
This photo sequence shows the "gobbling droplets" phenomenon. A jet of liquid is unstable because of surface tension and usually breaks into small droplets. The addition of minute quantities of polymeric molecules provides an additive elastic stress which stabilizes the liquid column. In this situation the terminal droplet has the time to gobble many of its incoming neighbors before its detachment. (Photo by Jose Bico and Christian Clasen, used courtesy of Prof. Gareth McKinley.)
Instructor(s)
Prof. Gareth McKinley
MIT Course Number
2.25
As Taught In
Fall 2013
Level
Graduate
Course Description
Course Features
Course Description
This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows.
Other Versions
Other OCW Versions
Archived versions: