∂T Ω2 

f ∂t2 

(6.67) µ 
t2 ¶ 

+(γo − jδo)|Ao|2 1 − µ
τ 2 

A 

This equation has Gaussian-pulse solutions. The master equation (6.67) 
is a patchwork, it is not an ordinary differential equation. The coefficients in 
the equation depend on the pulse solution and eventually have to be found 
iteratively. Nevertheless, the equation accounts for the pulse shaping in the 
system in an analytic fashion. It will allow us to extend the conventional 
soliton perturbation theory to the case of dispersion managed solitons. 
There is one more interesting property of the stretched pulse operation 

that needs to be emphasized. Dispersion managed solitons may form even 
when the net dispersion as seen by a linearly propagating pulse is zero or 
slightly positive. This is a surprising result which was discovered in the 
study of dispersion managed soliton propagation [14]. It turns out that the 
stretched pulse changes its spectrum during propagation through the two 
segments of fiber with opposite dispersion or in the case of a Ti:Sapphire 
laser in the nonlinear crystal. The spectrum in the segment with normal 
(positive) dispersion is narrower, than in the segment of anomalous (nega-
tive) dispersion, see Figure 6.14. The pulse sees an effective net negative 
dispersion, provided that the positive Dnet is not too large. In (6.67) the 
Dnet is to be replaced by Deff which can be computed variationally. Thus, 
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dispersion managed soliton-like solutions can exist even when Dnet is zero. 
However, they exist only if the stretching factor is large, see Figure 6.17. 
A  remarkable property of the  dispersion  managed  solitons is that they do  

not radiate (generate continuum) even though they propagate in a medium 
with abrupt dispersion changes. This can be understood by the fact, that the 
dispersion mangaged soliton is a solution of the underlaying dynamics incor-
porating already the periodic dispersion variations including the Kerr-effect. 
This is in contrast to the soliton in a continuously distributed dispersive en-
vironment, where periodic variations in dispersion and nonlinearity leads to 
radiation. 
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Chapter 7 

Kerr-Lens and Additive Pulse 
Mode Locking 

There are many ways to generate saturable absorber action. One can use 
real saturable absorbers, such as semiconductors or dyes and solid-state laser 
media. One can also exploit artificial saturable absorbers. The two most 
prominent artificial saturable absorber modelocking techniques are called 
Kerr-Lens  Mode Locking  (KLM) and  Additive Pulse Mode Locking  (APM).  
APM is sometimes also called Coupled-Cavity Mode Locking (CCM). KLM 
was invented in the early 90’s [1][2][3][4][5][6][7], but was already predicted 
to occur much earlier [8][9][10]· 

7.1 Kerr-Lens Mode Locking (KLM) 

The general principle behind Kerr-Lens Mode Locking is sketched in Fig. 7.1. 
A pulse that builds up in a laser cavity containing a gain medium and a Kerr 
medium experiences not only self-phase modulation but also self focussing, 
that is nonlinear lensing of the laser beam, due to the nonlinear refractive in-
dex of the Kerr medium. A spatio-temporal laser pulse propagating through 
the Kerr medium has a time dependent mode size as higher intensities ac-
quire stronger focussing. If a hard aperture is placed at the right position 
in the cavity, it strips of the wings of the pulse, leading to a shortening of 
the pulse. Such combined mechanism has the same effect as a saturable ab-
sorber. If the electronic Kerr effect with response time of a few femtoseconds 
or less is used, a fast saturable absorber has been created. Instead of a sep-
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artifical fast 
saturable 
absorber

 Kerr 
Mediumgain 

intensity 
beam 
waist 

self -
focusing

   soft aperture    hard aperture 

Figure 7.1: Principle mechanism of KLM. The hard aperture can be also 
replaced by the soft aperture due to the spatial variation of the gain in the 
laser crystal. 

arate Kerr medium and a hard aperture, the gain medium can act both as a 
Kerr medium and as a soft aperture (i.e. increased gain instead of saturable 
absorption). The sensitivity of the laser mode size on additional nonlinear 
lensing is drastically enhanced if the cavity is operated close to the stability 
boundary of the cavity. Therefore, it is of prime importance to understand 
the stability ranges of laser resonators. Laser resonators are best understood 
in terms of paraxial optics [11][12][14][13][15]. 

7.1.1 Review of Paraxial Optics and Laser Resonator 
Design 

The solutions to the paraxial wave equation, which keep their form during 
propagation, are the Hermite-Gaussian beams. Since we consider only the 
fundamental transverse modes, we are dealing with the Gaussian beam ∙ 

U(r, z) =  
Uo 

exp −jk 
2r
¸ 

, (7.1) 
q(z) 2q(z) 
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with the complex q-parameter q = a + jb or its inverse 

1 1 λ 
= − j . (7.2) 

q(z) R(z) πw2(z) 

The Gaussian beam intensity I(z, r) = |U(r, z)|2 expressed in terms of the 
power P carried by the beam is given by ∙ 

2 ¸2P 2r 
I(r, z) =  exp − . (7.3) 

πw2(z) w2(z) 

The use of the q-parameter simplifies the description of Gaussian beam prop-
agation. In free space propagation from z1 to z2, the variation of the beam 
parameter q is simply governed by 

q2 = q1 + z2 − z1, (7.4) 

where q2 and q1 are the beam parameters at z1 and z2. If  the  beam  waist,  
at which the beam has a minimum spot size w0 and a planar wavefront 
(R = ∞), is located at z = 0, the variations of the beam spot size and the 
radius of curvature are explicitly expressed as 

" µ ¶2 
#1/2 

λz 
w(z) = wo 1 +  , (7.5) 

πwo 
2 

and " #µ 
2 ¶2πwoR(z) = z 1 +  . (7.6) 

λz 

The angular divergence of the beam is inversely proportional to the beam 
waist. In the far field, the half angle divergence is given by, 

λ 
θ = , (7.7) 

πwo 

as illustrated in Figure 7.2. 
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-1 

Planes of 
constant phase 

z/zR 

0 1 2 3 4 

L=R 
Beam Waist 

w(z) 
2W0 

θ = πw0 

λ 

Figure 7.2: Gaussian beam and its characteristics. 

Figure by MIT OCW. 

Due to diffraction, the smaller the spot size at the beam waist, the larger 
the divergence. The Rayleigh range is defined as the distance from the waist 
over which the beam area doubles and can be expressed as 

πwo 
2 

zR = . (7.8) 
λ 

The confocal parameter of the Gaussian beam is defined as twice the Rayleigh 
range 

2πw2 

b = 2zR = o , (7.9) 
λ 

and corresponds to the length over which the beam is focused. The propa-
gation of Hermite-Gaussian beams through paraxial optical systems can be 
efficiently evaluated using the ABCD-law [11] 

Aq1 +B 
q2 = (7.10) 

Cq1 +D 

where q1 and q2 are the beam parameters at the input and the output planes 
of the optical system or component. The ABCD matrices of some optical 
elements are summarized in Table 7.1. If a Gaussian beam with a waist w01 

is focused by a thin lens a distance z1 away from the waist, there will be a 
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new focus at a distance 

(z1 − f)f2 

z2 = f + ³ ´ 2 , (7.11) 
(z1 − f)2 + πw2 

01 
λ 

and a waist w02 

µ ¶2 ³ ´ 21 1 z1 1 πw01 
2 = 

2 1 − + (7.12) 
w w f f2 λ02 01 

Figure 7.3: Focusing of a Gaussian beam by a lens. 



262CHAPTER 7. KERR-LENS AND ADDITIVE PULSE MODE LOCKING 

7.1.2 Two-Mirror Resonators 

We consider the two mirror resonator shown in Figure 7.4. 

Optical Element 

Free Space Distance L 

Thin Lens with 
focal length f 
Mirror under Angle 
θ to Axis and Radius R 
Sagittal Plane 
Mirror under Angle 
θ to Axis and Radius R 
Tangential Plane 
Brewster Plate under 
Angle θ to Axis and Thickness 
d, Sagittal Plane 
Brewster Plate under 
Angle θ to Axis and Thickness 
d, Tangential Plane 

ABCD-Matrix µ ¶
1 L 
0 1µ ¶
1 0 
−1/f 1 µ ¶
1 0 

−2 cos  θ 1
R µ ¶
1 0 
−2 1

R cos θ µ ¶
1 d 

n 
0 1  µ ¶
1 d 

3n 
0 1  

Table 7.1: ABCD matrices for commonly used optical elements. 

        

   

          

  

    

   
   

   
      

  
   

      
  

   
      

   
   

      
   

 
  

 

  
  

 
  

  
  

 

  
  
 

   

  
 
 

  
  

 

         

           
   

           
 

Figure 7.4: Two-Mirror Resonator with curved mirrors with radii of curvature 
R1 and R2. 

The resonator can be unfolded for an ABCD-matrix analysis, see Figure 
7.5. 
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Figure 7.5: Two-mirror resonator unfolded. Note, only one half of the fo-
cusing strength of mirror 1 belongs to a fundamental period describing one 
resonator roundtrip. 

The product of ABCD matrices describing one roundtrip according to 
Figure 7.5 are then given by µ ¶µ ¶µ  ¶µ ¶µ  ¶

1 0  1 L 1 0  1 L 1 0  
M = −1 −1 −1 (7.13) 

1 0 1  1 0 1  1
2f1 f2 2f1 

where f1 = R1/2, and  f2 = R2/2. To carry out this product and to formulate 
the cavity stability criteria, it is convenient to use the cavity parameters 
gi = 1− L/Ri, i  = 1, 2. The resulting cavity roundtrip ABCD-matrix can be 
written in the form µ ¶ µ ¶

(2g1g2 − 1) 2g2L A B  
M = = . (7.14) 

2g1 (g1g2 − 1) /L (2g1g2 − 1) C D  

Resonator Stability 

The ABCD matrices describe the dynamics of rays propagating inside the µ ¶ 
r 

resonator. An optical ray is characterized by the vector r= 0 , where r 
r 

is the distance from the optical axis and r0 the slope of the ray to the optical 
axis. The resonator is stable if no ray escapes after many round-trips, which 
is the case when the eigenvalues of the matrix M are less than one. Since 
we have a lossless resonator, i.e. det|M | = 1, the product of the eigenvalues 
has to be 1 and, therefore, the stable resonator corresponds to the case of a 
complex conjugate pair of eigenvalues with a magnitude of 1. The eigenvalue 
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equation to M is given by ¶¯̄̄̄
 

µ¯̄̄̄
(2g1g2 − 1) − λ 2g2Ldet |M − λ · 1| = det  = 0, (7.15) 
2g1 (g1g2 − 1) /L (2g1g2 − 1) − λ 

λ2 − 2 (2g1g2 − 1) λ + 1 = 0. (7.16) 

The eigenvalues are q 
= (2g1g2 − 1) ± 

exp (±θ) , cosh θ = 2g1g2 − 1, for |2g1g2 − 1| > 1 
= .(7.18) 

exp (±jψ) , cos ψ = 2g1g2 − 1, for |2g1g2 − 1| ≤ 1 

The case of a complex conjugate pair with a unit magnitude corresponds to 
a stable resontor. Therfore, the stability criterion for a stable two mirror 
resontor is 

|2g1g2 − 1| ≤ 1. (7.19) 

The stable and unstable parameter ranges are given by 

½ 

stable : 0  ≤ g1 · g2 = S ≤ 1 (7.20) 

unstable : g1g2 ≤ 0; or g1g2 ≥ 1. (7.21) 

where S = g1 · g2, is the stability parameter of the cavity. The stabil-
ity criterion can be easily interpreted geometrically. Of importance are 
the distances between the mirror mid-points Mi and cavity end points, i.e. 
gi = (Ri − L)/Ri = −Si/Ri, as shown in Figure 7.6. 

(2g1g2 − 1)2 − 1,λ1/2 (7.17) 

        

      

      
         

          

        

   

  

        
        

        
 

      
      

  

             
            

  
      

         

           

          

              
          
            

           

          
             

Figure 7.6: The stability criterion involves distances between the mirror mid-
points Mi and cavity end points. i.e. gi = (Ri − L)/Ri = −Si/Ri. 
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The following rules for a stable resonator can be derived from Figure 7.6 
using the stability criterion expressed in terms of the distances Si. Note, that 
the distances and radii can be positive and negative 

S1S2stable : 0 ≤ ≤ 1. (7.22) 
R1R2 

The rules are: 

• A resonator is stable, if the mirror radii, laid out along the optical axis, 
overlap. 

• A resonator is unstable, if the radii do  not overlap  or  one lies within  
the other. 

Figure 7.7 shows stable and unstable resonator configurations. 

STABLE UNSTABLE 

R2R1 

R1 

R2 

R2 

R1 

R1 

R2 

R2 

R2 

Figure 7.7: Illustration of stable and unstable resonator configurations. 

Figure by MIT OCW. 

For a two-mirror resonator with concave  mirrors and  R1 ≤ R2, we  obtain  
the general stability diagram as shown in Figure 7.8. There are two ranges 
for the mirror distance L, within which the cavity is stable, 0 ≤ L ≤ R1 and 
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Figure 7.8: Stabile regions (black)  for the  two-mirror resonator.  

R2 ≤ L ≤ R1 +R2. It is interesting to investigate the spot size at the  mirrors  
and the minimum spot size in the cavity as a function of the mirror distance 
L. 

Resonator Mode Characteristics 

The stable modes of the resonator reproduce themselves after one round-trip, 
i.e. from Eq.(7.10) we find 

Aq1 +B 
q1 = (7.23) 

Cq1 +D 

The inverse q-parameter, which is directly related to the phase front curva-
ture and the spot size of the beam, is determined by µ ¶2 µ ¶

1 A − D 1 1− AD 
+ + = 0. (7.24) 

q B q B2 

The solution is µ ¶ q
1 A − D j 2 = − ± (A +D) − 1 (7.25) 
q 1/2 2B 2 |B| 

If we apply this formula to (7.15), we find the spot size on mirror 1 µ ¶ q
1 j λ 

= − (A +D)2 − 1 = −j . (7.26) 
q 2 |B| πw2 

1/2 1 

or µ ¶2
2λL g2 1 

w1
4 = 

g1 1− g1g2 
(7.27) 

π µ ¶2 µ ¶
λR1 R2 − L L 

= . (7.28) 
π R1 − L R1 +R2 − L 

http:Eq.(7.10
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By symmetry, we find  the spot size on mirror 3 via switching  index 1 and 2:  µ ¶2
2λL g1 1 

w 4 = (7.29) 2 π g2 1 − g1g2 µ ¶2 µ ¶
λR2 R1 − L L 

= . (7.30) 
π R2 − L R1 + R2 − L 

The intracavity focus can be found by transforming the focused Gaussian 
beam with the propagation matrix µ ¶µ  ¶

1 z1 1 0  
M = −10 1  2f1 

1 µ z1 
¶

1 − 
2f1 

z1 
= −1 , (7.31) 

1
2f1 

to its new focus by properly choosing z1, see Figure 7.9. 

R1 

R2 

0 

Wo 

z2 
z-z1 

L 

Figure 7.9: Two-mirror resonator 

Figure by MIT OCW. 

A short calculation results in 
g2 (g1 − 1) 

z1 = L 
2g1g2 − g1 − g2 

L(L − R2) 
= ,

2L − R1 − R2 

and, again, by symmetry 

g1 (g2 − 1) 
z2 = L 

2g1g2 − g1 − g2 

L(L − R1) 
= = L − z1. 

2L − R1 − R2 

(7.32) 

(7.33) 

(7.34) 

(7.35) 
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The spot size in the intracavity focus is 

µ ¶2 
4 λL g1g2 (1 − g1g2) 

wo = (7.36) 
π (2g1g2 − g1 − g2)2 µ ¶2
λ L(R1 − L)(R2 − L)(R1 + R2 − L) 

= . (7.37) 
π (R1 + R2 − 2L)2 

All these quantities for the two-mirror resonator are shown in Figure 7.11. 
Note, that all resonators and the Gaussian beam are related to the confocal 
resonator as shown in Figure 7.10. 

R1 R2 

R 

L 

General Resonator 

Confocal Resonator 

Figure 7.10: Two-mirror resonator and its relationship with the confocal 
resonator. 

Figure by MIT OCW. 
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Figure 7.11: From top to bottom: Cavity parameters, g1, g2, S, w0, w1, w2, 
z1 and z2 for the two-mirror resonator with R1 = 10 cm and R2 = 11 cm. 
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7.1.3 Four-Mirror Resonators 

More complex resonators, like the four-mirror resonator depicted in Figure 
7.12 a) can be transformed to an equivalent two-mirror resonator as shown 
in Figure 7.4 b) and c) 

        

   

          
            

      

           
            

             
         

           
 

             
            

   
             

     

Figure 7.12: a) Four-mirror resonator with gain medium of refractive index 
n, and thickness t. Folding angles have to be adjusted for astigmatism com-
pensation. b) Equivalent lens cavity. Note that the new focal length do not 
yet account for  the different equivalent radii of curvature due to nonnormal 
incidence on the mirrors. c) Equivalent two-mirror cavity with imaged end 
mirrors. 

Each of the resonator arms (end mirror,L1, R1) or (end mirror, L2, R2) is  
equivalent to a new mirror with a new radius of curvature R1 

0 
/2 positioned a 

distance d1/2 away from the old reference plane [12]. This follows simply from 
the fact that each  symmetric optical system  is  equivalent to a  lens positioned  
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at a distance d from the old reference plane µ ¶ µ ¶µ  ¶µ ¶
A B  1 d 1 0  1 d 

M = = −1 (7.38) 
C A  0 1  f 1 0 1Ã ³ ´ ! 
1− d d 2− d 

= f f 
−1 1− d 
f f 

with 

A− 1 
d = (7.39) 

C 
−1 

= C 
f 

The matrix of the resonator arm 1 is given byÃ !µ ¶µ  ¶µ ¶ 1− 4L1 2L1 0  1 2L1 1 0  ³ R1 ´ 1 
M = −2 −2 = −4 1− 2L1 1− 4L11 0 1 1

R1 R1 R1 R1 R1 

(7.40) 
from which we obtain 

R1 1 
d1 = − , (7.41) 

2 1− R1/(2L1) µ ¶2 
0R1 = − 

R1 1 
. (7.42) 

2 L1 [1− R1/(2L1)] 

For arm lengths L1/2 much larger than the radius of curvature, the new radius 
1of curvature is roughly by a factor of 

4 
R
L smaller. Typical values are R1 = 10  
1 

cm and L1 = 50 cm. Then the new radius of curvature is R1 
0 = 5 mm. The 

analogous equations apply to the other resonator arm 

2
d2 = −R 1 

, (7.43) 
2 1− R2/(2L2) µ ¶2
R2 1 

R2 
0 = − . (7.44) 

2 L2 [1− R2/(2L2)] 

Note that the new mirror radii are negative for Ri/Li < 1. The new distance 
L0 between the equivalent mirrors is then also negative over the region where 
the resonator is stable, see Fig.7.8. We obtain 

0 R1 +R2
L = L+ d1 + d2 = L− − δ (7.45) 

2 
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∙ ¸ ∙ ¸
R1 1 R2 1 

δ = − 1 + − 1 (7.46) 
2 1 − R1/(2L1) 2 1 − R2/(2L2) 

= −(R1 
0 + R2 

0 ) (7.47) 

or 
R1 + R2

L = − (R1 
0 + R2 

0 ) +  L0 (7.48) 
2 

From the discussion in section 7.1.2, we see that the stability ranges 
cover at most a distance δ. Figure 7.13 shows the resonator characteristics as 
a function of the cavity length L for the following parameters R1 = R2 = 10  
cm and L1 = 100  cm and L2 = 75  cm, which lead to 

d1 = −5.26 cm 
, (7.49) 

R1 
0 = −0.26 cm 

d2 = −5.36 cm 
, (7.50) 

R2 
0 = −0.36 cm 

L0 = L − 10.62 cm (7.51) 

Note, that the formulas (7.27) to (7.37) can be used with all quantities re-
placed by the corresponding primed quantities in Eq.(7.49) - (7.51). The 
result is shown in Fig. 7.13. The transformation from L to L0

0 
transforms 

the stability ranges according to Fig. 7.14. The confocal parameter of the 
laser mode is approximately equal to the stability range. 

