Godel’s Theorem (Part 2)

1 The Theorem

Let £ be a (rich enough) arithmetical language:

Godel’s Incompleteness Theorem (V1) No Turing Machine can do the
following: when given a sentence of £ as input, it outputs “1” if the
sentence is true and “0” if the sentence is false.

Godel’s Incompleteness Theorem (V2) No Turing Machine can:

1. run forever, outputting sentences of L;
2. eventually output each true sentence of £; and

3. never output a false sentence of L.

Godel’s Incompleteness Theorem (V3) No axiomatization of £ is both
consistent and complete.

2 The Crucial Lemma

¢

L counts as “rich enough” if one can prove:

Lemma £ contains a formula (abbreviated “Halt(k)”), which is true if and
only if the kth Turing Machine halts on input &.

Today we’ll verify that our simple language L satisfies this condition.

3 The Language, L

Arithmetical Symbol Denotes

0 the number zero
1 the number one
+ addition

X multiplication

A exponentiation



Read

Logical Symbol

&
v
xn (for n € N)

it

Auxiliary Symbol

...is identical to ...

it is not the case that ...

is both the case that ...and ...
every number is such that ...
it
Meaning

(
)

4 Abbreviations

[left parenthesis]
[right parenthesis]

Abbreviation | Read | Official Notation
2 two (1+4+1)
3 three (1+1)+1)
4 four | (14+1)+1)+1)
Abbreviation Read Official Notation
AV B Aor B ﬁ(ﬂA&—\B)
ADB if A, then B -AV B
dx;¢ some number is such that ¢ =Vr;,—¢
1 10) there is exactly one number such that ¢ | 3z, (¢(z;) & Yz (d(z;) D z; = z;))

Abbreviation Read ‘ Official Notation
x; < X x; is smaller than x; Jzp((z; =z + 2) & (2 =0))
x;|z; x; divides z; Jzp(zr X 3 = x5)
Prime(z;) x; is prime (1 < ;) & VajVa,((z; = x5 X xx) D (2 = x5 V x; = x))



5 The key idea

e The key is to be able to express claims about sequences in L.

e We need a formula—abbreviated “Seq(c, n, a,i)”— which is true if and
only if ¢ encodes a sequence of length n of which a is the ¢th member.

e With that in place, proving the lemma is totally straightforward.

6 Warm Up: Pairs

6.1 Coding System

e To the pair (n,m) (n,m € N) assign the number 2" - 3™.

6.2 Implementation in L

o Pair(w;, z;,x)) g x; = (2% x 37)

7 Coding Finite Sequiences

7.1 Coding System
Part 1:

e Let ¢’s unique decomposition into primes be
pe P ps ey
where p; # p; whenever ¢ # j and e; # 0.
e We say that c¢’s non-trivial exponents are eqg,eq, ..., €.

e Each number can be thought of a code for the set of its non-trivial
exponents.

[This is only half the job, because sets are unordered.|



Part 2:

e Suppose ¢’s non-trivial exponents code ordered pairs, and that each
such pair has a different natural number as its first component.

e Then the first components of the pairs can be used to define an ordering
of the pairs’ second components.

Ezxample:
e c— 222.317 . 521.37 . 723.3117
e C’s non-trivial exponents: {22317 21.37 23. 3117}

e Such a set is code for: {(2,17),(1,7), (3,117)}.

The first components induce the following ordering of the second com-
ponents: (7,17,117).

¢ codes the finite sequence (7,17, 117).

7.2 Implementation in L
We’ll divide the problem into two components:
1. Define “Seq(e,n)” [read: ¢ codes an n-sequence].

Seq(e,n) g V(1 <z & x; <n) D
Na; (Aug (2 = 2% x 3%%) & Jag(Prime(zy) &2y’ | c&—(z0 [ ¢)))

[Read: For each i (1 < i < n), ¢’s non-trivial exponents include the
code for exactly one pair of the form (i, b).]

2. Define “Seq(c,n,a,i)” [read: ¢ encodes an n-sequence of which the ith
member is a].

Seq(c,m,a,1) g Seq(c,n) &
(1<i&i<n)& |
Jx; (Prime(z;) & (xg-wxga) lc) & ﬁ(a:(?lxga)ﬂ |¢))

J

[Read: Seq(e,n) and (1 < i & i < n) and ¢’s non-trivial exponents
include a code for (i, a).]



8 Godel’s Theorem (v3)

8.1 Axiomatization
e An axiom is a sentence that is taken to require no proof.
e A rule of inference is a rule for inferring some sentences from others.

e An axiomatization for £ is a (Turing Computable) list of axioms and
rules of inference for L.

8.2 Provability, completeness and consistency
For A an axiomatization of L:

e A sentence S of L is provable in A if there is a finite sequence of
sentences of £ such that:

— Every member of the sequence is either an axiom of A, or re-
sults from previous members of the sequence by applying a rule
of inference of A.

— The last member of the sequence is S.
e A is complete if every true sentence of L is provable in A.

o A consistent if it is never the case that both a sentence of £ and its
negation are provable in A.

8.3 Proving the Theorem

e For reductio: A is a consistent and complete axiomatization of L.

e Since L can talk about finite sequences, it can talk about sentences
(i.e. finite sequences of symbols) and proof (which are finite sequences
of sentences).

e One can program a Turing Machine M to output all and only the
sentences of L that are provable in A.

e If A is consistent and complete, M outputs all and only the true sen-
tences of L, which contradicts Gédel’s Theorem (v2).
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