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2.016 Hydrodynamics 
Prof. A.H. Techet 

Fall 2005 

Free Surface Water Waves 

I. Problem setup 

1. Free surface water wave problem. 

In order to determine an exact equation for the problem of free surface gravity waves we 
will assume potential theory (ideal flow) and ignore the effects of viscosity. Waves in the 
ocean are not typically uni-directional, but often approach structures from many directions. 
This complicates the problem of free surface wave analysis, but can be overcome through a 
series of assumptions.  

To setup the exact solution to the free surface gravity wave problem we first specify our 
unknowns: 

G 
• Velocity Field: V (x, y, z, t ) = ∇φ(x, y, z, t ) 

(x y t)• Free surface elevation: η , , 

• Pressure field: p(x y  z  t  ), ,  ,  
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Next we need to set up the equations and conditions that govern the problem:  

• Continuity (Conservation of Mass): 
2φ� ∇ = 0 for z <η  (Laplace’s Equation) 	 (7.1) 

• Bernoulli’s Equation (given some φ ): 

p pa−∂φ 1� + ∇φ 
2 + ρ + gz = 0 for z <η	 (7.2)∂ t 2 

•	 No disturbance far away: 


φ
� ∂φ , ∇ → 0 and p = p − ρ gz 	 (7.3)∂ t	 a 

Finally we need to dictate the boundary conditions at the free surface, seafloor and on any 
body in the water: 

(1) Pressure is constant across the free surface interface: p = p on z =η .atm 

⎧∂φ ⎫ ( )  = patm .	 (7.4)p = −ρ
⎩
⎨ ∂ t 

− 
1
2 

V 2 − gz  ⎬+ c  t  
⎭

(Choosing a suitable integration constant, c t) = p , the boundary condition on atm 

z =η  becomes  


ρ{∂φ 1 V 2
+ + gη} = 0.	 (7.5)
∂t 2 

(2) Once a particle is on the free surface, it remains there always. Similarly, the 
normal velocity of a particle on the surface follows the normal velocity of the 
surface itself. 

z =η (xp , t)p 

∂η ∂η z +δ z =η (xp +δ x , t +δ t) =η (xp , t) + δ x + δ t (7.6)p p p	 p∂ x ∂t


On the surface, where zp =η , we can reduce the above equation to 


∂η ∂ηδz = uδt + δt	 (7.7)p ∂ x ∂ t 

and substitute δ z = wδ t and δ x = u t  to show that the normal velocity follows δp	 p 

the particle:  
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∂η ∂η w u  + on  z  =η. (7.8)= 
∂x ∂t 

( , , ,(3) On an impervious body boundary B x  y  z  t  ) = 0 . Velocity of the fluid normal to 
the body must be equal to the body velocity in that direction:  

G ∂φ JG  G  G
v n̂ ( )  ⋅ ˆ( )  = U  on B  = 0. (7.9)⋅ =  φ ⋅ n̂ = = U  x  t  n  x  t  

∂n 
, , n 

Alternately a particle P on B  remains on B  always; ie. B  is a material surface.  

For example: if P is on B  at some time t t  such that= o

G G
, ( ,B(x t ) = 0, then B x t ) = 0 for all t , (7.10)o o 

so that if we were to follow P then B = 0 always. Therefore: 


DB ∂B
 (=  +  ∇φ ⋅∇)B = 0 on  B  = 0. (7.11)
Dt ∂t 

Take for example a flat bottom at z = −H : 

∂φ/∂z = 0 on z = −H (7.12) 

II. Linear Waves 

2. Linearized Wave Problem. 
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To simplify the complex problem of ocean waves we will consider only small amplitude 
waves (such that the slope of the free surface is small). This means that the wave amplitude 
is much smaller than the wavelength of the waves.  

As a general rule of thumb for wave height to wavelength ratios ( h / λ , where h is twice the 
wave amplitude) less than 1 7 we can linearize the free surface boundary conditions. / 
Non-dimensional variables can be used to assess which terms can be dropped. 