Astigmatism Compensation 

So far, we have considered the curved mirrors under normal incidence. In a 
real cavity this is not the case and one has to analyze the cavity performance 
for the tangential and sagittal beam separately. The gain medium, usually a 
thin plate with a refractive index n and a thickness t, generates astigmatism. 
Astigmatism means that the beam foci for sagittal and tangential plane are 
not at the same position. Also, the stablity regions of the cavity are different 
for the different planes and the output beam is elliptical. This is so, because 
a beam entering a plate under an angle refracts differently in both planes, as 
described by different ABCD matricies for tangential and sagittal plane, see 
Table 7.1.Fortunately, one can balance the astigmatism of the beam due to 

http:Eq.(7.49
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Figure 7.13: From top to bottom: Cavity parameters, g1, g2, S, w0, w1, w2, 
z1 and z2 for the four-mirror resonator with R1 = R2 = 10 cm, L1 = 100 cm 
and L2 = 75 cm. 
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Figure 7.14: Transformed stability range for the four mirror resonator with 
R = (R1 + R2)/2. 

the plate by the astigmatism introduced by the curved mirrors at a specific 
incidence angle θ on the mirrors [12]. The focal length of the curved mirrors 
under an angle are given by 

fs = f/  cos θ 
(7.52) 

ft = f · cos θ 

The propagation distance in a plate with thickness t under Brewster’s angle is √ 
given by t n2 + 1/n. Thus, the equivalent traversing distances in the sagittal 
and the tangential planes are (Table 7.1), 

√ 
ds = t n2 + 1/n2 

(7.53) √ 
df = t n2 + 1/n4 

The different distances have to compensate for the different focal lengths in 
the sagittal and tangential planes. Assuming two idential mirrors R = R1 = 
R2, leads to the condition 

ds − 2fs = dt − 2ft. (7.54) 

With f = R/2 we find 

√ 2 − 1n 
R sin θ tan θ = Nt,  where N = n2 + 1  (7.55) 

n4 

Note, that t is the thickness of the plate as opposed to the path length of the 
beam in the plate. The equation gives a quadratic equation for cosθ 

cos 2 θ + 
Nt  
cos θ − 1 = 0  (7.56) 

R 
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Nt  Nt  

cos θ1/2 = − ± 1 +  (7.57) 
2R 2R 

Since the  angle is positive,  the only solution is  ⎡s ⎤ µ ¶2
Nt  Nt  

θ = arccos ⎣ 1 +  − ⎦ . (7.58) 
2R 2R 

This concludes the design and analysis of the linear resonator. 

7.1.4 The Kerr Lensing Effects 

At high intensities, the refractive index in the gain medium becomes intensity 
dependent 

n = n0 + n2I.  (7.59) 

The Gaussian intensity profile of the beam creates an intensity dependent 
index profile 

I(r) =  
2P 

exp 
h 
−2( r )2 

i 
. (7.60) 

πw2 w 

In the center of the beam the index can be appoximated by a parabola µ ¶ 
0 γ2 2 n(r) =  n0 1−

1 
r , where (7.61) 

2 s 
2P 10 8n2P 

n = , γ  = . (7.62) 0 n0 + n2 0πw2 w2 n0π 

A thin slice of a parabolic index medium is equivalent to a thin lens. If the 
parabolic index medium has a thickness t, then the ABCD matrix describing 
the ray propagation through the medium at normal incidence is [16] µ 1 ¶

cos γt sin γt 
n0 γMK = 0 . (7.63) −n0γ sin γt 
0 

cos γt 

Note that, for small t, we recover the thin lens formula (t → 0, but n0 
0 γ2t = 

1/f =const.). If the Kerr medium is placed under Brewster’s angle, we again 
have to differentiate between the sagittal and tangential planes. For the 
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sagittal plane, the beam size entering the medium remains the same, but for 
the tangential plane, it opens up by a factor n0 

0 

ws = w (7.64) 

wt = w · 0 n0 

The spotsize propotional  to  w2 has to be replaced by w2 =wswt.Therefore, 
under Brewster angle incidence, the two planes start to interact during prop-
agation as the gamma parameters are coupled together by s 

1 8n2P 
(7.65) γ = s 0 πwswt n0 s 

1 8n2P 
(7.66) γt = 0 πwswt n0 

Without proof (see [12]), we obtain the matrices listed in Table 7.2. For low 

Optical Element ABCD-Matrix µ ¶
Kerr Medium 
Normal Incidence 0 

1 cos γt 0 sin γt 
n γ= 0MK −n γ sin γt cos γt0µ ¶

Kerr Medium 
Sagittal Plane 0 

1 cos γ t 0 sin γ ts n γ s = 0 sMKs −n γ sin γ t cos γ t0 s s sµ ¶
Kerr Medium 
Tangential Plane 0 

1 cos γtt 30 sin γtt n= 0 γtMKt 3−n sin γtt cos γtt0 γt 

Table 7.2: ABCD matrices for Kerr media, modelled with a parabolic index ¡ ¢ 
profile n(r) =  n0 0 

1 γ2 21− r .
2 

peak power P , the Kerr lensing effect can be neglected and the matrices in 
Table 7.2 converge towards those for linear propagation. When the laser is 
mode-locked, the peak power P rises by many orders of magnitude, roughly 
the ratio of cavity round-trip time to the final pulse width, assuming a con-
stant pulse energy. For a 100 MHz, 10 fs laser, this is a factor of 106. With  
the help of the matrix formulation of the Kerr effect, one can iteratively find 
the steady state beam waists in the laser. Starting with the values for the 
linear cavity, one can obtain a new resonator mode, which gives improved 
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values for the beam waists by calculating a new cavity round-trip propaga-
tion matrix based on a given peak power P. This scheme can be iterated 
until there is only a negligible change from iteration to iteration. Using such 
a simulation, one can find the change in beam waist at a certain position in 
the resonator between cw-operation and mode-locked operation, which can 
be expressed in terms of the delta parameter 

1ws,t(P, z)− ws,t(P = 0, z) 
δs,t = (7.67) 

p ws,t(P = 0, z) 

where p is the ratio between the peak power and the critical power for self-
focusing ¡ ¢ 

= λ2 2 p = P/Pcrit, with Pcrit L/ 2πn2n0 . (7.68) 

To gain insight into the sensitivity of a certain cavity configuration for KLM, 
it is interesting to compute the normalized beam size variations δs,t as a 
function of the most critical cavity parameters. For the four-mirror cavity, 
the natural parameters to choose are the distance between the crystal and the 
pump mirror position, x, and the mirror distance L, see Figure 7.12. Figure 
7.15 shows such a plot for the following cavity parameters R1 = R2 = 10 cm, 
L1 = 104 cm, L2 = 86 cm, t = 2 mm, n = 1.76 and P = 200 kW. 
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Figure 7.15: Beam narrowing ratio δs, for cavity parameters R1 = R2 = 10  
cm, L1 = 104 cm, L2 cm, t = 2  .76 and P = 200= 86  mm, n = 1  kW 

Courtesy of Onur Kuzucu. Used with permission. 
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The Kerr lensing effect can be exploited in different ways to achieve mode 
locking. 

Soft-Aperture KLM 

In the case of soft-aperture KLM, the cavity is tuned in such a way that 
the Kerr lensing effect leads to a shrinkage of the laser mode when mode-
locked. The non-saturated gain in a laser depends on the overlap of the pump 
mode and the laser mode. From the rate equations for the radial photon 
distribution N(r) and the inversion NP (r) of a laser, which are proportional 
to the intensities of the pump beam and the laser beam, we obtain a gain, 
that is proportional to the product of N(r) and NP (r).If we assume that the 
focus of the laser mode and the pump mode are at the same position and 
neglect the variation of both beams as a function of distance, we obtain 

Z ∞ 

g ∼ N(r) ∗ NP (r)rdr Z0 
∞ ∙ ¸ ∙ ¸
2PP 2r2 2 2r2 

∼ exp − exp − rdr 
2 2 2 2πw w πw w0 P P L L 

With the beam cross sections of the pump and the laser beam in the gain 
medium, AP = πwP 

2 and AL = πwL 
2 ,we obtain 

g ∼ 
1 

. 
AP + AL 

If the pump beam is much stronger focused in the gain medium than the laser 
beam, a shrinkage of the laser mode cross section in the gain medium leads 
to an increased gain. When the laser operates in steady state, the change 
in saturated gain would have to be used for the investigation. However, the 
general argument carries through even for this case. Figure 7.16 shows the 
variation of the laser mode size in and close to the crystal in a soft-aperture 
KLM laser due to self-focusing. 
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Figure 7.16: Variation of laser mode size in and close to the crystal in a soft 
aperture KLM laser due to self-focussing. 

Figure by MIT OCW. 

Hard-Aperture KLM 

In a hard-aperture KLM-Laser, one of the resonator arms contains (usually 
close to the end mirrors) an aperture such that it cuts the beam slightly. 
When Kerr lensing occurs and leads to a shrinkage of the beam at this posi-
tion, the losses of the beam are reduced. Note, that depending on whether 
the aperture is positioned in the long or short arm of the resontor, the operat-
ing point of the cavity at which Kerr lensing favours or opposes mode-locking 
may be quite different (see Figure 7.13). 
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main cavity auxilary cavity 

t loss 

bias phase: π 

artificial fast 
saturable absorber 

Figure 7.17: Principle mechanism of APM. 

7.2 Additive Pulse Mode Locking 

Like  Kerr-Lens  Mode Locking  also  Additive  Pulse Mode Locking  (APM) is an  
artificial saturable absorber effect [17][18][19][20][21][22]. Figure 7.17 shows 
the general principle at work. A small fraction of the light emitted from the 
main laser cavity is injected externally into a nonlinear fiber. In the fiber 
strong SPM occurs and introduces a significant phase shift between the peak 
and the wings of the pulse. In the case shown the phase shift is π 

A part  of  the  modified and heavily distorted pulse is reinjected into the 
cavity in an interferometrically stable way, such that the injected pulse inter-
feres constructively with the next cavity pulse in the center and destructively 
in the wings. This superposition leads to a shorter intracavity pulse and the 
pulse shaping generated by this process is identical to the one obtained from 
a fast saturable absorber. Again, an artificial saturable absorber action is 
generated. 

gain nonlinear fiber 
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Figure 7.18: Schematic of nonlinear Mach-Zehnder interferometer. 

Figure by MIT OCW. 

Figure 7.18 shows a simple nonlinear interferometer. In practice, such 
an interferometer can be realized in a self-stabilized way by the use of both 
polarizations in an isotropic Kerr medium with polarizer and analyzer as 
shown in Figure 7.19. 

Polarizer Wave Plate Analyzer 

Kerr Medium 

Φ 

Figure 7.19: Nonlinear Mach-Zehnder interferometer using nonlinear polar-
ization rotation in a fiber [25]. 

Figure by MIT OCW. 

The Kerr effect rotates the polarization ellipse and thus transforms phase 
modulation into amplitude modulation. The operation is in one-to-one cor-
respondence with that of the nonlinear Mach-Zehnder interferometer of Fig. 
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7.18. The system of Figure 7.18 can be analyzed rather simply and thus it 
is worthwhile to look at the derivation and the implicit assumptions. The 
couplers are described by the scattering matrices ∙ √ ¸ 

r 1 − r2 
S = √ . (7.69) 

1 − r2 −r 
The outputs of the interferometer are then £ ¤ 

2 −jφ1 2)e −jφ2b1 = r e + (1  − r a, (7.70) ∙ ¸ ∙ ¸√ φ1 + φ2 φ2 − φ1b2 = 2r 1 − r2 exp −j sin a, (7.71) 
2 2 

φ1 and φ2 are the phase shifts in the two arms composed of both linear "bias" 
contributions φbi and the Kerr phase shifts φKi 

φi = (i = 1, 2), (7.72) φbi + φKi, 

φKi = κi |a|2 , (i = 1, 2). (7.73) 

The power in output port two is related to the linear and nonlinear losses ¡ ¢ |b2|2 2 2= 2r 1 − r (1 − cos [φ2 − φ1]) |a|2 

2 
¡ 

2 
¢ 

= 2r 1 − r {(1 − cos [φb2 − φb1]) + (7.74) 

+ sin  [φb2 − φb1] (φK2 − φK1)} |a|2 

Depending on the bias phase φb = φb2 − φb1, the amplitude loss is ¡ ¢ 
l = r 2 1 − r 2 (1 − cos φb) |a|2 , (7.75) 

and the γ−parameter of the equivalent fast saturable absorber is 
2 
¡ 

2 
¢ 

γ = (κ1 − κ2) r 1 − r sin φb. (7.76) 

If the interferometer forms part of a resonant system, the frequency of the 
system is affected by the phase shift of the interferometer and in turn affects 
the phase. 
When the resonant frequencies of the linear system (γ = δ = 0) without 

the interferometer should remain the resonant frequencies with the interfer-
ometer, the net phase shift of the interferometer has to be chosen to be zero. 

2Since a small loss has been assumed and hence r2 À 1 − r £ ¡ ¢ ¤ £ ¡ ¢ ¤ 
2 −jφb1 2 −jφb2 2 −jφb2Im r e + 1 − r e = Im  r 2(1 − jφb1) +  1 − r e = 0  

(7.77) 
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or 

− (1 − r2)
φb1 = 

2 
sin φb2. (7.78) 

r 

and cosφb1 = 1. With this adjustment, the response of the interferometer 
becomes 

b1 ≈ a + ∆a = a − (1 − r 2) (1  − cos φ) a 

−(1 − r 2) (φK2 − φK1) sin  φ a  (7.79) 

−jr2φK1 − j(1 − r 2)φK2 cos φ a,  

where we have set  φ = φb2. This gives for the parameters of the master 
equation l, γ and δ 

l = (1  − r 2) (1  − cos φ) , (7.80) ¡ ¢ 
γ = (κ1 − κ2) 1 − r 2 sin φ, (7.81) 

δ = κ1r 2 + κ2(1 − r 2) cos  φ. (7.82) 

Due to the special choice of the bias phase there is no contribution of the 
nonlinear interferometer to the linear phase. This agrees with expressions 
(7.75) and (7.76). The Kerr coefficients are 

µ ¶
2π n2

κ1 = r 2 LKerr, (7.83) 
λ Aeff µ ¶¡ 
2 
¢ 2π n2

κ2 = 1 − r LKerr. (7.84) 
λ Aeff 

Here, λ is the free space wavelength of the optical field, Aeff is the effective 
area of the mode, n2 the intensity dependent refractive index, and LKerr is the 
length of the Kerr medium. Figure 7.20 is the saturable absorber coefficient 
γ normalized to the loss and Kerr effect (note that γ goes to zero when the 
loss goes to zero) as a function of r2 . 
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2π n2Figure 7.20: Normalized saturable absorber coefficient γ/ LKerr lλ Aeff 

as a function of r2 with loss l as parameter [25]. 

Figure by MIT OCW. 

Large saturable absorber coefficients can be achieved at moderate loss 
values. 
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Chapter 8 

Semiconductor Saturable 
Absorbers 

Sofar we only considered artificial saturable absorbers, but there is of course 
the possibility to use real absorbers for modelocking. A prominent candidate 
for a saturable absorber is semiconductor material, which was pioneered by 
Islam, Knox and Keller [1][2][3] The great advantage of using semiconductor 
materials is that the wavelength range over which these absorbers operate 
can be chosen by material composition and bandstructure engineering, if 
semiconductor heterostructures are used (see Figure 8.1). Even though, the 
basic physics of carrier dynamics in these structures is to a large extent well 
understood [4], the actual development of semiconductor saturable absorbers 
for mode locking is still very much ongoing. 
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Image removed due to copyright restrictions. 

Please see: 
Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. Used with permission. 

Figure 8.1: Energy Gap, corresponding wavelength and lattice constant for 
various compound semiconductors. The dashed lines indicate indirect tran-
sitions. 
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Figure 8.2: Typical semiconductor saturable absorber structure. A semicon-
ductor heterostruture (here AlAs/GaAs) is grown on a GaAs-Wafer (20-40 
pairs). The layer thicknesses are chosen to be quarter wave at the center 
wavelength at which the laser operates. This structures acts as quarter-wave 
Braggmirror. On top of the Bragg mirror a half-wave thick layer of the low 
index material (here AlAs) is grown, which has a field-maximum in its center. 
At the field maximum either a bulk layer of GaAlAs or a single-or multiple 
Quantum Well (MQW) structure is embedded, which acts as saturable ab-
sorber for the operating wavelength of the laser. 

Figure by MIT OCW. 



       

          
          

            
            
            

              
             

          
            

             
      

           
              

            
           

     
 

             
          

            
          

8.1. CARRIER DYNAMICS AND SATURATION PROPERTIES 291 

A typical semiconductor saturable absorber structure is shown in Figure 
8.2. A semiconductor heterostruture (here AlAs/GaAs) is grown on a GaAs-
Wafer (20-40 pairs). The layer thicknesses are chosen to be quarter wave 
at the center wavelength at which the laser operates. These structures act 
as quarter-wave Bragg mirror. On top of the Bragg mirror, a half-wave 
thick layer of the low index material (here AlAs) is grown, which has a 
field-maximum in its center. At the field maximum, either a bulk layer of 
a compound semiconductor or a single-or multiple Quantum Well (MQW) 
structure is embedded, which acts as a saturable absorber for the operating 
wavelength of the laser. The absorber mirror serves as one of the endmirrors 
in the laser (see Figure 8.3). 

Figure 8.3: The semiconductor saturable absorber, mounted on a heat sink, 
is used as one of the cavity end mirrors. A curved mirror determines the 
spot-size of the laser beam on the saturable absorber and, therefore, scales 
the energy fluence on the absorber at a given intracavity energy. 

8.1 Carrier Dynamics and Saturation Prop-
erties 

There is a rich ultrafast carrier dynamics in these materials, which can be 
favorably exploited for saturable absorber design. The carrier dynamics in 
bulk semiconductors occurs on three major time scales (see Figure 8.4 [5]). 
When electron-hole pairs are generated, this excitation can be considered 
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as an equivalent two-level system if the interaction between the carriers is 
neglected, which is a very rough assumption. 

I 

II 

III 

E 

e - LO 

lh hh 

| k | 

e - e 

Eg 

Figure 8.4: Carrier dynamics in a bulk semiconducotr material. Three time 
scales can be distinguished. I. Coherent carrier dynamics, which at room tem-
perature may last between 10-50 fs depending on excitation density. II. Ther-
malization between the carriers due to carrier-carrier scattering and cooling 
to the lattice temperature by LO-Phonon emission. III. Carrier-trapping or 
recombination [5]. 

Figure by MIT OCW. 

