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Outline


Calibration and Strategies: 
Discrimination – Cross-validation 

• AUCs  – Bootstrap 
• H-L statistic • Decomposition of 


error 
– Bias  
– Variance 



Main Concepts


• Example of a Medical Classification System

• Discrimination 

– Discrimination: sensitivity, specificity, PPV, NPV,

accuracy, ROC curves, areas, related concepts


• Calibration 
– Calibration curves 
– Hosmer and Lemeshow goodness-of-fit 



Example I


Modeling the Risk of Major In-Hospital 
Complications Following Percutaneous 
Coronary Interventions 

Frederic S. Resnic, Lucila Ohno-Machado, Gavin J. Blake, 
Jimmy Pavliska, Andrew Selwyn, Jeffrey J. Popma 

[Simplified risk score models accurately predict the risk of 
major in-hospital complications following percutaneous 
coronary intervention. 
Am J Cardiol. 2001 Jul 1;88(1):5-9.] 



Dataset: Attributes Collected


History Presentation Angiographic Procedural Operator/Lab 

age acute MI occluded number lesions annual volume 
gender primary lesion type multivessel device experience 
diabetes rescue (A,B1,B2,C) number stents daily volume 

iddm CHF class graft lesion stent types (8) lab device 
history CABG angina class vessel treated closure device experience 
Baseline Cardiogenic ostial gp 2b3a unscheduled case 

creatinine shock antagonists 
CRI 
ESRD 

failed CABG dissection post 
rotablator 

hyperlipidemia atherectomy 
angiojet 
max pre stenosis 
max post stenosis 
no reflow 

Data Source: 
Medical Record 
Clinician Derived 
Other 



Study Population


Development Set Validation Set 
1/97-2/99 3/99-12/99 

Cases 2,804 1,460 

Women 909 (32.4%) 433 (29.7%) p=.066 

Age > 74yrs 595 (21.2%) 308 (22.5%) p=.340 

Acute MI 250 (8.9%) 144 (9.9%) p=.311 
Primary 156 (5.6%) 95 (6.5%) p=.214 
Shock 62 (2.2%) 20 (1.4%) p=.058 

Class 3/4 CHF 176 (6.3%) 80 (5.5%) p=.298 

gp IIb/IIIa antagonist 1,005  (35.8%) 777 (53.2%) p<.001 

Death 67 (2.4%) 24 (1.6%) p=.110 
Death, MI, CABG (MACE) 177 (6.3%)  96 (6.6%) p=.739 



ROC Curves: Death Models

Validation Set: 1460 Cases 

LR 
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Risk Score of Death: BWH Experience

Unadjusted Overall Mortality Rate = 2.1% 
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Evaluation Indices




General indices


• Brier score (a.k.a. mean squared error)


2Σ(e - o )i i

n 

e = estimate (e.g., 0.2)

o = observation (0 or 1)


n = number of cases




Discrimination Indices




Discrimination


• The system can “somehow” differentiate 

between cases in different categories


• Binary outcome is a special case: 

– diagnosis (differentiate sick and healthy 

individuals) 
– prognosis (differentiate poor and good 

outcomes) 



Discrimination of 

Binary Outcomes


•	 Real outcome (true outcome, also known as “gold
standard”) is 0 or 1, estimated outcome is usually a
number between 0 and 1 (e.g., 0.34)

Estimate “True”

0.3	 0 
0.2	 0 
0.5	 1 
0.1	 0 

•	 In practice, classification into category 0 or 1 is based on
Thresholded Results (e.g., if output or probability > 0.5 
then consider “positive”) 
–	 Threshold is arbitrary 



threshold 

normal Disease 

FN 

True 
Negative (TN) 

FP 

True 
Positive (TP) 

0 e.g. 0.5 1.0




Sens = TP/TP+FN 

Spec = TN/TN+FP 

PPV = TP/TP+FP 

NPV = TN/TN+FN 

Accuracy = TN +TP 
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Sens = TP/TP+FN

40/50 = .8


Spec = TN/TN+FP

45/50 = .9


PPV = TP/TP+FP

40/45 = .89


NPV = TN/TN+FN

45/55 = .81


Accuracy = TN +TP

85/100 = .85
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nl disease 

threshold 

FN 

TN TP 

Sensitivity = 30/50 = .6 
Specificity = 1 
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What is the area under the 

ROC?


