Non-Computable Functions

1 The Main Result

- We'll focus on functions $f: \mathbb{N} \to \mathbb{N}$.
- For a computer program to **compute** f is for it to yield f(n) as output whenever it is given n as input $(n \in \mathbb{N})$.
- Theorem: not every function is computable.

 (And I can give you examples!)

2 The Overall Plan

- Turing Machines are computers of an especially simple sort.
- We'll see that some functions are not Turing-computable.
- But: any function that can be computed using an ordinary computer is also computed by some Turing Machine.

3 Computing functions on a Turing Machine

- Simplifying Assumptions:
 - We'll focus on *one symbol* Turing Machines (where the only admissible symbols are ones and blanks).
 - We'll assume that the tape is only unbounded on the right.
- Turing Computability:
 - M computes a function f(x) if and only if it delivers f(n) as output whenever it is given n as input.
 - M takes n ($n \in \mathbb{N}$) as **input** if it starts out with a tape that contains only a sequence of n ones (with the reader positioned at the left-most one, if n > 0).

- M delivers f(n) as **output** if it halts with a tape that contains only a sequence of f(n) ones (with the reader positioned at the left-most one, if n > 0).

4 Coding Turing Machines as Numbers

The Plan

Turing Machine \rightarrow Sequence of symbols \rightarrow Sequence of numbers \rightarrow Unique number

Sequence of symbols \rightarrow Sequence of numbers

State Symbols: Tape Symbols: Movement Symbols:

Sequence of numbers \rightarrow Unique number

Codes the sequence $\langle n_1, n_2, \dots, n_k \rangle$ as the number:

$$p_1^{n_1+1} \cdot p_2^{n_2+1} \cdot \ldots \cdot p_k^{n_k+1}$$

where p_i is the *i*th prime number.

(Treat any number that doesn't code a valid sequence of command lines as a code for the "empty" Turing Machine.)

4.1 An example

$$2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$$

$$\downarrow$$

$$2^{0+1} \cdot 3^{0+1} \cdot 5^{0+1} \cdot 7^{0+1} \cdot 11^{0+1}$$

$$\downarrow$$

$$0 \quad 0 \quad 0 \quad 0$$

$$\downarrow$$

$$0 \quad - \quad r \quad 0$$

5 The Halting Function

• $H(n,m) = \begin{cases} 1 & \text{if the } n \text{th Turning Machine halts when given input } m; \\ 0 & \text{otherwise.} \end{cases}$

For instance: H(2310, 0) = 0 and H(2310, 2310) = 1.

 $\bullet \ H(n) = H(n,n)$

For instance: H(2310) = 1.

$6 \quad H(n)$ is not Turing-computable

- Assume for *reductio*: Turing Machine M^H computes H(n).
- Construct Turing Machine M^I , which behaves as follows on input k:

Step 1: Check whether H(k) (using M^H).

Step 2: $\begin{cases} \text{If } H(k) = 1, \text{ go right forever.} \\ \text{If } H(k) = 0, \text{ halt.} \end{cases}$

- Informally: What happens when you run M^I on input $\overline{M^I}$? It figures out whether it itself would halt on input $\overline{M^I}$. If the answer is yes, it goes off on an infinite task; if the answer is no, it immediately halts.
- Formally: $H(\overline{M^I})$ 1 or 0?
 - Suppose $H(\overline{M^I})=1$. Then (by Step 2) M^I goes right forever on input $\overline{M^I}$. So $H(\overline{M^I})=0$.
 - Suppose $H(\overline{M^I})=0$. Then (by Step 2) M^I halts on input $\overline{M^I}$. So $H(\overline{M^I})=1$.
- $\bullet\,$ So M^I is impossible. So M^H isn't computable after all.

7 The Busy Beaver Function

- **Productivity**(M) = $\begin{cases} k, & \text{if } M \text{ yields output } k \text{ on an empty input} \\ 0, & \text{otherwise} \end{cases}$
- $BB(n) = { {
 m the \ productivity \ of \ the \ most \ productive \ (one-symbol)} \over {
 m Turing \ Machine \ with \ } n \ {
 m states \ or \ fewer}. }$

8 BB(n) is not Turing-computable

- Assume for reductio: Turing Machine M^{BB} computes BB(n).
- Construct Turing Machine M^I , which behaves as follows on an empty input:
 - **Step 1:** Print a sequence of k ones, for a certain k (specified below). *Result:* k.
 - **Step 2:** Duplicate your string of ones. *Result:* 2k.
 - **Step 3** Apply BB to your string of ones (using M^{BB}). Result: BB(2k).
 - **Step 4** Add one to your string of ones. Result: BB(2k) + 1.
- Let k = b + c + d

b =the number of states used in Step 2 (to duplicate)

c = the number of states used in Step 3 (to apply BB)

d =the number of states used in Step 4 (to add one)

Note: since a Turing Machine can output k using k states,

$$\overline{M^I} = k + b + c + d = 2k$$

• M^{BB} is impossible:

- At Stage 3, it produces as long a sequence of ones as a machine with 2k states could possibly produce.
- But (as noted above) $\overline{M^I} = 2k$.
- So at Stage 3, it produces as long a sequence of ones as it itself could possibly produce.
- So at Stage 4, it produces a *longer* string of ones than it itself could possibly produce.
- So M^H isn't computable after all.

MIT OpenCourseWare https://ocw.mit.edu/

24.118 Paradox and Infinity Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.