There is a coherent regime (I) with a duration of 10-50 fs depending on 
conditions and material. Then in phase (II), carrier-carrier scattering sets 
in and leads to destruction of coherence and thermalization of the electron 
and hole gas at a high temperature due to the excitation of the carriers high 
in the conduction or valence band. This usually happens on a 60 - 100 fs 
time scale. On a 300fs - 1ps time scale, the hot carrier gas interacts with 
the lattice mainly by emitting LO-phonons (37 meV in GaAs). The carrier 
gas cools down to lattice temperature. After the thermalization and cooling 
processes, the carriers are at the bottom of the conduction and valence band, 



 

  

 

 

       

           
               

         
           

            
            

             
           
           
             
             

          
          

 

          
          

   

            
            

          
            

8.1. CARRIER DYNAMICS AND SATURATION PROPERTIES 293 

respectively. The carriers vanish (III) either by getting trapped in impurity 
states, which can happen on a 100 fs - 100 ps time scale, or recombine over 
recombination centers or by radiation on a nanosecond time-scale. Carrier-
lifetimes in III-VI semiconductors can reach several tens of nanoseconds and 
in indirect semiconductors like silicon or germanium lifetimes can be in the 
millisecond range. The carrier lifetime can be engineered over a large range 
of values from 100 fs - 30ns, depending on the growth conditions and purity 
of the material. Special low-temperature growth that leads to the formation 
or trapping and recombination centers as well as ion-bombardment can result 
in very short lifetimes [9]. Figure 8.5 shows a typical pump probe response 
of a semiconductor saturable absorber when excited with a 100 fs long pulse. 
The typical bi-temporal behavior stems from the fast thermalization (spectral 
hole-burning)[7] and carrier cooling and the slow trapping and recombination 
processes. 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

Time delay (ps) 

Figure 8.5: Pump probe response of a semiconductor saturable absorber 
mirror with a multiple-quantum well InGaAs saturable absorber grown at 
low temperature [3]. 

Figure by MIT OCW. 

With the formula for the saturation intensity of a two-level system Eq. 
(2.145), we can estimate a typical value for the saturation fluence Fs (satu-
ration energy density) of a semiconductor absorber for interband transitions. 
The saturation fluence FA, also related to the absorption cross-section σA, is 
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then given by 

~2 ¯̄
 

hf ¯¯ (8.1) FA = = IAτA = ¯̄
 
2σA �M2T2ZF 

~2n0 

2T2ZF 0 

¯ ¯ 2 (8.2) = ¯̄
 
¯̄�M 

The value for the dipole moment for interband transitions in III-V semicon-
ductors is about d = 0.5 nm with little variation for the different materials. 
Together with the a dephasing time on the order of T2 = 20 fs and a linear 

¯ 
refractive index n0 = 3, we obtain 

~2n0 µJ¯ (8.3) FA = 35  = ¯̄ �M ̄̄  
2 2cm

2T2ZF 0 

Figure 8.6 shows the saturation fluence measurement and pump probe trace 
with 10 fs excitation pulses at 800 nm on a broadband GaAs semiconductor 
saturable absorber based on a metal mirror shown in Figure 8.7 [11]. The 
pump probe trace shows a 50 fs thermalization time and long time bleach-
ing of the absorption recovering on a 50 ps time scale due to trapping and 
recombination. 

Image removed due to copyright restrictions. 

Please see: 
Jung, I. D., et al. "Semiconductor saturable absorber mirrors supporting sub-10 fs pulses." 
Applied Physics B 65 (1997): 137-150. 

Figure 8.6: Saturation fluence and pump probe measurements with 10 fs 
pulses on a broadband metal mirror based GaAs saturable absorber. The 
dots are measured values and the solid line is the fit to a two-level saturation 
characteristic [11]. 
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A typical value for the fluence at  wich damage is  observed on an absorber  
is on the order of a few mJ/cm2 . Saturating an absorber by a factor of 10 
without damaging it is still possible . The damage threshold is strongly 
dependent on the growth, design, fabrication and mounting (heat sinking) of 
the absorber. 

Image removed due to copyright restrictions. 

Please see: 
Fluck, R., et al. "Broadband saturable absorber for 10 fs pulse generation." Optics Letters 
21 (1996): 743-745. 

Figure 8.7: GaAs saturable absorber grown an GaAs wafer and transfered 
onto a metal mirror by post growth processing [10]. 

8.2 High Fluence Effects 

To avoid Q-switched mode-locking caused by a semiconductor saturable ab-
sorber, the absorber very often is operated far above the saturation fluence 
or enters this regime during Q-switched operation. Therefore it is also im-
portant to understand the nonlinear optical processes occuring at high exci-
tation levels [13]. Figure 8.8 shows differential pump probe measurements on 
a semiconductor saturable absorber mirror similar to Figure 8.2 but adapted 
to the 1.55 µm range for the developement of pulsed laser sources for optical 
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communication. The structure is a GaAs/AlAs-Bragg-mirror with an InP 
half-wave layer and an embedded InGaAsP quantum well absorber with a 
band edge at 1.530 µm. The mirror is matched to air with an Al203 single-
layer Ar-coating. At low fluence (5.6 µJ) the bleaching dynamics of the 
QWs are dominant. At higher fluences, two-photon absorption (TPA) and 
free carrier absorption (FCA) in the InP half-wave layer develop and enven-
tually dominate [13]. 

Figure 8.8: Differential reflectivity measurements of a semiconductor sat-
urable absorber mirror (GaAs/AlAs-Bragg-mirror and InP half-wave layer 
with embedded InGaAsP quantum well absorber for the 1.55 µm range. The 
mirror is matched to air with an Al203single-layer ar-coating). At low fluence 
the bleaching dynamics of the QWs are dominant. At higher fluences, TPA 
and FCA develop and enventually dominate [13]. 

Langlois, P. et al. "High fluence ultrafast dynamics of semiconductor saturable absorber mirrors." 
Applied Physics Letters 75 (1999): 3841-3483. Used with permission. 

The assumption that TPA and FCA are responsible for this behaviour has 
been verified experimentally. Figure 8.9 shows differential reflectivity mea-
surements under high fluence excitation at 1.56 µm for a saturable absorber 
mirror structure in which absorption bleaching is negligible (solid curve). The 
quantum well was placed close to a null of the field. A strong TPA peak is 
followed by induced FCA with a single ∼ 5ps decay for FCA. Both of these 
dynamics do not significantly depend on the wavelength of the excitation, 
as long as the excitation remains below the band gap. The ∼ 5ps decay is 
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attributed to carrier diffusion across the InP half-wave layer [13] The dashed 
curve shows the differential absorption of a ∼ 350 µm thick InP substrate in 
which a standing-wave pattern is not formed and the ∼ 5ps decay is absent. 
The inset in Figure 8.9 shows the power dependence of TPA and FCA. As 
expected, TPA and FCA vary linearly and quadratically, respectively, with 
pump power.The pump-induced absorption of the probe (TPA) is linearly 
dependent on the pump power. Since FCA is produced by carriers that are 
generated by the pump alone via TPA, FCA scales with the square of the 
pump power. 

Figure 8.9: Differential reflectivity measurements under high fluence excita-
tion at 1.56 µm for a saturable absorber mirror structure in which absorption 
bleaching is negligible (solid cuve). The ∼ 5 ps decay for FCA is attributed 
to carrier diffusion across the InP half-wave layer. The dahed curve shows 
the differential absorption of a ∼ 350 µm thick InP substrate in which a 
standing-wave pattern is not formed. (Inset) Linear and quadratic fluence 
dependence of the TPA and FCA components, respectively. 

Langlois, P. et al. "High fluence ultrafast dynamics of semiconductor saturable absorber mirrors." 
Applied Physics Letters 75 (1999): 3841-3483. Used with permission. 

These high fluence effects lead to strong modifications of the saturation 
characteristics of a saturable absorber. The importance of the high fluence 
effects was first recognized in resonant absorbers (see Figure 8.10). The field 
inside the absorber is enhanced by adding a top reflector and a proper spacer 
layer. This leads to an effective lower saturation fluence when viewed with 
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respect to the intracavity fluence or intensity. Therefore, high fluenece effects 
are already reached at low intracavity intensities (see Figure 8.9). 

Figure 8.10: A top reflector is added to the semiconductor saturable absorber 
such that the field in the quantum well is resonantely enhanced by about a 
factor of 10 in comparison to the non resonant case. 

Theon, E. R., et al. "Two-photon absorption in semiconductor saturable absorber mirrors." 
Applied Physics Letters 74 (1999): 3927-3929. Used with permission. 
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Figure 8.11: Saturation fluence measurement (dots) of the resonant absorber 
shown in Figure 8.10 with 150 fs pulses at 1.53 µm. Fits are shown using 
a fast or slow saturable absorber and TPA. Also the scaled saturation char-
acteristics of the absorber are shown when used in a laser with longer pulse 
durations. 

Theon, E. R., et al. "Two-photon absorption in semiconductor saturable absorber mirrors." 
Applied Physics Letters 74 (1999): 3927-3929. Used with permission. 

The roll-over of the saturation characteristics has positive and negative 
consequences for mode locking. First, if the roll-over can be reached with the 
available intracavity pulse energy, Q-switching can be suppressed. Second if 
the roll-over occurs too early, the pulses break up into multiple pulses to 
optimize the net gain for the overall pulse stream. 

8.3 Break-up into Multiple Pulses 

In the treatment of mode locking with fast and slow saturable absorbers we 
only concentrated on stability against energy fluctuations (Q-switched mode 
locking) and against break through of cw-radiation or continuum. Another 
often observed instability is the break-up into multiple pulses. The existience 
of such a mechanism is obvious if soliton pulse shaping processes are present. 
If we assume that the pulse is completely shaped by the solitonlike pulse 
shaping processes, the FWHM pulse width is given by 

4 |D2|
τFWHM  = 1.76 . (8.4) 

δW 



      

             
          

          
             

           
           

           
           

            
             
              

              
              

            
             

            
             

            
       

          

 
   

 
 

            
           

 
 

    
 

 

             
         

          
 

 

            
      

  
  

     
  

300 CHAPTER 8. SEMICONDUCTOR SATURABLE ABSORBERS 

where W denotes the pulse energy. D2 the negative disperison and δ the self-
phase modulation coefficient. With increasing pulse energy, of course the 
absorber becomes more strongly saturated, which leads to shorter pulses ac-
cording to the saturable absorber and the soliton formula. At a certain point, 
the absorber will saturate and can not provide any further pulse stabiliza-
tion. However, the Kerr nonlinearity may not yet saturate and, therefore, 
the soliton formula dictates an ever decreasing pulse width for increasing 
pulse energy. Such a process continues, until either the continuum breaks 
through, because the soliton loss becomes larger than the continuum loss, or 
the pulse breaks up into two pulses. The pulses will have reduced energy 
per pulse and each one will be longer and experiences a reduced loss due 
to the finite gain bandwidth. Due to the reduced pulse energy, each of the 
pulses will suffer increased losses in the absorber, since it is not any longer 
as strongly saturated as before. However, once the absorber is already over 
saturated by the single pulse solution, it will also be strongly saturated for 
the double-pulse solution. The filter loss due to the finite gain bandwidth 
is heavily reduced for the double-pulse solution. As a result, the pulse will 
break up into double-pulses. To find the transition point where the break-up 
into  multiple pulses occurs,  we write down  the round-trip  loss due  to  the gain  
and filter losses and the saturable absorber according to 6.35 

Df
lm = + qs(Wm), (8.5) 

3τ 2 
m 

where, qs(Wm) is the saturation loss experienced by the pulse when it prop-
agates through the saturable absorber. This saturation loss is given by 

+∞Z 
1 

qs(W ) =  q(T, t)|As(t)|2dt. (8.6) 
W 
−∞ 

This expression can be easily evaluated for the case of a sech-shaped steady 
state pulse in the fast saturable absorber model with 

q0 EA 
qfast(t) =  , where PA = . (8.7) |A(t)|2 

1 +  
PA 

τA 

and the slow saturable absorber model, where the relaxation term can be 
neglected because of τA À τ .  ∙ Z t ¸

1 
qslow(t) = q0 exp − |As(t

0)|2dt0 . (8.8) 
EA −∞ 
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For the slow absorber 8.8 the absorber losses (8.6) can be evaluated indepen-
dent of pulse shape to be h i 

1− exp − W 

qs.slow(W ) = q0 
EA 

. (8.9) 
W 
EA 

Thus for a slow absorber the losses depend only on pulse energy. In contrast, 
for a fast absorber, the pulse shape must be taken into account and, for a 
sech-shaped pulse, one obtaines [14] s ∙r ¸

1 α W 
qs,fast(W ) = q0 tanh−1 , with α = , (8.10) 

α (1 + α) 1 + α 2PAτ 

and the pulse energy of one pulse of the multiple pulse solution. The energy 
is determined from the total gain loss balance 

g0 
= l + lm. (8.11) 

1 + mWm 
PLTR 

Most often, the saturable absorber losses are much smaller than the losses 
due to the output coupler. In that case the total losses are fixed independent 
of the absorber saturation and the filter losses. Then the average power does 
not depend on the number of pulses in the cavity. If this is the case, one 
pulse of the double pulse solution has about half of the energy of the single 
pulse solution,  and,  therefore,  the width  of  the double pulse is  twice as large  
as that of the single pulse according to (8.4). Then the filter and absorber 
losses for the single and double pulse solution are given by 

Df
l1 = + qs(W1), (8.12) 

3τ 21 

Df W1
l2 = + qs( ). (8.13) 

12τ 21 2 
The single pulse solution is stable against break-up into double pulses as long 
as 

l1 ≤ l2 (8.14) 

is fulfilled.  This is the  case,  if the  difference in the filter losses between the 
single and double pulse solution is smaller than the difference in the saturable 
absorber losses 

Df W 
< ∆qs(W ) = qs( )− qs(W ). (8.15) 

4τ 21 2 
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Figure 8.12 shows the difference in the saturable absorption for a single 
pulse and a double pulse solution as a function of the ratio between the 
single pulse peak power and saturation power for a fast absorber and as a 
function of the ratio between the single pulse energy and saturation energy 
for a slow absorber. Thus, for both cases the optimum saturation ratio, at 
which the largest discrimination between single and double pulses occurs and, 
therefore, the shortest pulse before break-up into multiple pulses occurs, is 
about 3. Note, that to arrive at this absolute number, we assumed that the 
amount of saturable absoption is neglegible in comparison with the other 
intracavity losses, so that the saturated gain level and the gain and filter 
dispersion are fixed. 

Image removed due to copyright restrictions. 

Please see: 
Kartner, F. X., J. A. d. Au, and U. Keller. "Mode-Locking with Slow and Fast Saturable Absorbers--
What's the Difference." Selected Topics in Quantum Electronics 4 (1998): 159. 

Figure 8.12: Difference in loss experienced by a sech-shaped pulse in a slow 
(- - -) and a fast (____) saturable absorber for a given pulse energy or peak 
power , respectively. 

At this optimum operation point, the discrimination against multiple 
break-up of a fast absorber is about 50% larger than the value of the slow ab-
sorber. Since the minimum pulsewidth scales with the square root of ∆qs(W ), 
see Eq. (8.15), the minimum pulsewidth of the slow absorber is only about 
22% longer than with an equally strong fast saturable absorber. Figure 8.12 
also predicts that a laser modelocked by a fast saturable absorber is much 
more stable against multiple pulse break-up than a slow saturable absorber if 
it is oversaturated . This is due to the fact that a fast saturable absorber sat-
urates with the peak power of the pulse in comparison with a slow saturable 
absorber, which saturates with the pulse energy. When the pulse breaks up 
into a pulse  twice as long with  half  energy in  each,  the peak power  of  the  
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individual pulses changes by a factor of four. Therefore, the discrimination 
between long and short pulses is larger in the case of a fast saturable ab-
sorber, especially for strong saturation. Note that Fig. 8.12 is based on the 
simple saturation formulas for fast and slow saturable absorbers Eqs. (8.9) 
and (8.10). We compare these predictions with numerical simulations and 
experimental observations made wiht a Nd:glass laser [15][16]. 
The Nd:glass laser described in ref. [15] was modelocked by a saturable 

absorber which showed a fast recovery time of τA = 200  fs, a modulation 
depth of q0 = 0.005 and a saturation energy of EA = 17 nJ . The other laser 
parameters can be found in [16]. Without the solitonlike pulse formation 
(GDD and SPM is switched off), the laser is predicted to produce about 
200 fs short pulses with a single pulse per round-trip, very similar to what 
was discussed in the fast saturable absorber mode locking in Chapter 6. The 
dynamics becomes very much different if the negative GDD and positive SPM 
are included in the simulation, (see Figure 8.13) 

Image removed due to copyright restrictions. 

Please see: 

Kartner, F. X., J. A. d. Au, and U. Keller. "Mode-Locking with Slow and Fast Saturable Absorbers--
What's the Difference." Selected Topics in Quantum Electronics 4 (1998): 159. 

Figure 8.13: Each trace shows the pulse intensity profile obtained after 20,000 
cavity round-trips in a diode-pumped Nd:glass laser according to [15]. When 
the laser reaches the double-pulse regime the multipel pulses are in constant 
motion with respect to each other. The resulting pulse train is not any longer 
stationary in any sense. 
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With increasing small signal gain, i. e. increasing pulse energy, the soliton 
shortens to 80 fs due to the solitonlike pulse shaping, (Figure 8.13). 

Image removed due to copyright restrictions. 

Please see: 

Kartner, F. X., J. A. d. Au, and U. Keller. "Mode-Locking with Slow and Fast Saturable Absorbers--
What's the Difference." Selected Topics in Quantum Electronics 4 (1998): 159. 

Figure 8.14: Steady state pulse width ( °R ) and time-bandwidth product (o) 
for a Nd:glass laser modelocked by a saturable absorber with a 200 fs recovery 
time with GDD and SPM included, shown as a function of the intracavity 
pulse energy. The time-bandwidth product is only meaningful in the single 
pulse regime, where it is shown. The pulses are almost transform limited 
sech-pulses. The pulse width in the multiple pulseing regime is only unique 
in the parameter region where multiple pulses of similar height and width 
are achieved. The pulses break up into multiple pulses when the absorber is 
about three times saturated. 

The pulse width follows nicely the soliton relation (8.4), (dash-dotted 
line). The pulses become shorter, by about a factor of 2.5, than without 
GDD and SPM before the pulse breaks up into longer double-pulses. The 
pulse break-up into double-pulses occurs when the absorber is about two 
times saturated, close to the point where the shortest pulse can be expected 
according to the discussion above. Figures 8.13 shows, that the break-up 
point for the double pulses is also very close to the instability for continuum 
break-through. Indeed the first pulse train after break-up at a small signal 
gain of g0 = 0.09 shows the coexistance of a longer and a shorter pulse, 
which indicates continuum break-through. But the following five traces are 
double pulses of equal height and energy. For even stronger saturation of the 
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absorber the double-pulses break-up into triple pulses and so on. Then the 
dynamics becomes even more complex. This behavior has been observed in 
detail in a Nd:glass laser [15], (see Figure 8.15), as well as in Cr4+:YAG lasers 
[17]. The simulations just discussed match the parameters of the Nd:glass 
experiments. 

Image removed due to copyright restrictions. 

Please see: 

Kartner, F. X., J. A. d. Au, and U. Keller. "Mode-Locking with Slow and Fast Saturable Absorbers--
What's the Difference." Selected Topics in Quantum Electronics 4 (1998): 159. 

Figure 8.15: Pulsewidth in a Nd:glass laser [15] as a function of intracavity 
stored energy, i.e. pulse energy for a single pulse per round-trip. Dots mea-
sured values and solid line fits for a single and double-pulse solitonlike pulse 
stream. 

