The Cantorian Theory of Size ## 1 Basic Definitions Cardinality |A| is the size of set A. **Bijection Principle** |A| = |B| iff there is a bijection from A to B. **Injection Principle** $|A| \leq |B|$ iff there is an injection A to B. ## 2 Extended Definitions | Notation | How it's defined | Informal notion | |---------------|---------------------------------|---| | A = B | bijection from A to B | just as many members in A as in B | | $ A \le B $ | injection from A to B | at most as many members in A as in B | | A < B | $ A \le B $ and $ A \ne B $ | fewer members in A than in B | | $ A \ge B $ | $ B \leq A $ | at least as many members in A as in B | | A > B | $ A \ge B $ and $ A \ne B $ | more members in A than in B | ## 3 Properties of \leq Reflexivity $|A| \leq |A|$ **Anti-symmetry** If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B| **Transitivity** If $|A| \leq |B|$ and $|B| \leq |C|$, then $|A| \leq |C|$ **Totality*** For any sets A and B, either $|A| \leq |B|$ or $|B| \leq |A|$ ^{*}One can only prove Totality if one assumes a controversial set-theoretic axiom: the Axiom of Choice. We'll come across this axiom again. Stay tuned! MIT OpenCourseWare https://ocw.mit.edu/ 24.118 Paradox and Infinity Spring 2019 For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.