The Cantorian Theory of Size (Part II)

1 Definitions

A is infinite: $|\mathbb{N}| \leq |A|$

A is countable: $|A| \leq |\mathbb{N}|$

2 A Little Lemma

No Countable Difference Principle: $|I| = |I \cup C|$, for I infinite and C countable.

3 Sets with the same size as \mathbb{R}

Set	Also known as	Members
[0,1)	unit interval (half closed)	real numbers larger or equal
		to 0 but smaller than 1
(0,1)	unit interval (open)	real numbers larger
		than 0 but smaller than 1
[0,1]	unit interval (closed)	real numbers larger or equal
		to 0 but smaller or equal to 1
[0,a]	arbitrarily sized interval	real numbers larger or equal to 0
		but smaller or equal to $a\ (a>0)$
$\boxed{[0,1]\times[0,1]}$	unit square	pairs of real numbers larger or
		equal to 0 but smaller or equal to 1
$\underbrace{[0,1]\times\cdots\times[0,1]}$	<i>n</i> -dimensional hypercube	n-tuples of real numbers larger or
		equal to 0 but smaller or equal to 1
$\underline{\hspace{1cm}}$ n times		
\mathbb{R}	real line	real numbers
$\mathcal{O}(\mathbb{N})$	powerset of \mathbb{N}	sets of natural numbers

4 Summary of Cardinality Comparisons

MIT OpenCourseWare https://ocw.mit.edu/

24.118 Paradox and Infinity Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.