Figure 8.15 clearly shows the scaling of the observed pulse width according 
to the soliton formula until the pulses break up at a saturation ratio of about 
2. Notice, that the absorber recovery time of 200 fs is not much shorter than 
the pulse width achieved. Nevertheless, the optimum saturation ratio is close 
to  the expected  one of about  3.  The break-up  into pure double and  triple  
pulses can be observed more clearly if the absorber recovery time is chosen to 
be shorter, so that continuum break-through is avoided. Figure 8.16 shows 
the final simulation results obtained after 20,000 round-trips in the cavity, if 
we reduce the absorber recovery time from 200 fs to 100 fs, again for different 
small signal gain, e.g. intracavity power levels and pulse energies. Now, we 
observe a clean break-up of the single-pulse solution into double-pulses and 
at even higher intracavity power levels the break-up into triple pulses without 
continuum generation in between. Note that the spacing between the pulses 
is very much different from what has been observed for the 200 fs response 
time. This spacing will depend on the details of the absorber and may also 
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be influenced by the dynamic gain saturation even if it is only a very small 
effect in this case [17].  

Image removed due to copyright restrictions. 

Please see: 

Kartner, F. X., J. A. d. Au, and U. Keller. "Mode-Locking with Slow and Fast Saturable Absorbers--
What's the Difference." Selected Topics in Quantum Electronics 4 (1998): 159. 

Figure 8.16: Each trace shows the pulse intensity profile obtained after 20,000 
cavity round-trips for an absorber with a response time τA = 100 fs for 
different values of the small-signal gain. The simulations are always started 
with  a 1 ps initial  pulse shown  as  the  first trace.  Note that only  the  single  
pulse solutions are stationary. 

8.4 Summary 

Real absorbers do have the advantage of providing direct amplitude modula-
tion and do not exploit additional cavities or operation of the resonator close 
to its stability boundary to achieve effective phase to amplitude conversion. 
Especially in compact resonator designs, as necessary for high-repitition rate 
lasers in the GHz range, semiconductor saturable absorbers with their low 
saturation energies and compactness offer unique solutions to this important 
technological challenge. 
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Chapter 9 

Noise and Frequency Control 

So far we only considered the deterministic steady state pulse formation in 
ultrashort pulse laser systems due to the most important pulse shaping mech-
anisms prevailing in todays femtosecond lasers. Due to the recent interest 
in using modelocked lasers for frequency metrology and high-resolution laser 
spectroscopy as well as phase sensitive nonlinear optics the noise and tuning 
properties of mode combs emitted by modelocked lasers is of much current 
interest. Soliton-perturbation theory is well suited to successfully predict 
the noise behavior of many solid-state and fiber laser systems [1] as well as 
changes in group- and phase velocity in modelocked lasers due to intracavity 
nonlinear effects [5]. We start off by reconsidering the derivation of the mas-
ter equation for describing the pulse shaping effects in a mode-locked laser. 
We assume that in steady-state the laser generates at some position z (for 
example at the point of the output coupler) inside the laser a sequence of 
pulses with the envelope a(T = mTr, t). These envelopes are the solutions 
of the corresponding master equation, where the dynamics per roundtrip is 
described on a slow time scale T = mTR. Then the pulse train emitted from 
the laser including the carrier is 

+∞ h ³ ³ ´ ´iX 1j ωc (t−mTR+ − 1 2mL 
vg vpA(T, t) =  a(T = mTr, t)e . (9.1) 

m=−∞ 

with repetition rate fR = 1/TR and center frequency ωc. Both are in general 
subject to slow drifts due to mirror vibrations, changes in intracavity pulse 
energy that might be further converted into phase and group velocity changes. 
Note, the center frequency and repetition rate are only defined for times long 
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compared to the roundtrip time in the laser. Usually, they only change on 
a time scale three orders of magnitude longer than the expectation value of 
the repetition rate. 

9.1 The Mode Comb 

Lets suppose the pulse envelope, repetition rate, and center frequency do not 
change any more. Then the corresponding time domain signal is sketched in 
Figure 9.1. 

Figure 9.1: Pulse train emitted from a noise free mode-locked laser. The 
pulses can have chirp. The intensity envelope repeats itself with repetition 
rate fR. The electric field is only periodic with the rate fCE if it is related to 
the repetion rate by a rational number. 

The pulse a(T = mTr, t) is the steady state solution of the master equa-
tion describing the laser system, as studied in chapter 6. Let’s assume that 
the steady state solution is a purturbed soliton according to equation (6.64). µ ¶ 

Tt − t0 −jφ0 TRa(t, T ) =  A0 sech( ) + ac(T, t) e (9.2) 
τ 

with the soliton phase shift 

1 |D|
φ0 = δA2 = (9.3) 

2 0 τ 2 
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Thus, there is a carrier envelope phase shift ∆φCE from pulse to pulse given 
by µ ¶¯ ¯ ¯ ∆φCE =

1 − 
1 ¯ 2L − φ0 +mod(2π) (9.4) 

vg vpµ ωc¶
vg

= ωcTR 1− − φ0 +mod(2π) vp 

The Fourier transform of the unperturbed pulse train is 
+∞X 

Â(ω) = â(ω − ωc) ej(∆φCE−(ω−ωc)TR)m 

m=−∞ 

+∞ ³ ´X 
jmTR 

∆φCE −ω
TR= â(ω − ωc) e 

n=−∞ 

+∞ µ µ ¶¶X ∆φCE= â(ω − ωc) TRδ ω − + nωR (9.5) 
TR n=−∞ 

which is shown in Figure 9.2. Each comb line is shifted by the carrier-envelope 
∆φCEoffset frequency fCE = 
2πTR 

from the origin 

Figure 9.2: Opitcal mode comb of a mode-locked laser output. 

To obtain self-consistent equations for the repetition rate, center fre-
quency and the other pulse parameters we employ soliton-perturbation the-
ory. This is justified for the case, where the steady state pulse is close to a 
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soliton, i.e. for the fast saturable absorber case, this is the chirp free solution, 
occuring when the ratio of gain filtering to dispersion is equal to the ratio 
of SAM action to self-phase modulation, see Eq. (6.61). Then the pulse 
solution in the m−th roundtrip is a solution of the nonlinear Schrödinger 
Equation stabilized by the irreversible dynamics and subject to additional 
perturbations 

∂ ∂2 

TR A = jD A − jδ|A|2A 
∂T ∂t2 

(9.6) 

+(g − l)A +Df 
∂2 

A + γ|A|2A + Lpert 
∂t2 

Due to the irreversible processes and the perturbations the solution to (9.6) 
is a soliton like pulse with perturbations in amplitude, phase, frequency and 
timing plus some continuum 

A(t, T ) = [(Ao +∆Ao ) sech[(t − ∆t)/τ ] + ac(T, t)] 
(9.7) 

−jφ T/TR j∆p(T )t −jθ0e o e e 

with pulse energy w0 = 2A
2 
oτ . 

The perturbations cause fluctuations in amplitude, phase, center fre-
quency and timing of the soliton and generate background radiation, i.e. 
continuum 

∆A(T, t) =  ∆w(T )fw(t) +∆θ(T )fθ(t) +∆p(T )fp(t) 
(9.8) 

+∆t(T )ft(t) + ac(T, t). 

where,  we  rewrote the  amplitude perturbation as an energy perturbation. 
The dynamics of the pulse parameters due to the perturbed Nonlinear Schrödinger 
Equation (9.6) can be projected out from the perturbation using the adjoint 
basis and the orthogonality relation, see Chapter 3.5. Note, that the fi cor-
respond to the first component of the vector in Eqs.(3.22) - (3.25). The dy-
namics of the pulse parameters due to the perturbed Nonlinear Schrödinger 
Equation (9.6) can be projected out from the perturbation using the adjoint 

¯basis fi 
∗ corresponding to the first component of the vector in Eqs.(3.44) -

(3.47) and the new orthogonality relation ½Z +∞ ¾ 
¯Re fi 
∗ (t)fj(t)dt = δi,j. (9.9) 

−∞ 

http:Eqs.(3.44
http:Eqs.(3.22
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We obtain ½Z +∞ ¾ 
∂ 1 1 ¯∆w = − ∆w + Re f w 

∗ (t)Lpert(T, t)dt (9.10) 
∂T τw TR −∞½Z +∞ ¾ 

∂ 2φo ∆w 1 ¯∆θ(T ) =  + Re fθ 
∗ (t)Lpert(T, t)dt (9.11) 

∂T TR wo TR −∞½Z +∞ ¾ 
∂ 1 1 ¯∆p(T ) =  − ∆p + Re fp 

∗ (t)Lpert(T, t)dt (9.12) 
∂T τ p TR ½−∞Z +∞ ¾ 

∂ −2|D| 1 ¯∆t = ∆ω + Re ft 
∗ (t)Lpert(T, t)dt (9.13) 

∂T TR TR −∞ 

Note, that the irreversible dynamics does couple back the generated con-
tinuum to the soliton parameters. Here, we assume that this coupling is 
small and neglect it in the following, see [1]. Due to gain saturation and the 
parabolic filter pulse energy and center frequency fluctuations are damped 
with normalized decay constants 

1 
= (2gd − 2γA2 

o) (9.14) 
τw 

1 4 gs 1 
= (9.15) 

τ p 3 Ω2 
gτ
2 TR 

Here, gs is the saturated gain and gd is related to the differential gain by 

go 
gs = wo 

(9.16) 
1 +  

PLTR 

dgs 
gd = · wo (9.17) 

dwo 

Note, in this model we assumed that the gain instantaneously follows the 
intracavity average power or pulse energy, which is not true in general. How-
ever,  it is straight forward  to  include the  relaxation  of  the gain by adding  a  
dynamical gain model to the perturbation equations. For simplicity we shall 
neglect this here. Since the system is autonomous, there is no retiming and 
rephasing in the free running system. 
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9.2 Noise in Mode-locked Lasers 

Within this framework the response of the laser to noise can be easily in-
cluded. The spontaneous emission noise due to the amplifying medium with 
saturated gain gs and excess noise factor Θ leads to additive white noise in 
the perturbed master equation (9.6) with Lpert = ξ(t, T ), where  ξ is a white 
Gaussian noise source with autocorrelation function 

hξ(t0, T 0)ξ(t, T )i = TR 
2Pnδ(t − t0)δ(T − T 0) (9.18) 

where the spontaneous emission noise energy Pn · TR with 

2gs ~ωc
Pn = Θ ~ωc = Θ (9.19) 

TR τ p 

is  added to the  pulse within each roundtrip in the  laser.  τ p is the cavity decay 
time or photon lifetime in the cavity. Note, that the noise is approximated 
by white noise, i.e. uncorrelated noise on both time scales t, T . The noise 
between different round-trips is certainly uncorrelated. However, white noise 
on the fast time scale t, assumes a flat gain, which is an approximation. 
By projecting out the equations of motion for the pulse parameters in the 
presence of this noise according to (9.8)—(9.13), we obtain the additional 
noise sources which are driving the energy, center frequency, timing and 
phase fluctuations in the mode-locked laser 

∂ 
∆w = − 

1 
∆w + Sw(T ), (9.20) 

∂T τw 

∂ 2φo ∆w 
∆θ(T ) =  + Sθ(T ), (9.21) 

∂T TR wo 

∂ 
∆p(T ) = − 

1 
∆p + Sp(T ), (9.22) 

∂T τ p 

∂ −2|D|
∆t = ∆p + St(T ), (9.23) 

∂T TR 

http:9.8)�(9.13


      

 

 
  

   

 

     
  

 
  

     

 

    
 

  
  

        
  

 

 
  

         
  

         

          
 

 

 

            
 

   
 

     
  

 
          

  

          

          
          

 

 

             
 

            
 

 

 
       

   

  
  

 
 

           
  

 
  

     

 

      
 
     

 

 

 
  

   

 
      

 
   

 
      

 

9.2. NOISE IN MODE-LOCKED LASERS 315 

with 

1 
½Z +∞ 

f̄∗ Re 

¾ 

(9.24) Sw(T ) =  (t)ξ(T, t)dt ,
TR

w ½Z−∞ 
+∞1 

f̄∗ 

¾
¾
¾ 

(9.25) Sθ(T ) =  Re ,θ (t)ξ(T, t)dt TR ½Z−∞ 
+∞1 

f̄∗ (9.26) Sp(T ) =  Re (t)ξ(T, t)dt ,pTR −∞½Z +∞1 
f̄t 
∗ (9.27) St(T ) =  Re 

TR −∞ 
(t)ξ(T, t)dt . 

The new reduced noise sources obey the correlation functions 

Pn 

4w0µ
4 

(T 0)Sw δ(T − T 0),(T )ihSw (9.28) = 

π2 ¶ 
PnhSθ(T 0)Sθ(T )i δ(T − T 0), (9.29) = 1 +  

3 12 wo 

hSp(T 0)Sp(T )i = 
4 Pn 

δ(T − T 0),
3 wo 

(9.30) 

hSt(T 0)St(T )i = 
π2 Pn 

δ(T − T 0),
3 wo 

(9.31) 

hSi(T 0)Sj (T )i = 0  for i 6= j. (9.32) 

The power spectra of amplitude, phase, frequency and timing fluctuations 
are defined via the Fourier transforms of the autocorrelation functions Z +∞ 

¯̄̄̄
 

|∆ŵ(Ω)|2 = h∆ŵ(T + τ)∆ŵ(T )ie −jΩτ dτ, etc. (9.33) 
−∞ 

After a short calculation, the power spectra due to amplifier noise are 
2 ¯̄̄̄

 
∆ŵ(Ω) 4 Pn 

= , (9.34) 
1/τ 2 ∙w + Ω2wo wo ¶µ

φ2 
oπ2

¸
4 Pn1 Pn 16|∆θ̂(Ω)|2 , (9.35) 1 +  += 

T 2 
RΩ2 3 12 wo (1/τ 2 

p + Ω2) wo 

1 4 Pn|∆p̂(Ω)τ |2 = , (9.36) 
1/τ ∙ 

2 
p + Ω2 3 wo ¯̄̄̄

 

¯̄̄̄
 

2 
4 4|D|2∆t̂(Ω) π2 Pn 

¸
Pn1 1 

. (9.37) = + 
3 T 2 

RΩ2 3 wo (1/τ 2 
ω + Ω2) τ 4 woτ 



       

         
      

 
 

   
  

      
  

           
 

  
          

  
 

 
 

 
 

 
 

        
    

 
 

    
     

   
   

       
    

   

             
            

            
           

           
          
           

         
              

   

  
  

           
 

           

  
 

 
 

       
  

     

316 CHAPTER 9. NOISE AND FREQUENCY CONTROL 

These equations indicate, that energy and center frequency fluctuations be-
come stationary with mean square fluctuations *µ +¶2

∆w Pnτw
= 2  (9.38) 

wo wo 

τ 22 Pn ph(∆ωτ)2i = (9.39) 
3 wo 

whereas the phase and timing undergo a random walk with variances µ ¶
4 π2 Pn

σθ(T ) =  h(∆θ(T ) − ∆θ(0))2i = 1 +  |T | (9.40) 
3 12 wo µ ∙ ¶

φ2 Pn |T |¸ |T |o+16 
T 2 τ 3 

p exp − − 1 +  
R wo τ p τw *µ +¶2

∆t(T ) − ∆t(0) π2 Pn
σt(T ) =  = |T | (9.41) 

τ 3 wo µ ∙ ¸ ¶
4 4|D|2 Pn |T | |T |

τ 3+
3 T 2 τ 4 ω exp − − 1 +  

R wo τ p τ p 

The phase noise causes the fundamental finite width of every line of the 
mode-locked comb in the optical domain. The timing jitter leads to a fi-
nite linewidth of the detected microwave signal, which is equivalent to the 
lasers fundamental fluctuations in repetition rate. In the strict sense, phase 
and timing in a free running mode-locked laser (or autonomous oscillator) 
are not anymore stationary processes. Nevertheless, since we know these 
are Gaussian distributed variables, we can compute the amplitude spectra of 
phasors undergoing phase diffusion processes rather easily. The phase differ-
ence ϕ = ∆θ(T ) − ∆θ(0) is a Gaussian distributed variable with variance σ 
and propability distribution 

1 − ϕ
2  ® 

p(ϕ) =  √ e 2σ , with σ = ϕ2 . (9.42) 
2πσ 

Therefore, the expectation value of a phasor with phase ϕ is  ® 1 
Z +∞

− ϕ
2 

ejϕ = √ e 2σ ejϕdϕ (9.43) 
2πσ −∞ 

− 1 σ = e 2 . 



      

    
 

              
 

              
       

      
          

 
 

     

           
           

             
            

            
 

 
 

   
     

  

         

    

   
      

 
 

 
 

             

       
            

   

           

 
            

  
 

 
 

9.2. NOISE IN MODE-LOCKED LASERS 317 

9.2.1 The Optical Spectrum µ ¶ 
Tt − t0 −jφ0a(t, T ) =  A0 sech( ) +  ac(T, t) e TR (9.44) 

τ 

In the presence of noise the laser output changes from eq.(9.1) to a random 
process. Neglecting the background continuum we obtain: 

+∞ µ ¶X t − mTR − ∆t(mTR)
A(t, T = mTR) =  (A0 + ∆A(mTR)) sec h (9.45) 

τ 
m=−∞ 

j∆φCE ·m j(ωc+∆p(mTR))t −j∆θ(mTR)e e e 

For simplicity, we will neglect in the following amplitude and carrier fre-
quency fluctuations in Eq.(9.45), because they are bounded and become only 
important at large offsets from the comb. However, we keep them in the ex-
pressions for the phase and timing jitter Eqs.(9.34) and (9.36). We assume 
a stationary process, so that the optical power spectrum can be computed 
from 

ˆ ˆS(ω) = lim  
1 hAT 

∗ (ω)AT (ω)i (9.46) 
T=2NTR→∞ T 

with the spectra related to a finite time interval 

∆φCE −ω
Â 
T (ω) =  

R T 
A(t)e−jωtdt = â0(ω − ωc) 

PN e
jmTR 

³ 

TR 

´ 

−T m=−N 
(9.47) 

−j[(ω−ωc)∆t(mTR)+∆θ(mTR)]e 

where â0(ω) is the Fourier transform of the pulse shape. In this case µ ¶Z ∞ t ³ π ´ 
â0(ω) =  A0 sec h e −jωtdt = A0πτ sec h ωτ (9.48) 

τ 2−∞ 

With (9.46) the optical spectrum of the laser is given by 

³ ´ 
φCE

1 PN PM jTR −ω (m−m0)
S(ω) = limN→∞ |â0(ω − ωc)|2 2NTR m0=−N m=−N e TR 

+j[2π(f−fc)(∆t(mTR)−∆t(m0TR))−(θ(mTR)−θ(m0TR))]ihe 
(9.49) 

http:Eqs.(9.34
http:Eq.(9.45


       

             
            
       

 

     
 

 
 

 
  

 
   

 
            
  

  
 

   
  

 
     

 
  

     

               
           

              
      

 
  

 
 

           
   

    
              

   
  

 

   
 

  
 
 

 
       

   
 

  
    

       
   

  
 

    

 
      

  

318 CHAPTER 9. NOISE AND FREQUENCY CONTROL 

Note, that the difference between the phases and the timing only depends on 
the difference k = m−m0 . In the current model phase and timing fluctuations 
are uncorrelated. Therefore, for N →∞ we obtain 

³ ´ 

)|2 1 P∞ jTR 
∆φCE −ω k

S(ω) =  |â0(ω − ωc k0T =−∞ e TR 
R  ® 

+j[2π(ω−ω0)(∆t((m+k)TR)−∆t(mTR))]i −j(θ((m+k)TR)−θ(mTR))he e . 
(9.50) 

The expectation values are exactly of the type calculated in (9.43), which 
leads to 

∞ ³ ´ |â0(ω − ωc)|2 X 
jTR 

φCE −ω k − 
2
1 σθ(kTR)TRS(ω) =  e e (9.51) 

TR 
k0=−∞ 

− 1 [((ω−ωc)τ)2σt(kTR)]e 2 

Most often we are interested in the noise very close to the lines at frequency 
offsets much smaller than the inverse energy and frequency relaxation times 
τw and τ p. This is determined by the long term behavior of the variances, 
which grow linearly in |T | µ 

π2 2 ¶ 

σθ(T ) =
4 
1 +  +16 

T

τw 
2 φo 

2 Pn |T | = 2∆ωφ|T |, (9.52) 
3 12 woÃ ! 

τ 2 µ 
R¶2

1 p D Pn
σt(T ) =  π2 + 

2 |T | = 4∆ωt|T |. (9.53) 
3 TR τ 2 wo 

with the rates µ 
π2 2 ¶

2 τw 2 Pn
∆ωφ = 1 +  +16 φo , (9.54) 

3 12 TR 
2 woÃ ! 

