The Cantorian Theory of Size

1 Basic Definitions

Cardinality |A| is the size of set A.

Bijection Principle |A| = |B| iff there is a bijection from A to B.

Injection Principle $|A| \leq |B|$ iff there is an injection A to B.

2 Extended Definitions

Notation	How it's defined	Informal notion
A = B	bijection from A to B	just as many members in A as in B
$ A \le B $	injection from A to B	at most as many members in A as in B
A < B	$ A \le B $ and $ A \ne B $	fewer members in A than in B
$ A \ge B $	$ B \leq A $	at least as many members in A as in B
A > B	$ A \ge B $ and $ A \ne B $	more members in A than in B

3 Properties of \leq

Reflexivity $|A| \leq |A|$

Anti-symmetry If $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|

Transitivity If $|A| \leq |B|$ and $|B| \leq |C|$, then $|A| \leq |C|$

Totality* For any sets A and B, either $|A| \leq |B|$ or $|B| \leq |A|$

^{*}One can only prove Totality if one assumes a controversial set-theoretic axiom: the Axiom of Choice. We'll come across this axiom again. Stay tuned!

MIT OpenCourseWare https://ocw.mit.edu/

24.118 Paradox and Infinity Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.