•	 An estimate of the discriminatory performance of the 
system 
–	 the real outcome is binary, and systems’ estimates are 


continuous (0 to 1)

–	 all thresholds are considered 

•	 Usually a good way to describe the discrimination if there
is no particular trade-off between false positives and
false negatives (unlike in medicine…) 
–	 Partial areas can be compared in this case 



Simplified Example


Systems’ estimates for 10 patients
 0.3 
“Probability of being sick” 0.2 
“Sickness rank” 0.5


(5 are healthy, 5 are sick): 0.1


0.7


0.8


0.2


0.5


0.7


0.9 




Estimates per class


• Healthy (real outcome is 0) • Sick (real outcome is1)

0.3 0.8 
0.2 0.2 
0.5 0.5 
0.1 0.7 
0.7 0.9 



All possible pairs 0-1


• Healthy • Sick 
0.3 < 0.8 concordant 

0.2 discordant0.2 
0.5 concordant0.5 
0.7 concordant0.1 
0.9 concordant0.7 



All possible pairs 0-1

Systems’ estimates for 

• Healthy • Sick 
0.8 concordant0.3 
0.2 tie0.2 
0.5 concordant0.5 
0.7 concordant0.1 

0.7 0.9 concordant 



C - index


18 4 
• Concordant • Discordant • Ties 


3


C -index = Concordant + 1/2 Ties = 18 + 1.5


All pairs 25
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ROC Curves: Death Models

Validation Set: 1460 Cases 

LR 
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Calibration Indices




Discrimination and Calibration


•	 Discrimination measures how much the 
system can discriminate between cases 
with gold standard ‘1’ and gold standard ‘0’ 

•	 Calibration measures how close the 
estimates are to a “real” probability 

•	 “If the system is good in discrimination, 
calibration can be fixed” 



Calibration


• System can reliably estimate probability of

– a diagnosis 
– a prognosis 

• Probability is close to the “real” probability




What is the “real” probability?


•	 Binary events are YES/NO (0/1) i.e., 
probabilities are 0 or 1 for a given individual 

• Some models produce continuous (or quasi-

continuous estimates for the binary events)


•	 Example:

– Database of patients with spinal cord injury, and a 

model that predicts whether a patient will ambulate or
not at hospital discharge 

–	Event is 0: doesn’t walk or 1: walks

– Models produce a probability that patient will walk: 

0.05, 0.10, ... 



How close are the estimates to the 

“true” probability for a patient?


•	 “True” probability can be interpreted as 
probability within a set of similar patients 

•	 What are similar patients?

–	Clones 
– Patients who look the same (in terms of variables 

measured) 
–	Patients who get similar scores from models


–	How to define boundaries for similarity? 



Estimates and Outcomes


• Consider pairs of 
– estimate and true outcome 
0.6 and 1
0.2 and 0
0.9 and 0
– And so on… 



Calibration


Sorted pairs by systems’ estimates Real 
outcomes 
0.1 0 
0.2 0 
0.2 sum of group = 0.5 1 sum = 1 
0.3 0 
0.5 0 
0.5 sum of group = 1.3 1 sum = 1 
0.7 0 
0.7 1 
0.8 1 
0.9 sum of group = 3.1 1 sum = 3 
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Regression line 

0 Avg of estimates per group 1




Goodness-of-fit

Sort systems’ estimates, group, sum, chi-square 

Estimated Observed 
0.1 0 
0.2 0 
0.2 sum of group = 0.5 1 sum = 1 
0.3 0 
0.5 0 
0.5 sum of group = 1.3 1 sum = 1 
0.7 0 
0.7 1 
0.8 1 
0.9 sum of group = 3.1 1 sum = 3 

χ2 = Σ [(observed - estimated)2/estimated] 



Hosmer-Lemeshow C-hat 

Groups based on n-iles (e.g., terciles), n-2 d.f. training, n d.f. test 
Measured Groups 

Estimated Observed 

0.1 0 
0.2 0 
0.2 sum = 0.5 1  sum = 1 
0.3 0 
0.5 0 
0.5 sum = 1.3 1  sum = 1 
0.7 0 
0.7 1 
0.8 1 
0.9 sum = 3.1 1  sum = 3 



Hosmer-Lemeshow H-hat 

Groups based on n fixed thresholds (e.g., 0.3, 0.6, 0.9), n-2 d.f.

Measured Groups 

Estimated Observed 

0.1 0 
0.2 0 
0.2 1 
0.3 sum = 0.8 0 sum = 1 
0.5 0 
0.5 sum = 1.0 1  sum = 1 
0.7 0 
0.7 1 
0.8 1 
0.9 sum = 3.1 1  sum = 3 



Decomposition of Error


The “ideal” model generates data D.

A “learned” model is learned from D.

Once learned, model M is fixed.

After learning, I and M are conditionally 


independent given D. 
D 

y^ 

f’f 

y 
MI 



Decomposition of Error

A and B binary (y-hat and y-ideal) 
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Decomposition of Error

A represents classification from learned model 

B represents classification from “ideal” 
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Decomposition of Error 
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