τ 2 µ ¶2
1 D Pn

∆ωt = π2 + p 
. (9.55) 

6 TR 
2 τ 2 wo 

From the Poisson formula 

+∞ +∞X X 
h[k]e −jkx = G(x + 2nπ) (9.56) 

k=−∞ n=−∞ 



      

   

    
 

              
  

      
       

  

         

 
      

 
  

  

 

     

        

       

           

     
 

             
               
      

 
   

 
       

    
 

  
    

      
      

   
 

              
             

            
               

 

              

             

9.2. NOISE IN MODE-LOCKED LASERS 319 

where Z +∞ 

G(x) =  h[k]e −jkxdk, (9.57) 
−∞ 

and Eqs.(9.51) to (9.55) we finally arrive at the optical line spectrum of the 
mode-locked laser 

+∞|â0(ω − ωc)|2 X 2∆ωn
S(ω) =  (9.58) 

T 2 )2 + ∆ω2 
R (ω − ωn nn=−∞ 

which are Lorentzian lines at the mode comb positions 

∆φCEωn = ωc + nωR − , (9.59) 
TR 

∆φCE 0 = + nRω, (9.60) 
TR 

with a half width at half maximum of 

∆ωn = ∆ωφ + [τ(ωn − ωc)]
2∆ωt. (9.61) 

Estimating the number of modes M included in the comb by 

TR
M = , (9.62) 

τ 

we see that the contribution of the timing fluctuations to the linewidth of 
the comb lines in the center of the comb is negligible. Thus the linewidth of 
the  comb in the  center is  given  by  9.54  µ ¶

2 π2 τ 2 
w 2 Θ2gs

∆ωφ = 1 +  +16 
2 φo (9.63) 

3 12 TR N0TRµ ¶
2 π2 τw 

2 Θ 
= 1 +  +16 φ2 

o (9.64) 
3 12 TR 

2 N0τ p 

owhere N0 = w is the number of photons in the cavity and τ p = TR/(2l) is the ~ωc 

photon lifetime in the cavity. Note that this result for the mode-locked laser 
is closely related to the Schawlow-Towns linewidth of a continuous wave laser 
which is ∆fφ = Θ . For a solid-state laser at around 1µm wavelength with 

2πN0τp 

a typical intracavity pulse energy of 50 nJ corresponding to N0 = 2.5 · 1011 

photons and 100 MHz repetition rate with a 10% output coupler and an 

http:Eqs.(9.51


       

             
 

            
            
            

            
             

             
           

                
         

             
      

    

              
             

              
           

        

 
       

  
        

      
  

 

            
             

          

 
 

       
 

 

   
        

  
 

    
  

320 CHAPTER 9. NOISE AND FREQUENCY CONTROL 

excess noise figure of Θ = 2, we obtain ∆fφ˜ Θ = 8µHz without the am-
3πN0τp 

plitude to phase conversion term depending on the nonlinear phase shift φo. 
These intrinsic linewidths are due to fluctuations happening on a time scale 
faster than the round-trip time and, therefore, can not be compensated by 
external servo control mechanisms. For sub-10 fs lasers, the spectra fill up 
the full gain bandwidth and the KLM is rather strong, so that the ampli-
tude and center frequency relaxation times are on the order of 10-100 cavity 
roundtrips. In very short pulse Ti:sapphire lasers nonlinear phase shifts are 
on the order of 1 rad per roundtrip. Then most of the fluctuations are due to 
amplitude fluctuations converted into phase jitter. This contributions can in-
crease the linewidth by a factor of 100-10000, which may bring the linewidth 
to the mHz and Hz level. 

9.2.2 The Microwave Spectrum 

Not only the optical spectrum is of interest als the spectrum of the photo 
detected output of the laser is of intrest. Simple photo detection can convert 
the low jitter optical pulse stream into a comb of extremely low phase noise 
microwave signals. The photo detector current is proportional to the output 
power of the laser. From Eq.(9.45) we find 

e e 
I(t) =  η |A(T, t)|2 = η × (9.65) 

hωc hωcτ 
+∞ µ ¶X 1 t − mTR − ∆t(mTR)

(w0 + ∆w(mTR)) sec h2 ,
2 τ 

m=−∞ 

where η is the quantum efficiency. For simplicity we neglect again the ampli-
tude noise and consider only the consequences due to the timing jitter. Then 
we obtain for the Fourier Transform of the photo current 

+NXew0 −jω(mTR+∆t(mTR))Î  
T (ω) =  η |a0|2 (ω) e , (9.66) 

hω0τ m=−N 

Z ∞ 1 −jωτxdx|a0|2 (ω) =  sec h2 (x) e (9.67) 
−∞ 2 
πωτ 

= , (9.68) 
sinh(π 

2 ωτ) 

http:Eq.(9.45


      

       

 
  

        
  

  

 
     

      
  

       

  

 
      

  

  

 
      

    
 

 
 

        

  

 
   

  
 

  

           
             

            

    

            
          
            
         

             
   

         
             

            

9.2. NOISE IN MODE-LOCKED LASERS 321 

and its power spectrum according to Eq.(9.46) 

+∞X¯̄
 

¯̄ ®(ηeN0)
2 

2|a0|2 −jωkTR −jω(∆t(kTR)−∆t(0))SI(ω) =  (ω) e e ,
TR 

+∞ 

−∞k= X¯̄
 

¯̄(ηeN0)
2 

2 − 1 [(ωτ)2σt(kTR)]e 2|a0|2 −jωkTR (9.69) (ω) e= 
TR 

k=−∞ 

Using the Poisson formula again results in 

+∞ 
2 

2 

X¯̄
 

¯̄
 

¯̄(ηeN0)
2 

|a0|2 −jωkTR −jω(∆t(kTR)−∆t(0))eSI(ω) =  (ω) e ,
TR 

+∞ 

−∞k= X¯̄(ηeN0)
2 2∆ωI,n  

2 +
|a0|2 (9.70) (ω)= 

(ω − nωR)T 2 
R 

2∆ωI,n  n=−∞ 

with the linewidth ∆ωI,n of the n-th harmonic ¶2
τ

µ
µ 

∆ωI,n = 2πn ∆ωt
TR¶2

2πn 
∆ωt. (9.71) = 

M 

The fundamental  line (n = 1) of the microwave spectrum has a width which 
is M2−times smaller than the optical linewidth. For a 10-fs laser with 100 
MHz repetition rate, the number of modes M is about a million. 

9.2.3 Example: Yb-fiber laser: 

Figure 9.3 shows the schematic of a streched pulse modelocked laser operating 
close to zero dispersion. Therefore, the contribution of the Gordon-Haus 
jitter should be minimized. Infact, it has been shown and discussed that 
these types of lasers reach minimum jitter levels [2][3][4]. 
The timing jitter of the streched pulse laser shown in Figure is computed 

in table 9.1. 
The theoretical results above are derived with soliton perturbation the-

ory. The stretched pulse modelocked laser in Figure 9.3 is actually far from 
being a soliton laser, see [3][4]. The pulse is breathing considerably during 

http:Eq.(9.46


       

         

     
     

    
      
     

   
   

     
   

    

    
    

 
 

    

     
 

 
 

      
        

   

  

  
    

    
     

       

    
 

  
   

 
     

          

   
   

    

   
   

          
   

            

322 CHAPTER 9. NOISE AND FREQUENCY CONTROL 

Figure 9.3: Schematic of a streched pulse modelocked laser. 

Gain Half-Width Half Maximum 0.3µm/fs Ωg = 2π · 0.02µm= 38THz 
(1.µm)2 

Saturated gain gs = 1.2 
Pulse width τFWHM  = 50fs, τ = τFWHM/1.76 = 30fs  
Pulse repetition time TR = 12ns 

Decay time for 
center freq. fluctuations 

1 4 gs 4 1= = 
τp 3 Ω2 

g τ
2TR 3 TR 

Intracavity power P = 100mW 
Intra cavity pulse energy 

/ photon number  
10wo = 1.2nJ, N0 = 0.6 · 10 

Noise power spectral density Pn = Θ2gs ~ωoTR 

Amplifier excess noise factor Θ = 10  
ASE noise Pn 2gs 1 = Θ = Hz 

wo TRN0 3 

Dispersion 5000fs2 

Frequency-to-timing conv. 4|D|2 τ2 ¡ ¢24 p 2 3 3·10000 2 = = (3.7)
π2 τ4 T2 π 4 1000 R¯ ¯ ³ ´ 

Timing jitter density 
2¯∆t̂(Ω) ̄  1 π2 Pn 4|D|2 1¯ ¯ = 1 +  4 

τ Ω2 3 wo π2 τ4 (T 2 /τ2+T 2 Ω2)R p R 

Timing jitter [fmin, fmax] for 
fmin << 1/τ p, 

fmin = 10kHz, D = 5000fs2 

r ³ ´ 
4|D|2 τ21 Pn p∆t = τ 1 +  4 = 0.2fs

π2 τ4 T 212·fmin wo R 

Table 9.1: Parameters for the streched pulse modelocked laser of Figure 9.3. 



      

            
         

              
             

              
          

             
            

         
           

           
               

            
  

  

            
             

9.2. NOISE IN MODE-LOCKED LASERS 323 

Figure 9.4: Timing jitter measurement of the output from the streched pulse 
modelocked laser measured with a HP 5504 signal analyzer. 

passage through the cavity up to a factor of 10. Therefore, the theory should 
take that into account by assuming an average pulse width when the noise 
is added in the cavity. For more details see [3][4]. In reality, these quantum 
limited (ASE) and rather small optical and microwave linewidths are diffi-
cult to observe, because they are most often swamped by technical noise such 
as fluctuations in pump power, which may case gain fluctuations, or mirror 
vibrations, air-density fluctuations or thermal drifts, which directly cause 
changes in the lasers repetition rate. Figure 9.4 shows the single-sideband 
phase noise spectrum L(f) of the N=32nd harmonic of the fundamental repe-
tition rate, i.e 1.3 GHz, in the photo current spectrum 9.70. The phase of the 
N=32nd harmonic of the photocurrent 9.65 is directly related to the timing 
jitter by 

∆ϕ(T ) = 2πNfR∆t(T ) (9.72) 

The single-sideband phase noise is the power spectral density of these phase 
fluctuations defined in the same way as the power spectral density of the 
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photocurrent itself, i.e. 
L(f) = 2πS∆ϕ(ω) (9.73) 

The phase fluctuations in a certain frequency intervall can then be easily 
evaluated by Z f max 

∆ϕ2 = 2  L(f)df. (9.74) 
f min 

And the timing jitter is then s Z f max1 
∆t = 2 L(f)df. (9.75) 

2πNfR f min 

For the measurements shown in Figure 9.4 we obtain for the integrated tim-
ing jitter from 10kHz to 20 MHz of 50 fs. This is about 200 times larger than 
the limits derived in table 9.1. This discrepancy comes from several effects, 
most notable amplitude to phase conversion in the photodetector during pho-
todetection, an effect not yet well understood as well as other noise sources 
we might not have modelled, such as noise from the pump laser. However, 
these noise sources can be eliminated in principle by careful design and feed-
back loops. Therefore, it is important to understand the dependence of the 
group and phase velocity on the intracavity power or pulse energy at least 
within the current basic model. Additional linear and nonlinear effects due to 
higher order linear dispersion or nonlinearities may cause additional changes 
in group and phase velocity, which might also create unusual dependencies 
of group and phase velocity on intracavity pulse energy. Here we discuss as 
an example the impact of the instantaneous Kerr effect on group and phase 
velocity of a soliton like pulse. 

9.3 Group- and Phase Velocity of Solitons 

The Kerr-effect leads to a change of phase velocity of the pulse, resulting in 
the self-phase shift of the soliton, φo, per round-trip. A change in group ve-
locity does not appear explicitly in the solution of the NLSE. Self-steepening 
which becomes important for ultrashort pulses leads to an additional term in 
the NLSE and therefore to an additional term in the master equation (9.6) 

δ ∂ 
Lpert = − (|a(T, t)|2 a(T, t)). (9.76) 

ωc ∂t 



       

      
            

              
               

            
         

 
   

 
 

  
  

 
 

 
 

    

     
     

  
      

   

           
             

   

   
  

    
         

    

 

             
      

  
      

  

             
       

              
 

  

             
                

             
  

  
   

          
  

            
             

9.3. GROUP- AND PHASE VELOCITY OF SOLITONS 325 

The impact of this term  is expected to be small  of  the order  of  1/(ωoτ) and  
therefore only important for few-cycle pulses. However, it turns out that this 
term alters the phase and group velocity of the soliton like pulse as much 
as the nonlinear phase shift itself. We take his term into account in form of 
a perturbation. This perturbation term is odd and real and therefore only 
leads to a timing shift, when substituted into Eq.(9.6). 

∂∆t(T ) ̄̄̄¯ = − 
δ 

½Z µ ¶¶ ¾µ3 +∞ ∂ t 
f̄∗ sec h3 (9.77) TR A Re (t) dtt∂T sst ωc ∂t τ0 −∞ 

δ 2 2φ0 = A = . (9.78) 
ωc 0 ωc 

This timing shift or group delay per round-trip, together with the nonlin-
ear phase shift leads to a phase change between carrier and envelope per 
roundtrip given by ¯̄̄̄

= −∂ 1 
δA20 + δA0

2 =
1 
δA20.∆φCE = −φ0 + ωo (9.79) TR ∆t(T )

∂T 2 2selfsteep 

The compound effect of this phase delay per round-trip in the carrier versus 
envelope leads to a carrier-envelope frequency 

∆φCE φ0fCE = fR = fR. (9.80) 
2π 2π 

The group delay also changes the optical cavity length of the laser and there-
fore alters the repetition rate according to ¯̄ fR 2−fR 

2 = −2φ0 = − fCE, (9.81) ∆fR = ∆t(T ) fRselfsteep ωo m0 

where m0 is the mode number of the carrier wave. Eqs.(9.80) and (9.81) 
together determine the shift of the m-th line of the optical comb fm = fCE + 
mfR due to an intracavity pulse energy modulation and a change in cavity 
length by ¶µ 

∆fm = ∆fCE + m∆fR = fCE 1 − 
2m ∆w ∆L− mfR . (9.82) 

L0m0 w0 

Specifically, Eq. (9.82) predicts, that the mode with number m = m0/2, 
i.e. the mode at half the center frequency, does not change its frequency 

http:Eqs.(9.80
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as a function of intracavity pulse energy. Of course, one has to remember, 
that this model is so far based on self-phase modulation and self-steepening 
as the cause of a power dependent carrier-envelope offset frequency. There 
may be other mechanisms that cause a power dependent carrier envelope 
offset frequency. One such effect is the group delay caused by the laser gain 
medium another one is the carrier-envelope change due to a change in carrier 
frequency, which gives most likely a very strong additional dependence on 
pump power. Nevertheless, the formula 9.82 can be used for the control of 
the optical frequency comb of a femtosecond laser by controlling the cavity 
length and the intracavity pulse energy, via the pump power. 

9.4 Femtosecond Laser Frequency Combs 

Nevertheless, the formula (9.82) can be used for the control of the optical 
frequency comb of a femtosecond laser by controlling the cavity length and 
the intracavity pulse energy, via the pump power. According to Fig. 9.2 
every line of the optical comb determined by 

fm = fCE + mfR. (9.83) 

Note, if the femtosecond laser emits a spectrum covering more than one 
octave, then one can frequency double part of the comb at low frequencies 
and beat it with the corresponding high frequency part of the comb on a 
photo detector, see Fig. 9.5 The result is a photodector beat signal that 
consists of discrete lines at the beat frequencies 

fk = kfR ± fCE (9.84) 

This method for determining the carrier-envelope offset frequency is called 
f-to-2f interferometry.The carrier-envelope offset frequency can be extracted 
with filters and synchronized to a local oscillator or to a fraction of the 
repetition rate of the laser, for example fR/4. 
Figure 9.6 shows the setup of an octave spanning 200 MHz Ti:sapphire 

laser where the carrier envelope offset frequency fCE is locked to a local 
oscillator at 36 MHz using the f-to-2f self-referencing method [6] 
The spectral output of this laser is shown in Figure 9.7 The spectral com-

ponents at 1140 are properly delayed in a chirped mirror delay line against 
the spectral components at 570 nm. The 1140 nm range is frequency dou-
bled in a 1mm BBO crystal and the frequency doubled light together with 
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Figure 9.5: f-to-2f interferometry to determine the carrier-envelope offset 
frequency. 

Image removed due to copyright restrictions. 

Please see: 
Mucke, Oliver, et al. "Self-Referenced 200 MHz Octave-Spanning Ti: Sapphire Laser with 50 Attosecond 
Carrier-Envelope Phase Jitter." Optics Express 13, no. 13 (June 2005): 5163-5169. 

Figure 9.6: Carrier-envelope phase stabilized 200 MHz octave-spanning 
Ti:sapphire laser. The femtosecond laser itself is located inside the grey 
area. AOM, acousto-optical modulator; S, silver end mirror; OC, output 
coupling mirror; PBS, polarizing beam splitter cube; PMT, photomultiplier 
tube; PD, digital phase detector; LF, loop filter; VSA, vector signal analyzer. 
The carrier-envelope frequency is phase locked to 36 MHz. 
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Image removed due to copyright restrictions. 

Please see: 
Mucke, Oliver, et al. "Self-Referenced 200 MHz Octave-Spanning Ti: Sapphire Laser with 50 Attosecond 
Carrier-Envelope Phase Jitter." Optics Express 13, no. 13 (June 2005): 5163-5169. Used with permission. 

