
5 The Chernoff bound

5.1 Setup and proof
The second moment essentially compares the values of E[X] and E[X2] to each other. Why do we not take higher

moments? In general, if we have independent random variables

X = X1 + · · ·+Xn,

we can look at p(X), which is some polynomial in X, and apply Markov’s inequality in the same way that we did for

Chebyshev’s inequality. It turns out that if we’re allowed to look at arbitrarily high-degree polynomials, it’s usually

better to just look at the following object:

Definition 5.1

The moment generating function of a random variable X is a function of t

E[etX ] = 1 + tE[X] +
t2E[X2]
2

+ · · · .

What are its applications?

Theorem 5.2 (Chernoff bound)

Let Sn = X1 + · · ·+Xn, where Xi = ±1 uniformly and independently. Then for all λ > 0,

Pr(Sn ≥ λ
√
n) ≤ e−λ2/2.

This gives better tail decay! While the second moment method only gave us polynomial decay (right hand side of

the form 1
λ2 ), this is exponential decay instead.

Proof. Let t ≥ 0 be a real number, and consider the moment generating function

E[etSn ].

Since Sn is a sum of random independent variables, this is

E[etX1+···+tXn ] = E[etX1 ]E[etX2 ] · · ·E[etXn ] = E[etX1 ]n =
(
e−t + et

2

)n
.

Since e
−t+et

2 ≤ et2/2 by comparing coefficients of the Taylor expansions:

1

(2n)!
≤
1

n!2n
,

our moment generating function is ≤ ent2/2, and by Markov’s inequality,

Pr(Sn ≥ λ
√
n) ≤

E[etSn ]
etλ
√
n
≤ e−tλ

√
n+t2n/2

and setting t = λ√
n

gives the desired result.

By symmetry, we have a bound for Sn ≤ λ
√
n as well, so combining these, we obtain the following:
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Corollary 5.3

Using the definition of Sn above,

Pr
(
|Sn| ≥ λ

√
n
)
≤ 2e−λ2/2

for all λ > 0.

But notice that Sn converges to a Gaussian distribution for large n, so something similar should be true for Gaussians

as well. This is indeed true:

Fact 5.4

For the standard normal distribution Z ∼ N(0, 1), for all λ ≥ 0,

Pr(Z ≥ λ) = Pr(etZ ≥ etλ) ≤ e−tλE[etZ ] = e−tλ+t2/2 ≤ e−λ2/2

by taking t = λ.

This is pretty tight: it turns out that in general we’re only losing a c
√
λ, and in reality we actually have

Pr(Z ≥ λ) ∼
e−λ

2/2

√
2πλ
.

See Appendix A of the textbook for different instantiations of the Chernoff bound. Similarly, we can find exponential

decay for Bernoulli variables where p 6= 1
2 :

Fact 5.5

If Y is a sum of independent Bernoulli variables (with not necessarily the same probability), then for all ε > 0,

Pr (|Y − E[Y ]| ≥ εE[Y ]) ≤ 2e−CεE[Y ]

for some constant Cε > 0.

5.2 An application: discrepancy

Theorem 5.6

Let H be a k-uniform hypergraph with m edges. Then we can color the vertices red and blue so that every edge

has an O(
√
k logm) difference in the number of red and blue vertices.

Proof. Color each vertex uniformly at random: put ±1 on every vertex. Then every edge is of the form Sm =

X1 + · · · + Xm where all Xm = ±1, so by the Chernoff bound, the probability |Sm| exceeds λ
√
k is at most 2e−λ

2/2.

Note that the absolute value of Sn is exactly the difference between the number of red and blue vertices.

In particular, we can now do a union bound: if 2me−λ
2/2 ≤ 1, then there exists a graph where none of the bad

events happen. Inverting this gives the desired result.

This kind of log term usually comes from the Chernoff bound. If we only used the second moment method, we’d

have a much worse result - polynomial instead of exponential?

Well, what’s the truth? Suppose m = k : this theorem gives us a difference of
√
k log k between the red and blue

vertices. But we can do much better:
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Fact 5.7

Spencer’s paper “Six standard deviations suffice” says that when m = k , we can get at most 6
√
k difference

between the number of red and blue vertices on every edge.