Non-dimensional variables:  

η = aη∗ ω t t∗ = 

=u aω u∗ x = λ x∗ 

∗ =w aω w∗ φ = aωλ φ

Looking back to equation (7.5) we can evaluate the relative magnitude of each term by 
plugging in the non-dimensional versions of each variable. For example:  

ddφ = aωλ φ∗ 

1dt = /ω dt∗ 

dx = λ dx∗ 

2 ∂φCompare ∂φ  and V ∼ ( )2 to determine which terms can be dropped from equation (7.5): ∂t ∂x 

( ) 2 2 ∂φ∗ ∂φ∗ 
∂φ 2 a ω ( )  a ( )
∂x ∂x ∗ ∂x ∗ 

∂φ = 2 ∂φ∗ =
λ ∂φ∗ . (7.13)

aω λ  
∗ ∗∂t ∂t ∂t 

/ <<  1 7  , thenHere we see that if h λ / 

( ∂φ 2 ∂φ (7.14)
∂x 

) << 
∂t 

, 

and we can drop the smaller term resulting in linearized boundary conditions  

∂η = ∂φ 
∂t ∂z , 

∂φ + gη = 0 ,∂t 

which are applicable on z =η . 
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Throughout this discussion we have assumed that the wave height is small compared to the 
wavelength. Along these lines we can also see why η is also quite small. If we expand 

( , ,φ x z t) about z = 0 using Taylor series: 

∂φ 
,φ(x z  =η, t) =φ( x, 0, t) + η + ... , (7.15)

∂z 

it can be readily shown that, the second term, ∂φ η and the subsequent higher order terms ∂z 

are very small and can be ignored in our linear equations allowing us to rewrite the 
boundary conditions at z =η  as boundary conditions on z = 0 . 0.2in 

∂2φ + g ∂φ = 0 (7.16)∂t2 ∂z 

1 ∂φη = − g ∂t (7.17) 

on z = 0 . 

A Solution to the Linear Wave Problem 

The complete boundary value wave problem consists of the differential equation, 
specifically Laplace’s Equation, 

2 2 
2 ( , ,  ∂ φ ∂ φ

∇ φ x z  t  ) = + = 0 (7.18)
∂x2 ∂z2 

with the following boundary conditions: 

1) Bottom Boundary Condition: 

∂φ
= 0 on z = −  H (7.19)

∂z 

2) Free Surface Dynamic Boundary Condition (FSDBC):  

1 ∂φ 0η = ( ) on z = .  (7.20)
g ∂t 
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3) Free Surface Kinematic Boundary Condition (FSKBC):  

2∂ φ ∂φ
+ g = 0 (7.21)

∂t 2 ∂z 

Through separation of variables we can solve Laplace’s Equation for η and φ . 

( )  cos(  )x t  a  kx  tη ω ψ, = − +  (7.22) 

(  )  (  )  sin(  )ax z  t  f  z  kx  t
k 
ωφ ω ψ, ,  = −  −  +  (7.23) 

(  )  (  )  cos(  )u x  z  t  a  f  z  kx  tω ω ψ, ,  =  −  +  (7.24) 

1(  )  (  )  sin(  )w x  z  t  a  f  z  kx  tω ω ψ, ,  = −  −  +  (7.25) 

cosh[ ( )]( )  
sinh( ) 

k z  Hf z  
kH 
+ 

=  (7.26) 

1 
sinh[ ( )]( )  

sinh( ) 
k z  Hf z  

kH 
+ 

=  (7.27) 

2 tanh( )gk kH dispersion relation ω = ⇒  (7.28) 

where a, ω , k, ψ are integration constants with physical interpretation: a  is the wave 
amplitude, ω the wave frequency, k is the wavenumber ( k = 2π/λ ), and ψ simply adds a 
phase shift. 

III. Dispersion Relation 

The dispersion relationship uniquely relates the wave frequency and wave number given 
the depth of the water. The chosen potential function, φ , MUST satisfy the free surface 
boundary conditions (equation (7.20) and (7.21)) such that plugging φ in to the FSKBC 
(eq. (7.21)) we get: 

−ω 2 cosh kH + gk sinh kH = 0 (7.29) 

Resulting in the Dispersion relationship:  

2ω = gk tanh kH ;  (7.30) 
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For deep water where H →∞  tanh kH →1 so that the dispersion relationship in deep 
water is:  

2ω = gk (7.31) 

In general, k ↑  as ω ↑  or λ ↑  as T ↑ . 