Figure 9.7: Output spectrum of the Ti:sapphire laser on a linear (black curve) 
and on a logarithmic scale (grey curve). The wavelengths 570 and 1140 nm 
used for self-referencing are indicated by two dashed lines. 

the fundamental at 570 nm is projected into the same polarization via a po-
larizing beam splitter. The signal is then filtered through a 10nm wide filter 
and detected with a photomultiplier tube (PMT). A typical signal from the 
PMT is shown in Figure 9.8.Phase locking is achieved by a phase-locked loop 
(PLL) by feeding the error signal from the digital phase detector to an AOM 
placed in the pump beam (see Fig. 9.6) which modulates the pump power 
and thus changes the carrier-envelope frequency via Eq.(9.82). A bandpass 
filter is used to select the carrier-envelope beat signal at 170 MHz. This 
signal is amplified, divided by 16 in frequency, and compared with a refer-
ence frequency fLO supplied by a signal generator (Agilent 33250A) using 
a digital phase detector. The carrier-envelope beat signal is divided by 16 
to enhance the locking range of the PLL. The phase detector acts as a fre-
quency discriminator when the loop is open, the output is thus the difference 
frequency between the carrier-envelope frequency and the designated locking 
frequency. The output signal is amplified in the loop filter, which in our case 
is a proportional and integral controller, and fed back to the AOM, closing 
the loop. The output of the phase detector is proportional to the remaining 
jitter between the carrier-envelope phase evolution and the local oscillator 
reduced by the division ratio 16. The power spectral density (PSD) of the 
carrier-envelope phase fluctuations are measured with a vector signal ana-
lyzer (VSA) at the output of the phase detector. After proper rescaling by 
the division factor the phase error PSD is shown in Fig. 9.9. The measure-

http:Eq.(9.82
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Figure 9.8: Radio-frequency power spectrum measured with a 100 kHz reso-
lution bandwidth (RBW). The peak at the carrier-envelope frequency offset 
frequency exhibits a signal-to-noise ratio of ~35 dB. 

ment was taken in steps with an equal amount of points per decade. The 
PSD of the carrier-envelope phase fluctuations can be integrated to obtain 
the total phase error. In the range above 1 MHz (see Fig. 9.9), the accu-
racy of this measurement is limited by the noise floor of the vector signal 
analyzer. We obtain an integrated carrier-envelope phase jitter of about 0.1 
radian over the measured frequency range. The major contribution to the 
phase noise comes from  low  frequency  fluctuations <10 kHz. If in addition to 
the carrier-envelope frequency also the repetition rate of the laser is locked to 
a frequency standard, such as for example a Cesium clock, the femtosecond 
laser frequency comb in the optical domain is completely determined with 
microwave precision and can be used for optical frequency measurements [6]. 
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Figure 9.9: Carrier-envelope phase noise power spectral density (left) and 
integrated phase jitter (right) resulting in only 45 as accumulated carrier-
envelope timing jitter. 
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Chapter 10 

Pulse Characterization 

Characterization of ultrashort laser pulses with pulse widths greater than 
20 ps can be directly performed electronically using high speed photo detec-
tors and sampling scopes. Photo detectors with bandwidth of 100 GHz are 
available. For shorter pulses usually some type of autocorrelation or cross-
correlation in the optical domain using nonlinear optical effects has to be 
performed, i.e. the pulse itself has to be used to measure its width, because 
there are no other controllable events available on such short time scales. 

10.1 Intensity Autocorrelation 

Pulse duration measurements using second-harmonic intensity autocorrela-
tion is a standard method for pulse characterisation. Figure 10.1 shows the 
setup for a background free intensity autocorrelation. The input pulse is split 
in two, and one of the pulses is delayed by τ . The two pulses are focussed 
into a nonliner optical crystal in a non-colinear fashion. The nonlinear opti-
cal crystal is designed for efficient second harmonic generation over the full 
bandwidth of the pulse, i.e. it has a large second order nonlinear optical 
suszeptibility and is phase matched for the specific wavelength range. We 
do not consider the z—dependence of the electric field and phase—matching 
effects. To simplify notation, we omit normalization factors. The induced 
nonlinear polarization is expressed as a convolution of two interfering electric— 
fields E1(t), E2(t) with the nonlinear response function of the medium, the 
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second order nonlinear susceptibility χ(2). ZZ  ∞ 

P (2)(t) ∝ χ(2)(t − t1, t  − t2) · E1(t1) · E2(t2)dt1dt2 
−∞ 

Image removed due to copyright restrictions. 

Please see: 
Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Figure 10.1: Setup for a background free intensity autocorrelation. To avoid 
dispersion and pulse distortions in the autocorrelator reflective optics can be 
and a thin crystal has to be used for measureing very short, typically sub-100 
fs pulses. 

We assume the material response is instantaneous and replace χ(2)(t − 
t1, t  − t2) by a Dirac delta—function χ(2) · δ(t − t1) · δ(t − t2) which leads to 

P (2)(t) ∝ E1(t) · E2(t) (10.1) 

Due to momentum conservation, see Figure 10.1, we mayseparate the product 
E(t) · E(t − τ) geometrically and supress a possible background coming from 
simple SHG of the individual pulses alone. The signal is zero if the pulses 
don’t overlap. 

P (2)(t) ∝ E(t) · E(t − τ). (10.2) 
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Table 10.1: Pulse shapes and its deconvolution factors 

relating FWHM, τ p, of the pulse to FWHM, τA, of the 

intensity autocorrelationfunction. 

The electric field of the second harmonic radiation is directly proportional to 
the polarization, assuming a nondepleted fundamental radiation and the use 
of thin crystals. Due to momentum conservation, see Figure 10.1, we find 

∝ 
Z ∞ ¯̄̄

A(t)A(t − τ) ̄̄̄  
2 
dt . (10.3) IAC (τ) Z−∞∞ 

∝ I(t)I(t − τ) dt, (10.4) 
−∞ 
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with the complex envelope A(t) and intensity I(t) = |A(t)|2 of the input pulse. 
The photo detector integrates because its response is usually much slower 
than the pulsewidth. Note, that the intenisty autocorrelation is symmetric 
by construction 

IAC (τ) = IAC (−τ). (10.5) 

It is obvious from Eq.(10.3) that the intensity autocorrelation does not con-
tain full information about the electric field of the pulse, since the phase of 
the pulse in the time domain is completely lost. However, if the pulse shape 
is known the pulse width can be extracted by deconvolution of the correla-
tion function. Table 10.1 gives the deconvolution factors for some often used 
pulse shapes. 

10.2 Interferometric Autocorrelation (IAC) 

A pulse characterization method, that also reveals the phase of the pulse 
is the interferometric autocorrelation introduced by J. C. Diels [2], (Figure 
10.2 a). The input beam is again split into two and one of them is delayed. 
However, now the two pulses are sent colinearly into the nonlinear crystal. 
Only the SHG component is detected after the filter. 

Image removed due to copyright restrictions. 

Please see: 
Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Figure 10.2: (a) Setup for an interferometric autocorrelation. (b) Delay 
stage, so that both beams are reflected from the same air/medium interface 
imposing the same phase shifts on both pulses. 
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The total field E(t, τ) after the Michelson-Interferometer is given by the 
two identical pulses delayed by τ with respect to each other 

E(t, τ) =  E(t + τ) +E(t) (10.6) 
jω⊂(t+τ) jφCE jωct jφCE= A(t + τ)e e +A(t)e e . (10.7) 

A(t) is the complex amplitude, the term eiω0t describes the oscillation with 
the carrier frequency ω0 and φCE is the carrier-envelope phase. Eq. (10.1) 
writes ¢2¡

P (2)(t, τ) ∝ jωc(t+τ) jφCE jωct jφCEe e (10.8) A(t + τ)e +A(t)e 

This is only idealy the case if the paths for both beams are identical. If 
for example dielectric or metal beamsplitters are used, there are different 
reflections involved in the Michelson-Interferometer shown in Fig. 10.2 (a) 
leading to a differential phase shift between the two pulses. This can be 
avoided by an exactly symmetric delay stage as shown in Fig. 10.1 (b). 
Again, the radiated second harmonic electric field is proportional to the 

polarization ¢2jωc(t+τ) jφCE jωc(t) jφCEe 
¡

E(t, τ ) ∝ . (10.9) A(t + τ)e +A(t)e e 

¡ 
The photo—detector (or photomultiplier) integrates over the envelope of each 
individual pulse 

A(t + τ)e 
Z ∞ ¯̄̄

 
¯̄̄
 

¢2 2 
I(τ) ∝ jωc(t+τ) jωct e+A(t) dt . Z−∞∞ ¯̄̄

j2ωc(t+τ)A2(t + τ)e∝ 

¯̄̄
 

−∞ 
jωc(t+τ) jωct+2A(t + τ)A(t)e e 

2 
j2ωct+A2(t)e (10.10). 

Evaluation of the absolute square leads to the following expression Z ∞ h 
I(τ) ∝ |A(t + τ)|4 + 4|A(t + τ)|2|A(t)|2 + |A(t)|4 

−∞ 

+2A(t + τ)|A(t)|2A ∗ (t)ejωcτ + c.c. 

i+2A(t)|A(t + τ)|2A ∗ (t + τ) −jωcτ e + c.c. 
2 j2ωcτ+A2(t + τ)(A ∗ (t)) e + c.c. dt . (10.11) 
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The carrier—envelope phase  φCE drops out since it is identical to both pulses. 
The interferometric autocorrelation function is composed of the following 
terms 

I(τ) = Iback + Iint(τ) + Iω(τ) + I2ω(τ) . (10.12) 

Background signal Iback: Z ∞ Z ∞¡ ¢ 
Iback = |A(t + τ)|4 + |A(t)|4 dt = 2  I2(t) dt (10.13) 

−∞ −∞ 

Intensity autocorrelation Iint(τ): Z ∞ Z ∞ 

Iint(τ) = 4  |A(t + τ)|2|A(t)|2 dt = 4  I(t + τ) · I(t) dt (10.14) 
−∞ −∞ 

Coherence term oscillating with ωc: Iω(τ): ¶Z ∞ hµ i 
Iω(τ) = 4  Re I(t) + I(t + τ) A ∗ (t)A(t + τ)ejωτ dt (10.15) 

−∞ 

Coherence term oscillating with 2ωc: I2ω(τ): Z ∞ h i 
2 j2ωτIω(τ) = 2  Re A2(t)(A ∗ (t + τ)) e dt (10.16) 

−∞ 

Eq. (10.12) is often normalized relative to the background intensity Iback 

resulting in the interferometric autocorrelation trace 

Iint(τ) Iω(τ) I2ω(τ)
IIAC  (τ) = 1 +  + + . (10.17) 

Iback Iback Iback 

Eq. (10.17) is the final equation for the normalized interferometric auto-
correlation. The term Iint(τ) is the intensity autocorrelation, measured by 
non—colinear second harmonic generation as discussed before. Therefore, the 
averaged interferometric autocorrelation results in the intensity autocorrela-
tion sitting on a background of 1. 
Fig. 10.3 shows a calculated and measured IAC for a sech-shaped pulse. 
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Figure 10.3: Computed and measured interferometric autocorrelation traces 
for a 10 fs long sech-shaped pulse. 

As with the intensity autorcorrelation, by construction the interferometric 
autocorrelation has to be also symmetric: 

IIAC(τ) = IIAC(−τ) (10.18) 

This is only true if the beam path between the two replicas in the setup 
are completely identical, i.e. there is not even a phase shift between the 
two pulses. A phase shift would lead to a shift in the fringe pattern, which 
shows up very strongly in few-cycle long pulses. To avoid such a symmetry 
breaking, one has to arrange the delay line as shown in Figure 10.2 b so 
that each pulse travels through the same amount of substrate material and 
undergoes the same reflections. 
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At τ = 0, all integrals are identical 

Z 
Iback ≡ 2 |A(t)|4dt 

Z Z 
Iint(τ = 0) ≡ 2 |A2(t)|2dt = 2  |A(t)|4dt = Iback 

(10.19) Z Z 
Iω(τ = 0) ≡ 2 |A(t)|2A(t)A ∗ (t)dt = 2  |A(t)|4dt = Iback 

Z Z 
I2ω(τ = 0) ≡ 2 A2(t)(A2(t) ∗ dt = 2  |A(t)|4dt = Iback 

Then, we obtain for the interferometric autocorrelation at zero time delay 

IIAC  (τ)|max = IIAC  (0) = 8 

IIAC  (τ → ±∞) = 1  (10.20) 

IIAC  (τ)|min = 0  

This is the important 1:8 ratio between the wings and the pick of the IAC, 
which is a good guide for proper alignment of an interferometric autocorre-
lator.  For a  chirped pulse  the envelope is not  any longer real.  A  chirp in  the  
pulse results in nodes in the IAC. Figure 10.4 shows the IAC of a chirped 
sech-pulse 

µ µ ¶¶(1+jβ)
t 

A(t) =  sech 
τ p 

for different chirps. 
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Figure 10.4: Influence of increasing chirp on the IAC. 

10.2.1 Interferometric Autocorrelation of an Unchirped 
Sech-Pulse 

Envelope of an unchirped sech-pulse 

A(t) = sech(t/τ p) (10.21) 

Interferometric autocorrelation of a sech-pulse 

³³ ´ ³ ´ ³ ´´ 
τ τ τ3 cosh − sinh
τp τp τp

IIAC(τ) =  1 +  {2 + cos  (2ωcτ)} ³ ´ (10.22) 
sinh3 τ 

τp³ ³ ´ ³ ´´ 
2τ 2τ3 sinh −
τp τp 

+ ³ ´ cos(ωcτ) 
sinh3 τ 

τp 
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10.2.2 Interferometric Autocorrelation of a Chirped 
Gaussian Pulse 

Complex envelope of a Gaussian pulse ∙ µ ¶ ¸ 

A(t) = exp  − 
1 t 

(1 + jβ) . (10.23) 
2 tp 

Interferometric autocorrelation of a Gaussian pulse ½ ³ ´ 2 
¾ ³ ´ 2 

− β
2 τ − 1 τ 
2 τp 2 τpIIAC(τ) = 1 +  2 +  e cos(2ωcτ) e (10.24) Ã !³ ´ 2 

µ ¶2 
− 3+β

2 τ β τ 
+4e 8 τp cos cos (ωcτ) . 

4 τ p 

10.2.3 Second Order Dispersion 

It is fairly simple to compute in the Fourier domain what happens in the 
presence of dispersion. 

F
E(t) =  A(t)ejωct −→ Ẽ(ω) (10.25) 

After propagation through a dispersive medium we obtain in the Fourier 
domain. 

−iΦ(ω)Ẽ0(ω) =  Ẽ(ω)e 

and 

E0(t) =  A0(t)ejωct 

Figure 10.5 shows the pulse amplitude before and after propagation through 
a medium with second order dispersion. The pulse broadens due to the dis-
persion. If the dispersion is further increased the broadening increases and 
the interferometric autocorrelation traces shown in Figure 10.5 develope a 
characteristic pedestal due to the term Iint. The width of the interferomet-
rically sensitive part remains the same and is more related to the coherence 
time in the pulse, that is proportional to the inverse spectral width and does 
not change. 
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Figure 10.5: Effect of various amounts of second order dispersion on a trans-
form limited 10 fs Sech-pulse. 

10.2.4 Third Order Dispersion 

We expect, that third order dispersion affects the pulse significantly for 

D3 
> 1 

τ 3 

¡ ¢310 fswhich is for a 10fs sech-pulse D3 > 
1.76 ˜183 fs3 . Figure 10.6 and 10.7 

show the impact on pulse shape and interferometric autocorrelation. The 
odd dispersion term generates asymmetry in the pulse. The interferometric 
autocorrelation developes characteristic nodes in the wings. 
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Image removed due to copyright restrictions. 
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Figure 10.6: Impact of 200 fs3 third order dispersion on a 10 fs pulse at a 
center wavelength of 800 nm.and its interferometric autocorrelation. 

Image removed due to copyright restrictions. 
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Figure 10.7: Changes due to increasing third order Dispersion from 100-1000 
fs3on a 10 fs pulse at a center wavelength of 800 nm. 
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10.2.5 Self-Phase Modulation 

Self-phase modulation without compensation by proper negative dispersion 
generates a phase over  the pulse in  the time domain.  This phase is invisible  
in the intensity autocorrelation, however it shows up clearly in the IAC, see 
Figure 10.8 for a Gaussian pulse with a peak nonlinear phase shift φ0 = 
δA20 = 2 and Figure 10.8 for a nonlinear phase shift φ0 = 3. 

Image removed due to copyright restrictions. 

Please see: 
Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Figure 10.8: Change in pulse shape and interferometric autocorrelation in 
a 10 fs pulse at 800 nm subject to pure self-phase modulation leading to a 
nonlinear phase shift of φ0 = 2. 
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Image removed due to copyright restrictions. 
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Figure 10.9: Change in pulse shape and interferometric autocorrelation in 
a 10 fs pulse at 800 nm subject to pure self-phase modulation leading to a 
nonlinear phase shift of φ0 = 3. 

From the expierence gained by looking at the above IAC-traces for pulses 
undergoing second and third order dispersions as well as self-phase modula-
tion we conclude that it is in general impossible to predict purely by looking 
at the IAC what phase perturbations a pulse might have. Therefore, it was 
always a wish to reconstruct uniquely the electrical field with respect to am-
plitude and phase from the measured data. In fact one can show rigorously, 
that amplitude and phase of a pulse can be derived uniquely from the IAC 
and the measured spectrum up to a time reversal ambiguityn [1]. Further-
more, it has been shown that a cross-correlation of the pulse with a replica 
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chirped in a known medium and the pulse spectrum is enough to reconstruct 
the pulse [3]. Since the spectrum of the pulse is already given only the phase 
has to be determined. If a certain phase is assumed, the electric field and 
the measured cross-correlation or IAC can be computed. Minimization of 
the error between the measured cross-correlation or IAC will give the de-
sired spectral phase. This procedure has been dubbed PICASO (Phase and 
Intenisty from Cross Correlation and Spectrum Only). 

Note, also instead of measuring the autocorrelation and interferometric 
autocorrelation with SHG one can also use two-photon absorption or higher 
order absorption in a semiconductor material (Laser or LED) [4]. 

However today, the two widely used pulse chracterization techniques are 
Frequency Resolved Optical Gating (FROG) and Spectral Phase Interferom-
etry for Direct Electric Field Reconstruction (SPIDER) 

¯̄̄̄
 

10.3 Frequency Resolved Optical Gating (FROG) 

We follow closely the bock of the FROG inventor Rich Trebino. In frequency 
resolved optical gating, the pulse to be characterized is gated by another 
ultrashort pulse [5]. The gating is no simple linear sampling technique, but 
the pulses are crossed in a medium with an instantaneous nonlinearity (χ(2) 

or χ(3))  in the  same  way as in an autocorrelation  measurement  (Figures  10.1  
and 10.10). The FROG—signal is a convolution of the unknown electric—field 
E(t) with the gating—field g(t) (often a copy of the unknown pulse itself). 
However, after the interaction of the pulse to be measured and the gate 
pulse, the emitted nonlinear optical radiation is not put into a simple photo 
detector, but is instead spectrally resolved detected. The general form of the 
frequency—resolved intensity, or Spectrogram SF (τ , ω) is given by 

Z ∞ ¯̄̄̄
 

2 

SF (τ , ω) ∝ E(t) · g(t− τ)e −jω tdt . (10.26) 
−∞ 
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Image removed due to copyright considerations. 

Figure 10.10: The spectrogram of a waveform E(t) tells the intensity and 
frequency in a given time interval [5]. 

Representations of signals, or waveforms in general, by time-frequency 
distributions has a long history. Most notabley musical scores are a temporal 
sequence of tones giving its frequency and volume, see Fig. 10.11. 

Figure 10.11: A musical score is a time-frequency representation of the signal 
to be played. 

Time-frequency representations are well known in the radar community, 
signal processing and quantum mechanics [9] (Spectrogram, Wigner-Distribution, 
Husimi-Distribution, ...), Figure 10.12 shows the spectrogram of differently 
chirped pulses. Like a mucical score, the spectrogram visually displays the 
frequency vs. time. 
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Image removed due to copyright considerations. 

Figure 10.12: Like a musical score, the spectrogram visually displays the 
frequency vs. time [5]. 

Note, that the gate pulse in the FROG measurement technique does not 
to be very short. In fact if we have 

g(t) ≡ δ(t) (10.27) 

then 

SF (τ , ω) = |E(τ)|2 (10.28) 

and the phase information is completely lost. There is no need for short 
gate pulses. A gate length of the order of the pulse length is sufficient. It 
temporally resolves the slow components and spectrally the fast components. 

