Gödel's Theorem

1 The Theorem

Let \mathcal{L} be a (rich enough) arithmetical language:

Gödel's Incompleteness Theorem (V1) No Turing Machine can do the following: when given a sentence of \mathcal{L} as input, it outputs "1" if the sentence is true and "0" if the sentence is false.

Gödel's Incompleteness Theorem (V2) No Turing Machine can:

- 1. run forever, outputting sentences of \mathcal{L} ;
- 2. eventually output each true sentence of \mathcal{L} ; and
- 3. never output a false sentence of \mathcal{L} .

Gödel's Incompleteness Theorem (V3) No axiomatization of \mathcal{L} is both consistent and complete.

2 What the Theorem Teaches Us

• Mathematically:

Arithmetical truth is too complex to be finitely specifiable.

• Philosophically:

Interesting mathematical theories can never be established beyond any possibility of doubt.

3 A Simple Arithmetical Language, L

- An arithmetical language is a language to talk about the natural numbers and their basic operations (e.g. addition and multiplication).
- \bullet L is an arithmetical language built from the following symbols:¹

¹With some effort, the exponentiation symbol can be defined using "+" and "×", as Gödel showed. I include it here because it will make proving the theorem much easier.

Arithmetical	Symbol	Denotes
0		the number zero
1		the number one
+		addition
×		multiplication
\wedge		exponentiation
Logical Symbol		Read
=	is identical to	
\neg	it is not the case that	
&	it is both the case that \dots and \dots	
\forall	every number is such that	
$x_n \text{ (for } n \in \mathbb{N})$	it	
Auxiliary Symbol Meaning		Meaning
([left parenthesis]
)	[1	right parenthesis]

3.1 Abbreviations

An **abbreviation** is a notational shortcut to make it easier for us to keep track of certain strings of symbols on our official list.

\bullet Numerals:

Abbreviation	Read	Official Notation
2	two	(1+1)
3	three	((1+1)+1)
4	four	(((1+1)+1)+1)
÷	:	:

• Logical Symbols:

Abbreviation	Read	Official Notation
$A \vee B$	$A ext{ or } B$	$\neg(\neg A \& \neg B)$
$A\supset B$	if A , then B	$\neg A \lor B$
$\exists x_i$	some number is such that it	$\neg \forall x_i \neg$

• Arithmetical Symbols:

Abbreviation	Read	Official Notation
$x_i < x_j$	x_i is smaller than x_j	$\exists x_k ((x_j = x_i + x_k) \& \neg (x_k = 0))$
$x_i x_j$	x_i divides x_j	$\exists x_k (x_k \times x_i = x_j)$
$Prime(x_i)$	x_i is prime	$(1 < x_i) \& \forall x_j \forall x_k ((x_i = x_j \times x_k) \supset (x_i = x_j \vee x_i = x_k))$

4 A Rich Enough Language

 \mathcal{L} counts as "rich enough" if one can prove:

Lemma \mathcal{L} contains a formula (abbreviated "Halt(k)"), which is true if and only if the kth Turing Machine halts on input k.

(As it turns out, even our simple language L satisfies this condition!)

5 A Proof of Gödel's Theorem (V1)

- Assume for *reductio*: M decides the truth of sentences of \mathcal{L} .
- By the Lemma, we can use M's program to construct a Turing Machine M^H , which computes the Halting Function.
- Since the Halting Function is not Turing-computable, our assumption must be false.

We've proved Gödel's Thoerem!

MIT OpenCourseWare https://ocw.mit.edu/

24.118 Paradox and Infinity Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.