Phase and Group Speed 

Phase speed, Cp , of a wave (velocity that a wave crest is traveling at) is found in general 
using: 

ω gλ =C = = tanh kH  . (7.32)p kT k 

This simplifies for the case of deep water such that  

C = g (7.33)p k 

Solution to the dispersion relationship in general form can be found graphically.  

IV. Pressure under a Wave 

The pressure under a wave can be found using the unsteady form of Bernoulli’s equation 
and the wave potential, ( ,  ,φ x z t) : 

1 2p = −  ρ ∂φ − ρV − ρgz  (7.34)
N 2 N∂t �	
 hydrostatic 

unsteady 2nd Order pressure 
fluctuation term ���	��


DynamicPressure 

Since we are only considering the case for LINEAR free surface waves we can neglect all 
higher order terms.  Dropping the second order term in the dynamic pressure from equation 
(7.34), the pressure under a wave is simply 

∂φ( , ,p x  z  t  ) = −ρ  (7.35)d ∂t 
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2aω
= ρ f z( )  cos(ωt − kx  −ψ ) (7.36)

k 

2ω z , ) , (7.37)= ρ f ( )η(x  t  
k 

where 

ω ( ( cosh[k  z  + H )] . (7.38) 
2 

f z) = g tanh( kH  ) cosh[k z  + H )] 
= g ( 

k sinh( kH  ) cosh( kH  ) 

Therefore the dynamic pressure for all depths becomes 

(g , cosh[ k z  +H )]p x  z  t  ) = ρ η(x  t  ) cosh(kH )( , ,  (7.39)d 

V. Motion of Fluid Particles below a Wave 

We can define the motion of fluid particles underneath a linear progressive wave to have a 
horizontal motion,ζ p  and a vertical motion, η , such thatp

p , ,  t) +ζ (x z  t  ) = a  f  (z)  sin(kx  −ω  ψ  ) (7.40) 

p , ,  k xη (x z  t  ) = a  f  (z)  cos(ωt −  −  +ψ ) (7.41)1 

The orbital pattern is given by the equation for an ellipse: 

⎡ ζ p ⎤
2 

⎡ ζ p ⎤
2 

= a (7.42)
⎣ f z  z  ⎥⎢ ( )  ⎥⎦ 

+
⎣
⎢ f1( )  ⎦

2 

where a is the amplitude of the waves.  Plugging in f(z) and f1(z) from equations (7.26) and 
(7.27) we get 
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2 2
⎡ ζ ⎤ ⎡ ζ ⎤ 

p p⎢ ⎥ + ⎢ (7.43)
(cosh k z  +H ) sinh k ( z +H )⎢a ( sinh kH ) ⎥ ⎢a ( sinh kH )

⎥
⎥ 
=1 

⎣ ⎦ ⎣ ⎦

The horizontal and vertical velocity components, u and w, of these particles are simply the 
time derivatives of the motions:  

u = ∂ζ
∂t

p 
(7.44) 

w = ∂η
∂t

p 
(7.45) 

3. Fluid particles move in elliptical orbits below the surface. In deep water, 
as H →∞ , these ellipses become circular. 

Deep Water Simplification 

z zIn deep water as H →∞ , then f ( )  ≈ f1( )  ≈ ekz , and the particle orbits become circular 
with an exponentially decreasing radius. All particle motion dies out at z ≈ −λ/2 . 
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Phase and Group Velocity 

Phase Speed 

The phase speed of a wave is defined as the speed at which the wave is moving. If you were 
to clock a wave crest you would find that it moves at the phase speed, Cp = /k .ω

Group Velocity 

Group velocity is the speed of propagation of a packet, or group, of waves. This is always 
slower than the phase speed of the waves. In a laboratory setting group speed can be 
observed by creating a short packet of waves, about 8-10 cycles, and observing this packet 
as it propagates down a testing tank. The leading edge of the packet will appear to move 
slower than the waves within the packet. Individual waves will appear at the rear of the 
packet and propagate to the front, where the pressure forces their apparent disappearance.  

