Countable Additivity

1 The Principle of Countable Additivity

(Finite) Additivity p(A or B) = p(A) + p(B)

whenever A and B are incompatible propositions

Countable Additivity $p(A_1 \text{ or } A_2 \text{ or } \ldots) = p(A_1) + p(A_2) + \ldots$

whenever A_1, A_2, \ldots are countably many propositions with A_i and A_j incompatible for $i \neq j$.

2 Against Countable Additivity

- God has selected a positive integer, and that you have no idea which.
- For n a positive integer, what credence should you assign to the proposition, G_n , that God selected n?

Countable Additivity entails that your credences should remain undefined (unless you're prepared to give different answers for different choices of n).

Proof: suppose otherwise. Then $p(G_n) = r$, for $r \in [0, 1]$.

• Suppose r = 0. By Countable Additivity:

$$p(G_1 \text{ or } G_2 \text{ or } G_3 \text{ or } \dots) = p(G_1) + p(G_2) + p(G_3) + \dots$$

$$= \underbrace{0 + 0 + 0 + \dots}_{\text{once for each integer}}$$

$$= \underbrace{0}$$

• Suppose r > 0. By Countable Additivity:

$$p(G_1 \text{ or } G_2 \text{ or } G_3 \text{ or } \dots) = p(G_1) + p(G_2) + p(G_3) + \dots$$

$$= \underbrace{r + r + r + \dots}_{\text{once for each integer}}$$

$$= \infty$$

Moral: Countable Additivity entails that there is no way of distributing probability uniformly across a countably infinite set of (mutually exclusive and jointly exhaustive) propositions.

2.1 Infinitesimals to the rescue?

What if we had an infinitesimal value ι with the following property?

$$\underbrace{\iota + \iota + \iota + \ldots}_{\text{once for each positive integer}} = 1$$

Then:

$$p(G_1 \text{ or } G_3 \text{ or } G_5 \text{ or } \dots) = p(G_1) + p(G_3) + p(G_5) + \dots$$

$$= \underbrace{\iota + \iota + \iota + \dots}_{\text{once for each positive integer}}$$

$$= 1$$

and

$$p(G_2 \text{ or } G_4 \text{ or } G_6 \text{ or } \dots) = p(G_2) + p(G_4) + p(G_6) + \dots$$

$$= \underbrace{\iota + \iota + \iota + \dots}_{\text{once for each positive integer}}$$

$$= \underbrace{1}$$

So, by (finite) Additivity:

$$p(G_1 \text{ or } G_2 \text{ or } G_3 \text{ or } \ldots) = 2 \ (!)$$

3 For Countable Additivity

- $X, Y \subseteq \mathbb{Z}^+$
- p(X) is the probability that God selects a number in X.
- p(X|Y) is the probability that God selects a number in X given that She selects a number in Y.

Here is a natural way of characterizing p(X) and p(X|Y):

$$p(X|Y) =_{df} \lim_{n \to \infty} \frac{|X \cap Y \cap \{1, 2, \dots, n\}|}{|Y \cap \{1, 2, \dots, n\}|}$$
$$p(X) =_{df} p(X|\mathbb{Z}^+)$$

- p(X) is finitely additive but not countably additive.
- p(X) is not well-defined for arbitrary sets of integers.¹

Also, there is a set S and a partition E_i of \mathbb{Z}^+ such that:

- p(S) = 0
- $p(S|E_i) \ge 1/2$ for each E_i .

Example:

 $S = \{1^2, 2^2, 3^2, \dots\}; E_i$ be the set of powers of i (whenever i which is not a power of any other positive integer). In other words:

Solution S =
$$\{1,4,9,16,25,\dots\}$$

 E_1 = $\{1\}$
 E_2 = $\{2,4,8,16,32,\dots\}$
 E_3 = $\{3,9,27,81,243,\dots\}$
[No E_4 , since $4=2^2$]
 E_5 = $\{5,25,125,625,3125,\dots\}$
 \vdots

3.1 Is this really so bad?

Yes. There is a sequence of bets $B_{E_1}, B_{E_2}, B_{E_3}, B_{E_5}, \ldots$ such that:

- you are confident that you ought to take each of the bets,
- you are 100% confident that you will lose money if she takes them all.

 B_{E_i} : Suppose God selects a number in E_i . Then you'll receive \$2 if the selected number is in S and you'll be forced to pay \$1 if the selected number is not in S. (If the selected number is not in E_i , then the bet is called off and no money exchanges hands.)

Problems of this general form are inescapable: they will occur whenever a probability function on a countable set of possibilities fails to be countably additive.

¹For instance, when X consists of the integers k such that $2^m \le k < 2^{m+1}$, for some even m.

4 The Two-Envelope Paradox

- Two envelopes:
 - one contains n, for n chosen at random from \mathbb{Z}^+ .
 - the other contains 2n.
- You are handed one of the envelopes, but don't know which.
- Then you are offered the chance to switch. Should you switch?

An argument for switching:

Say that your envelope contains k. If k is odd, you should switch. If k is even, there's a 0.5 chance that the other envelope has k2 and a 0.5 chance that the other envelope has k2. So:

$$EV(\text{switch}) = \$k/2 \cdot 0.5 + \$2k \cdot 0.5 = 5/4 \cdot \$k$$

 $EV(\text{not switch}) = \k

5 Broome's Variant of the Paradox

- Two envelopes:
 - Toss a die until it lands One or Two. If the die first lands One or Two on the kth toss, place 2^{k-1} in the first envelope.
 - Place twice that amount in the other envelope.

MIT OpenCourseWare https://ocw.mit.edu/

24.118 Paradox and Infinity Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.