
Gödel’s Theorem (Part 2) 

1 The Theorem 

Let L be a (rich enough) arithmetical language: 

Gödel’s Incompleteness Theorem (V1) No Turing Machine can do the 
following: when given a sentence of L as input, it outputs “1” if the 
sentence is true and “0” if the sentence is false. 

Gödel’s Incompleteness Theorem (V2) No Turing Machine can: 

1. run forever, outputting sentences of L; 
2. eventually output each true sentence of L; and 

3. never output a false sentence of L. 

Gödel’s Incompleteness Theorem (V3) No axiomatization of L is both 
consistent and complete. 

2 The Crucial Lemma 

L counts as “rich enough” if one can prove: 

Lemma L contains a formula (abbreviated “Halt(k)”), which is true if and 
only if the kth Turing Machine halts on input k. 

Today we’ll verify that our simple language L satisfies this condition. 

3 The Language, L 

Arithmetical Symbol Denotes 
0 the number zero 

1 the number one 

+ addition 

× multiplication 

∧ exponentiation 
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Logical Symbol Read 
= . . . is identical to . . . 

¬ it is not the case that . . . 

& it is both the case that . . . and . . . 

∀ every number is such that . . . 

xn (for n ∈ N) it 

Auxiliary Symbol Meaning 
( [left parenthesis] 

) [right parenthesis] 

4 Abbreviations 
Abbreviation Read Official Notation 

2 

3 

4 
. . . 

two 

three 

four 
. . . 

(1 + 1) 

((1 + 1) + 1) 

(((1 + 1) + 1) + 1) 
. . . 

Abbreviation Read Official Notation 
A ∨ B 

A ⊃ B 

∃xiφ 

∃!xiφ 

A or B 

if A, then B 

some number is such that φ 

there is exactly one number such that φ 

¬(¬A & ¬B) 

¬A ∨ B 

¬∀xi ¬φ 

∃xi(φ(xi) & ∀xj (φ(xj ) ⊃ xj = xi)) 

Abbreviation Read Official Notation 
xi < xj 

xi|xj 

Prime(xi) 

xi is smaller than xj 

xi divides xj 

xi is prime 

∃xk((xj = xi + xk) & ¬(xk = 0)) 

∃xk(xk × xi = xj ) 

(1 < xi) & ∀xj ∀xk((xi = xj × xk) ⊃ (xi = xj ∨ xi = xk )) 
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5 The key idea 

• The key is to be able to express claims about sequences in L. 

• We need a formula—abbreviated “Seq(c, n, a, i)”— which is true if and 
only if c encodes a sequence of length n of which a is the ith member. 

• With that in place, proving the lemma is totally straightforward. 

6 Warm Up: Pairs 

6.1 Coding System 

• To the pair hn, mi (n, m ∈ N) assign the number 2n · 3m . 

6.2 Implementation in L 

• Pair(xi, xj , xk) ↔df xi = (2xj × 3xk ) 

7 Coding Finite Sequiences 

7.1 Coding System 

Part 1: 

• Let c’s unique decomposition into primes be 

e0 e1 e2 ekp · p · p · . . . p0 1 2 k 

where pi =6 pj whenever i =6 j and ei =6 0. 

• We say that c’s non-trivial exponents are e0, e1, . . . , ek. 

• Each number can be thought of a code for the set of its non-trivial 
exponents. 

[This is only half the job, because sets are unordered.] 
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Part 2: 

• Suppose c’s non-trivial exponents code ordered pairs, and that each 
such pair has a different natural number as its first component. 

• Then the first components of the pairs can be used to define an ordering 
of the pairs’ second components. 

Example: 

·317 ·3117 • c = 22
2 · 521·37 · 723 

• c’s non-trivial exponents: {22 · 317 , 21 · 37 , 23 · 3117}. 

• Such a set is code for: {h2, 17i, h1, 7i, h3, 117i}. 

• The first components induce the following ordering of the second com-
ponents: h7, 17, 117i. 

• c codes the finite sequence h7, 17, 117i. 

7.2 Implementation in L 

We’ll divide the problem into two components: 

1. Define “Seq(c, n)” [read: c codes an n-sequence]. 

Seq(c, n) ↔df ∀xi((1 ≤ xi & xi ≤ n) ⊃ 
xj +1∃!xj (∃xk(xj = 2xi × 3xk ) & ∃xk(Prime(xk)& x xj | c & ¬(x | c)))k k 

[Read: For each i (1 ≤ i ≤ n), c’s non-trivial exponents include the 
code for exactly one pair of the form hi, bi.] 

2. Define “Seq(c, n, a, i)” [read: c encodes an n-sequence of which the ith 
member is a]. 

Seq(c, n, a, i) ↔df Seq(c, n) & 
(1 ≤ i & i ≤ n) &: (2i×3a) (2i×3a)+1 � 
∃xj Prime(xj ) & (x | c) & ¬(x | c)j j 

[Read: Seq(c, n) and (1 ≤ i & i ≤ n) and c’s non-trivial exponents 
include a code for hi, ai.] 
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8 Gödel’s Theorem (v3) 

8.1 Axiomatization 

• An axiom is a sentence that is taken to require no proof. 

• A rule of inference is a rule for inferring some sentences from others. 

• An axiomatization for L is a (Turing Computable) list of axioms and 
rules of inference for L. 

8.2 Provability, completeness and consistency 

For A an axiomatization of L: 

• A sentence S of L is provable in A if there is a finite sequence of 
sentences of L such that: 

– Every member of the sequence is either an axiom of A, or re-
sults from previous members of the sequence by applying a rule 
of inference of A. 

– The last member of the sequence is S. 

• A is complete if every true sentence of L is provable in A. 

• A consistent if it is never the case that both a sentence of L and its 
negation are provable in A. 

8.3 Proving the Theorem 

• For reductio: A is a consistent and complete axiomatization of L. 

• Since L can talk about finite sequences, it can talk about sentences 
(i.e. finite sequences of symbols) and proof (which are finite sequences 
of sentences). 

• One can program a Turing Machine M to output all and only the 
sentences of L that are provable in A. 

• If A is consistent and complete, M outputs all and only the true sen-
tences of L, which contradicts Gödel’s Theorem (v2). 
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