We can derive Group Velocity starting with a harmonic surface wave with surface 
elevation 

( )  = a cos(ωt − kx  ) (7.46)η x, t 

and then looking at that wave as if it was the sum of two cosines with very similar 
frequencies ( ω ±δω ) and wavenumbers ( k ±δ k ): 

, =  lim  { a cos  ([ω δω ]t −[k −δ k  x  ) + a cos  ([ω δω ]t −[k +δ k  x  )} (7.47)( )  
δ δ

− ] 2 + ]η x t 
k , ω→0 2 

t −= lim {a cos(ωt − kx  ) cos(δω  δ  k  x  )} (7.48)
k , ω→0δ δ

η
)

(t
, x

 =
 0

time 
4. A wave train (red line) constructed with two waves having similar 

frequency/wavenumber components. This wave appears to be beating. The 
blue line shows the “envelope” or group outline. 
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In general the envelope (or “Group") of the wave travels at the group speed, Cg, 

δωC = . (7.49)g δ k 

In the limit as δω → 0 and δ k → 0 , the group velocity becomes the derivative of the 
frequency with respect to the wavenumber:  

dωC =  (7.50)g dk 

This can be found using the dispersion relationship from equation (7.30), and then taking 
the derivative of it with respect to the wavenumber.   

We can derive the group speed as follows: 

d 2 d{ } = dk 
{kg tanh( kH )} (7.51)ω

dk 

dω2ω = g tanh( kH  ) + kgH  (7.52)
dk cosh2 (kH ) 

dω 1 g ⎧ kH  ⎫ 
= tanh( kH ) ⎨1+ ⎬ (7.53)

dk 2 ω sinh( kH ) cosh( kH ) ⎭��	�
 ⎩ 
= k
ω =C p 

1 ⎧ kH ⎫
∴C = Cp ⎨1+ ⎬ (7.54)g 2 ⎩ sinh  kH cosh  kH ⎭

Deep Water: H →∞  

ω2 = kg and Cg = 1 C (7.55)2 p 

Shallow Water: H → 0 

ω = gH k and Cg = C (7.56)p 
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Wave Energy 

• Potential Energy 

λ 
g 1 1 2 2EP = 

1 λ 1 ρ η 2 dx  = λ ∫0 2 ρga cos (ωt − kx ) (7.57)
λ ∫0 2 

EP =
1 ρga  2 (7.58)
4 

•	 Kinetic Energy 

1 λ 0 1 ρ(u2 + w2 ) dz  dx  (7.59)
0 

Ek = 
λ ∫ ∫−H 2 

Ek =
1 ρga  2 (7.60)
4 

•	 Total Energy per wavelength 

E = EP + Ek =
1 ρga  2 (7.61)
2 

Flux of Energy through a Vertical Plane 

)Power = force ∗ velocity = ( p dz u 

• Energy flux: 

dE 0 
= ∫−H 

p u dz  
dt 

(7.62) 

= 
1 ρga2ω cos 2 (ωt − kx )

2k 
(7.63) 

• Average energy flux over one cycle, assuming deep water,  

d E  
= 

1 T dE  dt = 
1 ρga2ω = E C gdt T ∫0 dt 4k 

⋅ (7.64) 
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Useful References 
The material covered in this section should be review. If you have not taken 13.021 or a 
similar class dealing with basic fluid mechanics and water waves please contact the 
instructor. The references below are merely suggestions for further reading and reference.  

•	 J. N. Newman (1977) Marine Hydrodynamics MIT Press, Cambridge, MA. 

•	 M. Faltinsen (1990) Sea Loads on Ships and Offshore Structures Cambridge 

University Press, Cambridge, UK.  

•	 M. Rahman (1995) Water Waves: Relating modern theory to advanced engineering 

practice Clarendon Press, Oxford. 
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