5.3 Chromatic number and graph minors
Let’s start with some graph theory results for motivation:

Proposition 5.8 (Kuratowski’s theorem)

If G is not planar, then it contains a K3,3 or K5 subdivision.

Here, a subdivision of a graph H is H with some of the edges chopped into smaller pieces. Basically, K5s and

K3,3s are not allowed, nor are those graphs with extra vertices along the edges. There’s another similar theorem that

is actually equivalent to Kuratowski’s theorem:

Proposition 5.9 (Wagner’s theorem)

If G is not planar, then G contains a K3,3- or K5-minor.

Here, H is a minor of G if it can be obtained from deleting edges/vertices or contracting an edge. (Basically, take

the two vertices of an edge and squish them together.) In particular, K5 is a minor of a K5-subdivision.

Theorem 5.10 (Four-color theorem)

If χ(G) ≥ 5, then G is not planar.

In particular, if χ(G) ≥ 5, it must contain a K3,3-minor or a K5-minor. Having a K5-minor seems pretty relevant,

since we need 5 colors to color a K5. But K3,3 doesn’t seem like as much of an obstruction, and that’s quantified in

the statement below:

Fact 5.11

If χ(G) ≥ 5, then G contains a K5-minor.

Well, does this hold if we replace 5 with other numbers?

Conjecture 5.12 (Hadwidger’s conjecture)

If χ(G) ≥ t, then G contains a Kt-minor.

Many people consider this to be the biggest open problem in graph theory! We do have some small cases resolved:

t = 1, 2 are trivial. t = 3 is not too hard: If G has no K3-minor, it is a tree, which is 2-colorable. t = 4 requires more

work but is elementary, and t = 5 is equivalent to the four-color theorem (for which we only have a computer-assisted

proof). But Robertson, Seymour, and Thomas showed that the four-color theorem actually implies t = 6, and all

t ≥ 7 are open.

Are there variations on this conjecture?
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Proposition 5.13 (Hajos conjecture: even stronger)

If χ(G) ≥ t, then G has a Kt-subdivision.

Unfortunately, this is false. In fact, by the probabilistic method, Erdős and Fajtlowicz showed that G
(
n, 12

)
fails

this condition with high probability:

Theorem 5.14

With high probability, G
(
n, 12

)
has chromatic number χ(G) ≥ (1 + o(1)) n

2 log2 n
and no Kd10√ne-subdivision.

So the theorem is very false in the relation between the two parameters, as well as in its likelihood! Note that the

Hajos conjecture is still true for small t: it just fails for larger t due to the arguments below.

Proof. We already lower bounded by upper bounding color classes as independent sets:

χ(G) ≥
n

α(G)
∼

n

2 log2 n

with high probability. Let’s work on the second part.

Suppose we have a Kt-subdivision, where t = d10
√
ne. Out of the

(
t
2

)
edges in Kt , about half of them are not

contained in G, so they must use up other vertices to form paths, and we don’t have enough of those.

Let’s do this more rigorously. Let G have a Kt subdivision S ⊂ V , where |S| = t = d10
√
ne. At most n edges

in the subdivision can be paths of at least 2 edges (rather than just straight lines between vertices), since each path

takes up an external vertex, and all paths use distinct vertices by definition. So the number of edges E involved in the

subdivision satisfies

E ≥
(
t

2

)
− n ≥

3

4

(
t

2

)
,

where the ≥ comes from picking a large enough constant in t = c
√
n (we chose c = 10). But this inequality fails with

high probability, since we’re supposed to have 12
(
t
2

)
edges only. Indeed, for every fixed t-vertex S, each edge appears

with probability 12 , so the number of edges in the subgraph induced by S satisfies

Pr

(
E ≥

3

4

(
t

2

))
≤ e−t2/10

by the Chernoff bound. Now by a union bound, ranging over all t-element subsets of vertices, the probability of any

subdivision being possible is bounded above by(
n

t

)
e−t

2/10 < nte−t
2/10 = o(1),

so there must not be a Kt-subdivision with high probability.
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