10.3.1 Polarization Gate FROG 

Figure 10.13 shows the setup [6][7]. FROG is based on the generation of 
a well defined gate pulse, eventually not yet known. This can be achieved 
by using the pulse to be measured and an ultrafast nonlinear interaction. 
For example the electronic Kerr effect can be used to induce an ultrafast 
polarization modulation, that can gate the pulse with a copy of the same 
pulse. 
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"Polarization-Gate" Geometry 

Variable 
Delay 

Pulse to be 
Measured 

Beam 

E(t-τ) 

E(t) 

Spectro-meter 

CameraWave Plate (45o rotation 
of polarization) 

Instantaneous Nonlinear 
Optical Medium 

Esig(t,τ) ∝ E(t) |E(t-τ)|2 

Splitter IFROG(ω,τ) = |∫Esig(t,τ) e-iwtdt|2 

Figure 10.13: Polarization Gate FROG setup. The instantaneous Kerr-effect 
is used to rotate the polarization of the signal pulse E(t) during the presence 
of the gate pulse E(t − τ) proportional to the intensity of the gate pulse [5]. 

Figure by MIT OCW. 

The signal analyzed in the FROG trace is, see Figure 10.14, 

Esig(t, τ ) = E(t) |E(t − τ)|2 (10.29) 

Image removed due to copyright considerations. 

Figure 10.14: The signal pulse reflects the color of the gated pulse at the 
time 2τ/3 [5] 
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The FROG traces generated from a PG-FROG for chirped pulses is iden-
tical to Fig. 10.12. Figure 10.15 shows FROG traces of more complicated 
pulses 

Image removed due to copyright considerations. 

Figure 10.15: FROG traces of more complicated pulses. 

10.3.2 FROG Inversion Algorithm 

Spectrogram inversion algorithms need to know the gate function g(t − τ), 
which in the  given case is  related to  the yet  unknown pulse.  So how  do  we  
get from the FROG trace to the pulse shape with respect to amplitude and 
phase? If there is such an algorithm, which produces solutions, the question 
of uniquness of this solution arises. To get insight into these issues, we realize, 
that the FROG trace can be written as 

IFROG(τ , ω) ∝ 

¯̄̄̄
 

Z ∞ 

Esig(t, τ )e 
−∞ 

−jω tdt ̄̄̄̄  

2 

(10.30) 

Writing the signal field as a Fourier transform in the time variable, i.e. Z ∞ 

Esig(t, τ) =  Ê 
sig(t, Ω)e −jΩ τ dΩ (10.31) 

−∞ 
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yields 

−jω t−jΩ τ dtdΩ ̄̄̄̄  
−∞ −∞ 

This equation shows that the FROG-trace is the magnitude square of a two-
dimensional Fourier transform related to the signal field Esig(t, τ ). The in-
version of Eq.(10.32) is known as the 2D-phase retrival problem. Fortunately 
algorithms for this inversion exist [8] and it is known that the magnitude (or 
magnitude square) of a 2D-Fourier transform (FT) essentially uniquely de-
termines also its phase, if additional conditions, such as finite support or the 
relationship (10.29) is given. Essentially unique means, that there are ambi-
guities but they are not dense in the function space of possible 2D-transforms, 
i.e. they have probability zero to occur. 
Furthermore, the unknown pulse E(t) can be easily obtained from the 

modified signal field Ê 
sig(t, Ω) because Z ∞ 

Ê 
sig(t, Ω) =  Esig(t, τ )ejΩ τ dτ (10.33) Z−∞∞ 

= E(t)g(t − τ)e −jΩ τ dτ (10.34) 
−∞ 

−jΩ t = E(t)G ∗ (Ω)e (10.35) 

with Z ∞ 

G(Ω) =  g(τ)e −jΩ τ dτ . (10.36) 
−∞ 

Thus there is 
ˆE(t) ∝ Esig(t, 0). (10.37) 

The only condition is that the gate function should be chosen such that 
G(Ω) 6= 0. This is very powerful. 

Fourier Transform Algorithm 

The Fourier transform algorithm also commonly used in other phase retrieval 
problems is schematically shown in Fig. 10.16 

¯̄̄̄
 

Z ∞ Z ∞ 2 

IFROG(τ , ω) ∝ Êsig(t, Ω)e (10.32) . 

http:Eq.(10.32
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Start 

Esig(t,τ) E(t) 
Generate Signal 

Esig(t,τ) 

Inverse FFT with 
respect to 

FFT with 
respect to t 

Esig(ω,τ) (IFROG)1/2= Esig(ω,τ) 

|Esig(ω,τ)| 
Esig(ω,τ) 

IFROG 

Figure 10.16: Fourier transform algorithm for FROG trace inversion. The 
blue operations indicate the constraints due to the gating technique used and 
the FROG data [5] 

Figure by MIT OCW. 

Generalized Projections 

The signal field Esig(t, τ ) has to fulfill two constraints, which define sets see 
Fig. 10.17. The intersection between both sets results in yields E(t). Moving  
to the closest point in one constraint set and then the other yields conver-
gence to the solution, if the two sets or convex. Unfortunately, the FROG 
constraints are not convex. Nevertheless the algorithm works surprisingly 
well. For more information consult with reference [5]. 

Set of Waveforms that Satisfy 
Nonlinear-optical Constraint: 

Set of Waveforms that Satisfy 
Data Constraint: 

The solution! 

Initial guess for 
Esig(t,τ) 

Esig(t,τ) ∝ E(t) |E(t-τ)|2 

IFROG(ω,τ) ∝ |∫Esig(t,τ) exp(-iωt) dt|2 

Figure 10.17: Generalized Projections applied to FROG [5]. 
Figure by MIT OCW. 
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10.3.3 Second Harmonic FROG 

So far we only discussed PG-FROG. However, if we choose a χ(2) nonlinearity, 
e.g. SHG, and set the gating—field equal to a copy of the pulse g(t) ≡ E(t), 
we are measuring in eq.(10.26) the spectrally resolved autocorrelation signal. 
The marginals of the measured FROG-trace do have the following properties 

¯̄̄
 

Z ∞ Z ∞ 

SF (τ , ω) dω ∝ |E(t)|2 · |g(t − τ)|2 dt = IAC (τ). (10.38) 
−∞ −∞ Z ∞ ¯̄̄̄

 

¯̄̄̄
 

Z ∞ ¯̄̄
 
2 

Ê(ω) · Ĝ(ω − ω0)2dω0 Ê2ω(ω)(τ , ω) dτ ∝ (10.39) SF = . 

¯̄̄
 

−∞ −∞ 

For the case, where g(t) ≡ E(t),we obtain Z ∞ 

SF (τ , ω) dω ∝ IAC (τ). (10.40) 
−∞ Z ∞ ¯̄̄

 
2 

Ê2ω(ω)SF (τ , ω) dτ ∝ (10.41) . 
−∞ 

The setup to measure the Frog-trace is identical with the setup to measure 
the intensity autocorrelation function (Figure 10.1) only the photodector for 
the second harmonic is replaced by a spectrometer (Figure 10.18). 

Δz 

τ 

τ 

ω 

ω 
2ωInput 

Beamsplitter 
Lens 

NL-
crystal 

Aperture 

Esig(t,τ) 

Spectrometer 

Figure 10.18: SHG-FROG setup. 
Figure by MIT OCW. 

http:eq.(10.26
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Since the intensity autocorrelation function and the integrated spectrum 
can be measured simultaneously, this gives redundancy to check the correct-
ness of all measurements via the marginals (10.38, 10.39). Figure 10.19 shows 
the SHG-FROG trace of the shortest pulses measured sofar with FROG. 

Image removed due to copyright restrictions. 

Please see: 

Baltuska, Pshenichnikov, and Wiersma. Journal of Quantum Electronics 35 (1999): 459. 

Figure 10.19: FROG measurement of a 4.5 fs laser pulse. 
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10.3.4 FROG Geometries 

The Frog-signal Esig.can also be generated by a nonlinear interaction different 
from SHG or PG, see table 10.20[5]. 

FROG Geometries: Pros and Cons 

Sensitivity Ambiguities 

SHG ω 
ω 

2ω 
Pr

χ(2) 
.001 nJ 

Direction of time; 
Rel. phase of multiple 
pulses 

Most sensitive; 
most accurate 

THG ω 
ω 

3ω 

χ(3) Pr 
1 nJ Relative phase of 

multiple pulses 
Tightly focused 
beams 

TG 
ω 

ω 
ω 

ω 
Pr 

χ(3) 

10 nJ None 
Useful for UV and 
transient-grating 
experiments 

PG 

WP 
ω 
ω 

Pol 

Pol ω 

Pr 
χ(3) 

100 nJ None 
Simple, intuitive, 
best scheme for 
amplified pulses 

SD 
ω 
ω 

ω 
Pr 

χ(3) ω 
1000 nJ None Useful for UV 

SHG = Second-harmonic generation THG = Third-harmonic generation TG = Transient-grating 

PG = Polarization-gate SD = Self-diffraction 

Figure 10.20: FROG geometries and their pros and cons. 

Figure by MIT OCW. 
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10.4 Spectral Interferometry and SPIDER 

Spectral Phase Interferometry for Direct Electric—Field Reconstruction (SPI-
DER) avoids iterative reconstruction of the phase profile. Iterative Fourier 
transform algorithms do have the disadvantage of sometimes being rather 
time consuming, preventing real—time pulse characterization. In addition, 
for “pathological" pulse forms, reconstruction is difficult or even impossible. 
It is mathematically not proven that the retrieval algorithms are unambigu-
ous especially in the presence of noise. 
Spectral shearing interferometry provides an elegant method to overcome 

these disadvantages. This technique has been first introduced by C. Iaconis 
and I.A. Walmsley in 1999 [11] and called spectral phase interferometry for 
direct electric—field reconstruction — SPIDER. Before we discuss SPIDER lets 
look at spectral interferometry in general 

10.4.1 Spectral Interferometry 

The spectrum of a pulse can easily be measured with a spectrometer. The 
pulse would be completely know, if we could determine the phase across 
the spectrum. To determine this unknown phase spectral interferometry for 
pulse measurement has been proposed early on by Froehly and others [12]. 
If we would have a well referenced pulse with field ER(t), superimpose  the  
unknown electric field ES(t) delayed with the reference pulse and interfere 
them in a spectrometer, see Figure 10.21, we obtain for the spectrometer 
output 

t − τ) (10.42)Z¯̄̄̄
 

t) = ER( 

−∞ 

ˆ ˆ(−)( jωτ ˆ(+)( −jωτ = SDC(ω) + S ω)e + S ω)e (10.44) 

with 

Ŝ(+)(ω) = Ê 
R 
∗ (ω)Ê 

S(ω) (10.45) 
ˆ(−)( S(+)∗ (S ω) =  ̂  ω) (10.46) 

Where (+) and (-) indicate as before, well separted positive and negative 
"frequency" signals, where "frequency" is now related to τ rather than ω. 

EI( t) +ES( ¯̄̄̄
 

¯̄̄
 

¯̄̄
 

2+∞ 2 
Ŝ( −jωtdte ˆ ˆER( ES( −jωτ ω) (10.43)ω) =  EI(t) ω) += 
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Spectrometer 

Frequency 

ER(t) 

ES(t-τ) 

1/τ 

Figure 10.21: Spectral Interferometery of a signal pulse with a reference 
pulse. 

Figure by MIT OCW. 

If τ is chosen large enough, the inverse Fourier transformed spectrum 
S(t) = F−1{Ŝ(ω)} results in well separated signals, see Figure 10.22. 

S(+)(S(t) = SDC(t) + S(−)(t + τ) + ˆ t − τ) (10.47) 

S(-)(t) S(+)(t) 

SDC(t) 

S(
t) 

t 
-τ 0 τ 

Figure 10.22: Decomposition of SPIDER signal. 

Figure by MIT OCW. 

We can isolate either the positive or negative frequency term with a filter 
in the time domain. Back transformation of the corresponding term to the 
frequency domain and computation of the spectral phase of one of the terms 
results in the spectral phase of the signal up to the known phase of the 
reference pulse and a linear phase contribution from the delay. 

ˆ(+)(ω) jωτ } = ϕS(ω)− ϕR(ω) + ωτΦ(+)(ω) = arg{S e (10.48) 
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Figure 10.23: The principle of operation of SPIDER. 

Adapted from F. X. Kaertner. Few-Cycle Laser Pulse Generation and its Applications. 
New York, NY: Springer-Verlag, 2004.. 

10.4.2 SPIDER 

What can we do if we don’t have a well characterized reference pulse? C. 
Iaconis and I.A. Walmsley [?]  came  up with the  idea  of  generating two up-
converted spectra slightly shifted in frequency and to investigate the spectral 
interference of these two copies, see Figure 10.23. We use 

jωS tER(t) =  E(t)e (10.49) 
j(ωS +Ω)tES(t) =  E(t − τ)e (10.50) 

EI(t) =  ER(t) +ES(t) (10.51) 

where ωs and ωs + Ω are the two frequencies used for upconversion and Ω 
is called the spectral shear between the two pulses. E(t) is the unknown 
electric field with spectrum 

Ê(ω) =  ̄̄̄Ê(ω) ̄̄̄ jϕ(ω)e (10.52) 

Spectral interferometry using these specially constructed signal and reference 
pulses results in 

Ŝ(ω) =  ̄̄̄̄  

Z +∞ 

t) −jωtdtEI( e 

¯̄̄̄
 

2 

= jωτ S(+)(ω)Ŝ 
DC(ω)+Ŝ

(−)(ω)e +ˆ e −jωτ (10.53) 
−∞ 

http:�)e(10.50
http:E(t)e(10.49
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Ŝ(+)(ω) =  Ê 
R 
∗ (ω)Ê 

S(ω) = Ê∗ (ω − ωs)Ê(ω − ωs − Ω) (10.54) 
ˆ ˆ(+)∗ (ω)S(−)(ω) =  S (10.55) 

S(+)(ω)The phase ψ(ω) = arg[ ˆ e−jωτ ] derived from the isolated positive spec-
tral component is 

ψ(ω) = ϕ(ω − ωs − Ω)− ϕ(ω − ωs)− ωτ. (10.56) 

The linear phase ωτ can be substracted off after independent determination 
of the time delay τ .  It is obvious that the spectral shear Ω has to be small 
compared to the spectral bandwdith ∆ω of the pulse, see Fig. 10.23. Then 
the phase difference in Eq.(10.56) is proportional to the group delay in the 
pulse, i.e. 

−Ω 
dϕ 

= ψ(ω), (10.57) 
dω 

or Z ω 

ϕ(ω) = − 
1 

ψ(ω0)dω0 . (10.58) 
Ω 0 

Note, an error ∆τ in  the calibration  of  the time delay  τ results  in an error  
in  the chirp  of  the pulse  

ω2 

∆ϕ(ω) = − ∆τ .  (10.59) 
2Ω 

Thus it is important to chose a spectral shear Ω that is not too small. How 
small does it need to be? We essentially sample the phase with a sample 
spacing Ω. The Nyquist theorem states that we can uniquely resolve a pulse 
in the time domain if it is only nonzero over a length [−T, T  ], where  T = π/Ω. 
On the other side the shear Ω has to be large enough so that the fringes in 
the spectrum can be resolved with the available spectrometer. 

http:Eq.(10.56
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SPIDER Setup 

We follow the work of Gallmann et al. [?] that can be used for characteri-
zation of pulses only a few optical cycles in duration. The setup is shown in 
Figure 10.24. 

Figure 10.24: SPIDER setup; SF10: 65 mm glass block (GDD/z ≈ 
160 fs2/ mm), BS: metallic beam splitters (≈ 200 µm, Cr—Ni coating 100 nm), 
τ : adjustable delay between the unchirped replica, τSHG: delay between 
unchirped pulses and strongly chirp pulse, RO: reflective objective (Ealing— 
Coherent, x35, NA=0.5, f=5.4 mm), TO: refractive objective , L: lens, spec-
trometer: Lot-Oriel MS260i, grating: 400 l/mm, Blaze—angle 350 nm, CCD: 
Andor DU420 CCI 010, 1024 x 255 pixels, 26 µm/pixel [13]. 

Courtesy of Richard Ell. Used with permission. 

Generation of two replica without additional chirp: 

A Michelson—type interferometer generates two unchirped replicas. The 
beam—splitters BS have to be broadband, not to distort the pulses. The 
delay τ between the two replica has to be properly chosen, i.e. in the setup 
shown it was about 400-500 fs corresponding to 120-150 µm distance in space. 
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Spectral shearing: 

The spectrally sheared copies of the pulse are generated by sum-frequency 
generation (SFG) with quasi-monochromatic beams at frequencies ωs and 
ωs + Ω. These quasi monochromatic signals are generated by strong chirp-
ing of a third replica (cf. Fig. 10.24) of the signal pulse that propagates 
through a strongly dispersive glass slab. For the current setup we estimate 
for the broadening of a Gaussian pulse due to the glass dispersion from 5 fs 
to approximately 6 ps. Such a stretching of more than a factor of thou-
sand assures that SFG occurs within an optical bandwidth less than 1 nm, a 
quasi—monochromatic signal. Adjustment of the temporal overlap τSHG with 
the two unchirped replica is possible by a second delay line. The streched 
pulse can be computed by propagation of the signal pulse E(t) through the 
strongly dispersive medium with transfer characteristic 

−jDglass(ω−ωc)2/2Hglass(ω) = e (10.60) 

neglecting linear group delay and higher order dispersion terms. We otain for 
the analytic part of the  electric  field of the streched pulse leaving the glass 
block by convolution with the transfer characteristic 

+∞Z 
/2 jωtdω =Estretch(t) =  Ê(ω)e −jDglass(ω−ωc)2 

e (10.61) 

−∞ 

+∞Z 
jt2/(2Dglass) jωct ˆ −jDglass((ω−ωc)−t/Dglass = e e E(ω)e 

2)/2dω(10.62) 

−∞ 

If the spectrum of the pulse is smooth enough, the stationary phase method 
can be applied for evaluation of the integral and we obtain 

jωc(t+t2/(2Dglass) ˆEstretch(t) ∝ e E(ω = ωc + t/Dglass) (10.63) 

Thus the field strength at the position where the instantaneous frequency is 

d 
ωinst = 

dt
ωc(t + t2/(2Dglass) = ωc + t/Dglass (10.64) 

is  given by the  spectral  amplitude at that frequency,  Ê(ω = ωc + t/Dglass). 
For large stretching, i.e. 

|τ p/Dglass| ¿ |Ω| (10.65) 

the up-conversion can be assumed to be quasi monochromatic. 

http:E�(�)ee(10.61
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SFG: 

A BBO crystal (wedged 10—50 µm) is used for type I phase—matched SFG. 
Type II phase—matching would allow for higher acceptance bandwidths. The 
pulses are focused into the BBO—crystal by a reflective objective composed of 
curved mirrors. The signal is collimated by another objective. Due to SFG 
with the chirped pulse the spectral shear is related to the delay between both 
pulses, τ ,  determined by Eq.(10.64) to be 

Ω = −τ/Dglass. (10.66) 

Note, that conditions (10.65) and (10.66) are consistent with the fact that 
the delay between the two pulses should be much larger than the pulse width 
τ p which also enables the separation of the spectra in Fig.10.22 to determine 
the spectral phase using the Fourier transform method. For characterization 
of sub-10fs pulses a crystal thickness around 30 µm is a good compromise. 
Efficiency is still high enough for common cooled CCD—cameras, dispersion 
is already sufficiently low and the phase matching bandwidth large enough. 

