Gödel's Theorem (Part 2)

1 The Theorem

Let \mathcal{L} be a (rich enough) arithmetical language:

Gödel's Incompleteness Theorem (V1) No Turing Machine can do the following: when given a sentence of \mathcal{L} as input, it outputs "1" if the sentence is true and "0" if the sentence is false.

Gödel's Incompleteness Theorem (V2) No Turing Machine can:

- 1. run forever, outputting sentences of \mathcal{L} ;
- 2. eventually output each true sentence of \mathcal{L} ; and
- 3. never output a false sentence of \mathcal{L} .

Gödel's Incompleteness Theorem (V3) No axiomatization of \mathcal{L} is both consistent and complete.

2 The Crucial Lemma

 \mathcal{L} counts as "rich enough" if one can prove:

Lemma \mathcal{L} contains a formula (abbreviated "Halt(k)"), which is true if and only if the kth Turing Machine halts on input k.

Today we'll verify that our simple language L satisfies this condition.

3 The Language, L

Arithmetical Symbol	Denotes
0	the number zero
1	the number one
+	addition
×	multiplication
\wedge	exponentiation

Logical Symbol	Read
=	\dots is identical to \dots
\neg	it is not the case that
&	it is both the case that \dots and \dots
\forall	every number is such that
$x_n \text{ (for } n \in \mathbb{N})$	it

Auxiliary Symbol	Meaning
([left parenthesis]
)	[right parenthesis]

4 Abbreviations

Abbreviation	Read	Official Notation
2	two	(1+1)
3	three	((1+1)+1)
4	four	(((1+1)+1)+1)
÷	:	:

Abbreviation	Read	Official Notation
$A \lor B$	$A ext{ or } B$	$\neg(\neg A \& \neg B)$
$A\supset B$	if A , then B	$\neg A \lor B$
$\exists x_i \phi$	some number is such that ϕ	$\neg \forall x_i \neg \phi$
$\exists ! x_i \phi$	there is exactly one number such that ϕ	$\exists x_i(\phi(x_i) \& \forall x_j(\phi(x_j) \supset x_j = x_i))$

Abbreviation	Read	Official Notation
$x_i < x_j$	x_i is smaller than x_j	$\exists x_k ((x_j = x_i + x_k) \& \neg (x_k = 0))$
$x_i x_j$	x_i divides x_j	$\exists x_k (x_k \times x_i = x_j)$
$Prime(x_i)$	x_i is prime	$(1 < x_i) \& \forall x_j \forall x_k ((x_i = x_j \times x_k) \supset (x_i = x_j \vee x_i = x_k))$

5 The key idea

- The key is to be able to express claims about sequences in L.
- We need a formula—abbreviated "Seq(c, n, a, i)"— which is true if and only if c encodes a sequence of length n of which a is the ith member.
- With that in place, proving the lemma is totally straightforward.

6 Warm Up: Pairs

6.1 Coding System

• To the pair $\langle n, m \rangle$ $(n, m \in \mathbb{N})$ assign the number $2^n \cdot 3^m$.

6.2 Implementation in L

• $\operatorname{Pair}(x_i, x_j, x_k) \leftrightarrow_{df} x_i = (2^{x_j} \times 3^{x_k})$

7 Coding Finite Sequiences

7.1 Coding System

Part 1:

• Let c's unique decomposition into primes be

$$p_0^{e_0} \cdot p_1^{e_1} \cdot p_2^{e_2} \cdot \dots p_k^{e_k}$$

where $p_i \neq p_j$ whenever $i \neq j$ and $e_i \neq 0$.

- We say that c's non-trivial exponents are e_0, e_1, \ldots, e_k .
- Each number can be thought of a code for the set of its non-trivial exponents.

[This is only half the job, because sets are unordered.]

Part 2:

- Suppose c's non-trivial exponents code ordered pairs, and that each such pair has a different natural number as its first component.
- Then the first components of the pairs can be used to define an ordering of the pairs' second components.

Example:

- $c = 2^{2^2 \cdot 3^{17}} \cdot 5^{2^1 \cdot 3^7} \cdot 7^{2^3 \cdot 3^{117}}$
- c's non-trivial exponents: $\{2^2 \cdot 3^{17}, 2^1 \cdot 3^7, 2^3 \cdot 3^{117}\}.$
- Such a set is code for: $\{\langle 2, 17 \rangle, \langle 1, 7 \rangle, \langle 3, 117 \rangle\}.$
- The first components induce the following ordering of the second components: $\langle 7, 17, 117 \rangle$.
- c codes the finite sequence $\langle 7, 17, 117 \rangle$.

7.2 Implementation in L

We'll divide the problem into two components:

1. Define "Seq(c, n)" [read: c codes an n-sequence].

$$Seq(c, n) \leftrightarrow_{df} \forall x_i ((1 \le x_i \& x_i \le n) \supset \exists ! x_j (\exists x_k (x_j = 2^{x_i} \times 3^{x_k}) \& \exists x_k (Prime(x_k) \& x_k^{x_j} | c \& \neg (x_k^{x_j+1} | c)))$$

[Read: For each i ($1 \le i \le n$), c's non-trivial exponents include the code for exactly one pair of the form $\langle i, b \rangle$.]

2. Define "Seq(c, n, a, i)" [read: c encodes an n-sequence of which the ith member is a].

[Read: Seq(c, n) and $(1 \le i \& i \le n)$ and c's non-trivial exponents include a code for $\langle i, a \rangle$.]

8 Gödel's Theorem (v3)

8.1 Axiomatization

- An **axiom** is a sentence that is taken to require no proof.
- A rule of inference is a rule for inferring some sentences from others.
- An axiomatization for \mathcal{L} is a (Turing Computable) list of axioms and rules of inference for \mathcal{L} .

8.2 Provability, completeness and consistency

For \mathcal{A} an axiomatization of \mathcal{L} :

- A sentence S of \mathcal{L} is **provable** in \mathcal{A} if there is a finite sequence of sentences of \mathcal{L} such that:
 - Every member of the sequence is either an axiom of \mathcal{A} , or results from previous members of the sequence by applying a rule of inference of \mathcal{A} .
 - The last member of the sequence is S.
- \mathcal{A} is **complete** if every true sentence of \mathcal{L} is provable in \mathcal{A} .
- \mathcal{A} consistent if it is never the case that both a sentence of \mathcal{L} and its negation are provable in \mathcal{A} .

8.3 Proving the Theorem

- For reductio: A is a consistent and complete axiomatization of L.
- Since L can talk about finite sequences, it can talk about sentences (i.e. finite sequences of symbols) and proof (which are finite sequences of sentences).
- One can program a Turing Machine M to output all and only the sentences of L that are provable in A.
- If \mathcal{A} is consistent and complete, M outputs all and only the true sentences of L, which contradicts Gödel's Theorem (v2).

MIT OpenCourseWare https://ocw.mit.edu/

24.118 Paradox and Infinity Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.