Signal detection and phase reconstruction: 

An additional lens focuses the SPIDER signal into a spectrometer with a 
CCD camera at the exit plane. Data registration and analysis is performed 
with a computer. The initial search for a SPIDER signal is performed by 
chopping and Lock—In detection.The chopper wheel is placed in a way that 
the unchirped pulses are modulated by the external part of the wheel and the 
chirped pulse by the inner part of the wheel. Outer and inner part have dif-
ferent slit frequencies. A SPIDER signal is then modulated by the difference 
(and sum) frequency which is discriminated by the Lock—In amplifier. Once 
a signal is measured, further optimization can be obtained by improving the 
spatial and temporal overlap of the beams in the BBO—crystal. 
One of the advantages of SPIDER is that only the missing phase informa-

tion is extracted from the measured data. Due to the limited phase—matching 
bandwidth of the nonlinear crystal and the spectral response of grating and 
CCD, the fundamental spectrum is not imaged in its original form but rather 
with reduced intensity in the spectral wings. But as long as the interference 
fringes are visible any damping in the spectral wings and deformation of 
the spectrum does not impact the phase reconstruction process the SPIDER 

http:Fig.10.22
http:Eq.(10.64
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technique delivers the correct information. The SPIDER trace is then gen-
erated by detecting the spectral interference of the pulses 

jωS tER(t) =  E(t)Ê(ωs)e (10.67) 
j(ωS +Ω)tES(t) =  E(t − τ)Ê(ωs + Ω)e (10.68) 

EI(t) =  ER(t) +ES(t) (10.69) 

The positive and negative frequency components of the SIDER trace are then 
according to Eqs.(??,10.55) 

S(+)( R ω) S(ω) = ˆ ω − ωs E(ω − ωs ωs E( − Ω)ˆ ω) =  Ê∗ ( Ê E ∗ ( ) ˆ − Ω)Ê∗ ( ) ˆ ωs (10.70) 

S(+)∗ (Ŝ(−)(ω) =  ̂  ω) (10.71) 

ˆ(+)(and the phase ψ(ω) = arg[S ω)e−jωτ ] derived from the isolated positive 
spectral component substraction already the linear phase off is 

ψ(ω) = ϕ(ω−ωs−Ω)−ϕ(ω−ωs)−ϕ(ω−ωs−Ω)+ϕ(ωs−Ω)−ϕ(ωs). (10.72) 

Thus up to an additional constant it delivers the group delay within the pulse 
to be characterized. A constant group delay is of no physical significance. 

SPIDER—Calibration 

This is the most critical part of the SPIDER measurement. There are three 
quantities to be determined with high accuracy and reproducibility: 

• delay τ 

• shift ωs 

• shear Ω 

Delay τ : 
The delay τ is the temporal shift between the unchirped pulses. It appears 
as a frequency dependent phase term in the SPIDER phase, Eqs. (10.56) 
and leads to an error in the pulse chirp if not properly substracted out, see 
Eq.(10.59). 
A determination of τ should preferentially be done with the pulses de-

tected by the spectrometer but without the spectral shear so that the ob-
served fringes are all exactly spaced by 1/τ . Such an interferogram may 

http:Eq.(10.59
http:�sE((10.70
http:Eqs.(??,10.55
http:�)e(10.68
http:E(t)E�(�s)e(10.67


      

            
            

           
            

              
         

             
            

             
            

          
             

            
            

           
               

             
  

              
          

             
           
             

           
             

  
             
    

     
  

            
          

              
 

        

10.4. SPECTRAL INTERFEROMETRY AND SPIDER 365 

be obtained by blocking the chirped pulse and overlapping of the individual 
SHG signals from the two unchirped pulses. A Fourier transform of the inter-
ferogram delivers the desired delay τ .In practice, this technique might be dif-
ficult to use. Experiment and simulation show that already minor changes of 
τ (±1 fs) significantly alter the reconstructed pulse duration (≈ ± 1 − 10%). 
Another way  for determination  of  τ is the following. As already men-

tioned, τ is accessible by a differentiation of the SPIDER phase with respect 
to ω. The delay τ therefore represents a constant GDD. An improper de-
termination of τ is thus equivalent to a false GDD measurement. The real 
physical GDD of the pulse can be minimized by a simultaneous IAC mea-
surement. Maximum signal level, respectively shortest IAC trace means an 
average GDD of zero. The pulse duration is then only limited by higher 
order dispersion not depending on τ . After the IAC measurement, the delay 
τ is chosen such that the SPIDER measurement provides the shortest pulse 
duration.  This is justified because through the IAC we know that the pulse 
duration is only limited by higher order dispersion and not by the GDD ∝ τ . 
The disadvantage of this method is that an additional IAC setup is needed. 
Shift ωs: 
The SFG process shifts the original spectrum by a frequency ωs ≈ 300 THz 
towards higher frequencies equivalent to about 450 nm when Ti:sapphire 
pulses are characterized. If the SPIDER setup is well adjusted, the square of 
the SPIDER interferogram measured by the CCD is similar to the fundamen-
tal spectrum. A determination of the shift can be done by correlating both 
spectra with each other. Determination of ωs only influences the frequency 
too which we assign a give phase value, which is not as critical. 
Shear Ω: 
The spectral shear is uncritical and can be estimated by the glass dispersion 
and the delay τ .  

10.4.3 Characterization of Sub-Two-Cycle Ti:sapphire 
Laser Pulses 

The setup and the data registration and processing can be optimized such 
that the SPIDER interferogram and the reconstructed phase, GDD and in-
tensity envelope are displayed on a screen with update rates in the range of 
0.5-1s. 
Real—time SPIDER measurements enabled the optimization of external 
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dispersion compensation leading to 4.8 fs pulses directly from a laser [13], see 
Figure 10.25. 

Figure 10.25: SPIDER measurement of a 4.8 fs Ti:sapphire laser pulse. (a) 
SPIDER interferogram on a logarithmic scale. (b) Spectral power density and 
spectral phase of the pulse. (c) Calculated GDD of the pulse. (d) Intensity 
envelope and temporal phase curve [13]. 
Courtesy of Richard Ell. Used with permission. 

Figure 10.25(a) shows the SPIDER interferogram as detected by the CCD 
camera. The interferogram is modulated up to 90%, the resolutions limit in 
the displayed graphic can not resolve this. The large number of interfer-
ence fringes assures reliable phase calculation. Figure (b) displays the laser 
spectrum registered by the optical spectrum analyzer on a logarithmic scale. 
The calculated spectral phase curve is added in this plot. The small slope 
of the phase curve corresponds to a constant GD which is an unimportant 
time shift. Fig. 10.25 (c) depicts the GDD obtained from the phase by two 
derivatives with respect to the angular frequency ω. The    last  Figure  (d)  



      

             
     

      

  
       

          

      
   

        

     
     

10.4. SPECTRAL INTERFEROMETRY AND SPIDER 367 

shows the intensity envelope with a FWHM pulse duration of 4.8 fs together 
with the temporal phase curve. 

10.4.4 Pros and Cons of SPIDER 

Advantages Disadvantages 
direct analytical phase extraction complex experimental setup 

no moving mirrors or other components precise delay calibration necessary 

possible real—time characterization “compact" spectrum necessary 
(no zero-intensity intervals) 

simple 1—D data acquisition need for expensive CCD—camera 

minor dependence on spectral response 
of nonlinear crystal and spectrometer 
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Chapter 11 

Ultrafast Measurement 
Techniques 

11.1 Pump Probe Measurements 

11.1.1 Non-Colinear Pump-Probe Measurement: 

translation stage 

1 fs <=> 0.15 µm 

Beam splitter

  S(t) 
Slow 
detector 

Time delay between 
pump and probe pulse 

Pump pulse 

Probe pulse 

Lens 

Test device 
Chopper 

Lock-In 
Amplifier

  S(t) 

t 

Mode-locked Laser 

  

  
 

    

    

        

         
             

 

t 
Computer 
screen 

Figure 11.1: Non-colinear pump-probe setup with co-polarized pump-probe 
beams. 
Adapted from U. Keller. 

Figure 11.1 shows a non-colinear pump-probe measurement setup. To sup-
press background light and low frequency noise of the probe beam the pump 
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beam is chopped. Typical chopper frequencies of regular mechanical chop-
pers are fch = 100Hz − 2kHz . Mechanical choppers up to 20kHz have been 
built. With acousto-optic modulators or electro-optic modulators chopper 
freuqencies up to several hundred MHz are possible. 

Lets denote Sin = S0 + δS as  the probe pulse energy,  where  S0 is the 
average value and δs a low frequency noise of the pulse source and S(t) 
is the probe signal transmitted through the test device. Then the detected 
signal transmitted through the test device can be written as 

S(t) =  T (P (t))Sin (11.1) 
dT 

= T0Sin + (P0m(t))
dP 

where T0 is the transmission without pump pulse, P0 is the pump pulse energy 
and m(t) the chopper modulation function. It is obvious that if the noise of 
the probe laser δS is of low freuqency, then the signal can be shifted away 
from this noise floor by chosing an appropriately large chopper frequency in 
m(t). Ideally, the chopper frequency is chosen large enough to enable shot 
noise limited detection. 

Sometimes the test devices or samples have a rough surface and pump 
light scattered from the surface might hit the detector. This can be partially 
suppressed by orthogonal pump and probe polarization 

This is a standard technique to understand relaxation dynamics in con-
densed matter, such as carrier relaxation processes in semiconductors for 
example. 

11.1.2 Colinear Pump-Probe Measurement: 

Sometimes pump and probe pulses have to be collinear, for example when 
pump probe measurements of waveguide devices have to be performed. Then 
pump and probe pulse, which might both be at the same center wavelength 
have to be made separable. This can be achieved by using orthogonal pump 
and probe polarization as shown in Figure 11.2 or by chopping pump and 
probe at different frequencies and detecting at the difference frequency, see 
Figure 11.3. 
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Probe pulse Test device 
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Pump pulse 
Lens 
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detector 

Chopper 

Lock-In 
Amplifier 

S(t) 
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PBS PBS 

λ/2-plate 

Mode-Locked Laser 

 

  

     

         
 

 

            
     

Figure 11.2: Colinear pump-probe with orthogonally polarized pump and 
probe beams. 
Adapted from U. Keller. 

Probe pulse Test device 

MLL 

Pump pulse 
Lens 

  S(t) 
Slow 
detector

  S(t) 

t 

Chopper f1 

Chopper f2 
Lock-In 
Amplifier 
at f  1 - f2 

Figure 11.3: Colinear pump probe with chopping of pump and probe and 
lock-in detection at the difference frequency. 
Adapted from U. Keller. 
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11.1.3 Heterodyne Pump Probe 

The lock-in detection is greatly improved if the difference frequency at which 
the detection occurs can be chosen higher and the signal can be filtered much 
better using a heterodyne receiver. This is shown in Figure 11.4, where 
AOM’s are used to prepare a probe and reference pulse shiftet by 39 and 40 
MHz respectively. The pump beam is chopped at 1kHz. After the test device 
the probe and reference pulse are overlayed with each other by delaying the 
reference pulse  in  a Michelson-Interferometer.  The beat note at 1MHz is  
downconverted to base band with a receiver. 

Chopper Pump pulse 

Probe pulse 
Test device

 S(t) 
Slow 
detector 

t 
AOM 

AOM+39 Mhz
 Probe +40 MHz Reference 

MLL 

T>>t 

Reference

 1 MHz Receiver 

Lock-In 
Amplifier 

S(t) 

t 

 

  

      

    

            
              

            
               

             
             

    
       

 

 

         
    

             
          

          

Figure 11.4: Colinear pump probe measurement with parallel polarization 
and large difference frequency. 
Adapted from U. Keller. 

If a AM or FM receiver is used and the interferometers generating the 
reference and probe pulse are interferometerically stable, both amplitude and 
phase nonlinearities can be detected with high signal to noise. 
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Chopper Pump pulse 

Probe pulse 
Test device 

S(t) 
Slow 
detector 

S(t) 
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Lock-In 
Amplifier 

AOM 

AOM +39 Mhz
    Probe +40 MHz Reference 

MLL 

T>>t 

Reference

  1 MHz Ham 
Radio Reciver 

AM or FM 

PZT 

t 

Figure 11.5: Heterodyne pump probe using AM and FM receiver to detect 
amplitude and phase nonlinearities. 
Adapted from U. Keller. 
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11.2 Electro-Optic Sampling: 

Electro-Optic Sampling was invented by Valdmanis and Mourou in the early 
1980’s [8][5]. Its is based on polarization rotation of a short laser pulse 
when propagating in a medium showing a linear electro-optic effect. The 
polarization rotation is due to an applied electric filed, i.e. the optical pulse 
samples the instantaneous electric field, see Fig.11.6 

External Electro-Optic Sampling Scheme 

Probe beam in 
(arrive at delayed times 

Switch Bias 

Semiconductor Substrate 

Electro-Optic 
Probe Crystal 

Probe 
Beam Out 

Excitation pulses 
(arrive at time t) 

of t+n.Δt) 

Figure 11.6: Electro-optic sampling scheme according ot J. Whitaker, Univ. 
of Michigan, Ann Arbor. 

Figure by MIT OCW. 

In Fig. 11.6 a electic transient is generated with a photo-conductive 
switch activated by a femtosecond laser pulse. A delayed pulse samples the 
transient electronic pulse with an electro-optic probe as shown in Fig. 11.7. 
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Electro-Optic Probe 

LiTaO3 Electro-Optic 
Crystal 

Probe Beam
Fused Silica 

Support 

Figure 11.7: LiTaO3−Electro-Otpic Probe according to J. Whitaker, Univ. 
Michigan. 

Figure by MIT OCW. 

Fig. 11.8 shows an overal version of an electro-optic sampling system 
according to J. Whitaker, Univ. of Michigan [6] 

Electro-Optic Sampling System Schematic 

To Lock-In Amplifier 

Delay 

Lens Polarizer 

Trigger Beam 

Fiber 

Detectors 

Analyzer 

Bias 

Circuit 

Probe tip 

Dichroic 
Beam Splitter 

Illumination 

Eyepiece 

Laser 

Figure 11.8: Electro-Otpic Sampling System according to J. Whitaker, Univ. 
Michigan. 

Figure by MIT OCW. 
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11.3 THz Spectroscopy and Imaging 

Photo-conductive switches activated by sub-100 fs pulses or optical rectifica-
tion with sub-100 fs pulses leads to the generation of THz electro-magnetic 
impulses, that can be received with similar photo-conductive receivers or by 
electro-optic sampling [8][9]. This technique was pioneered by Ch. Fattinger 
and D. Grischkowsky [7]. 

Femtosecond Laser 
Ti:sapphire or Cr:LiSAF 

50-100 fsDelay 

THz Transmitter 

V 
Sample 

Dielectrics, Tissue, 
IC-Packaging etc. 

Laser Pulse 

LT-GaAs Substrate 

Current 

THz Detector 

Figure 11.9: THz Time Domain Spectroscopy according to [8] 
Figure by MIT OCW. 
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12 fs 
Ti:sapphire 
Oscillator 

Optical Rectification 
in GaAs 

FIR - Probe: 
15 fs ~ 5-15 µm 
15 fs ~ 60 THz 
6 fs > 100 THz 

GaInAs/GaAs/AlAsDelay 

E2 
E1 

QW 
THz -OPOs 
THz -OPAs 

Quantum-Cascade Laser 

Figure 11.10: THz Time Domain Spectroscopy using optical rectification in 
GaAs [9]. 

Figure by MIT OCW. 

Figure 11.11: Terahertz waveforms modified by passage through (a) a 10mm 
block of stycast and (b) a chinese fortune cookie. The dashed lines show the 
shape of the input waveform multiplied by 0.5 in (a) and by 0.1 in 9b). In *a( 
the transmitted plse exhibits a strong "chirp" due to frequency-dependent 
index, while in (b), pulse broadening indicates preferential absorption of high 
frequencies [8]. 

Figure 11.11 shows typical generated THz waveforms and distortions due 
to propagation through materials. 
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11.4 Four-Wave Mixing 

A more advanced ultrafast spectroscopy technique than pump-probe is four-
wave mixing (FWM). It enables to investigate not only energy relaxation 
processes, as is the case in pump-probe measurements, but also dephasing 
processes in homogenous as well as inhomogenously broadened materials. 
The typical set-up is shown in Fig. 11.12 
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Figure 11.12: Typical Four-Wave-Mixing (FWM) beam geometry. 

Lets assume these pulses interact resonantely with a two-level system 
modelled by the Bloch Equations derived in chapter 2 (2.1592.162). µ ¶ 

∆ − 
1 
2 

∂2 

E� (+)(z, t) =  µ0 
∂2 

P� (+)(z, t), (11.2) 
c0 ∂t

2 ∂t2 

P (+)(� z, t) =  −2NM� ∗ d(z, t) (11.3) 
1 1 

E(+)ḋ(z, t) =  −( − jωeg)d + M� � w, (11.4) 
T2 2j~ 
w − w0 1 

E(+)d ∗ )ẇ(z, t) =  − + (M� ∗ E� (−)d − M� � (11.5) 
T1 j~ 

The two-level system, located at z = 0, will be in the ground state, i.e. 
d(t = 0) = 0 and w(t = 0) = −1, before arrival of the first pulses. That 
is, no polarization is yet present. Lets assume the pulse interacting with the 
two-level system are weak and we can apply perturbation theory. Then the 
arrival of the first pulse with the complex field 

� (+)( � (+) j(ωeg t−j�k1�x)E �x, t) = E0 δ(t)e (11.6) 



    

         

 
        
 

             
          

 
 

 
 

        
 

             
             

      

 

   
       
 

  
 

            
         

        

                
               

            
    

11.4. FOUR-WAVE MIXING 381 

will generate a polarization wave according to the Bloch-equations 

� � (+)ME0 −j�j(ωeg −1/T2)t k1�d(�x, t) = − e e xδ(z), (11.7) 
2j~ 

which will decay with time. Once a polarization is created the second pulse 
will change the population and induce a weak population grating ¯̄̄

 
¯̄̄
 
2 

� � (+)ME0 −t12/T2 −j(k1−�k2)�x −(t−t2)/T1 δ(e e 
� 

e z) + c.c., (11.8) ∆w(�x, t) =  
~2 

When the third pulse comes, it will scatter of from this population grating, 
i.e. it will induce a polarization, that radiates a wave into the direction 
�k3 + �k2 − �k1 according to 

2 ¯̄̄
 

¯̄̄
� (+)�ME0� (+)�ME 

e 
�−j(k3+�k2−�k1)�xδ(z) (11.9) 0 −t12/T2 −t32/T1ed(�x, t) =  e 

2j~ ~2 

Thus the signal detected in this direction, see Fig. 11.12, which is propor-
tional to the square of the radiating dipole layer 

−2t12/T2 −2t32/T1S(t) ∼ |d(�x, t)|2 ∼ e e (11.10) 

will decay on two time scales. If the time delay between pulses 1 and 2, t12, 
is only varied it will decay with the dephasing time T2/2. If the time delay 
between  pulses  2 and  3 is varied,  t32, the signal strength will decay with the 
energy relaxation time T1/2 
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Chapter 12 

Pulse Amplification 

We use a presentation mostly developed by 

Francois Salin 
Center for Intense Lasers 
and Applications (CELIA) 
Université Bordeaux I, FRANCE 
www.celia.u-bordeaux.fr 

and extended by Rick Trebino.  

The slides can be downloaded from Rick Trebinos web pages and his 
Ultrafast Optics Course: 

http://www.physics.gatech.edu/gcuo/UltrafastOptics/ 
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