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HML " the shape and size of the discrete phase 1"l
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(Optical limit)

Debye Length gap in PP rheometer
in ImM NaCl :
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Size is important: indicates the relevance of various forces
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RHEOLOGY OF CONCENTRATED SUSPENSIONS 2019
Chong, Christiansen, & Baer J.
‘!: App. Polymer Sci. 1971
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Fig. 11. Dependence of relative viscosity or modulus on solids concentrations. _
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HML - Strong function of volume fraction Uk
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1000 £ ;- . r’r — f((p)

o Hodutus 1 Entirety of rheology

Look reduced to one
s variable.
2ol

Is this always the case?

. Under what conditions
Relative Sclids Volume %, sb/ﬁ IS th|S Valld—P
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woones  Strong function of volume fraction,
HML

MIROITES distribution of sizes
spheres
d
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Chong, Christiansen, & Baer J. App. Polymer Sci. 1971 (adapted)




HATSOPOULOS

The Farris effect i
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Contours: volume fraction
L] 5:1 ratio in particle size

What are the paths
P>Sand P2Q?

Arrangement Maximum packing fraction
Simple cubic 052

Minimum thermodynamically stable configuration 0.548

Hexagonally packed sheets just touching 0.605 | <0.75
Random close packing 0.637 :
Body-centred cubic packing 0.68

Face-centred cubic/ hexagonal close packed 0.74 _
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Particle shape is also important U
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Art glitter, oblate Glass beads, spherical

1000um

prolate, low L/d

Mueller, S., et al. Proc. R. Soc. A (2010) 466:1201-1228
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IV Elongated particles have greater i
ASRATORY hydrodynamic interactions il

i L/D=7
For the same volume fraction,

greater thickening of suspensions
when L/D becomes large.

Particle rotates
and sweeps out
a volume

Relative viscosity, n,

1 1 ]
DU 10 20 30
Percentage phase volume

From Barnes, et al. “An Introduction to Rheology”
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51918 A sample-spanning structure occurs at III.-
low volume fractions il
Garboczi, et al., Phys. Rev. E. (1995) 52:819-828
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A Despite this scaling, we still see a -
HML " chear rate dependence at large Pe# "l
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The characterization of the total stress of concentrated
suspensions of noncolloidal spheres
in Newtonian fluids

K]
W prr——rn Isidro E. Zarraga, Davide A. Hill, and David T. Leighton, Jr.?’
(b) .
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Y %000‘0{ A 457% Remarks:
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OQC_O suspension of spheres

n e S O 2. Brownian diffusion is weak.
}_ 5 X, @ 3. Shear thinning is observed (?)
lo 2. 4. How did we construct the
10 oooar muucuunnunmméﬁ ] earlier viscosity curves with
:i P Ay b, no rate dependence?
5. Glass particlesina
} .l',R (sec) Newtonian matrix
100-1 '0 .;‘;“11 il 12 B "
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MICROFLUIDS

Turn on Brownian motion,
dependence on Pe
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T Turn on Brownian motion, e
L dependence on Pe I"lin
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Turn on Brownian motion,
dependence on Pe
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_— Limiting trajectories for particle— e
e particle interactions "l
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e Batchelor & Green result;

* C, accounts for pair interactions,
depends on type of flow

e Orbital capture problem,
dependence on Pe

Limiting
closed
trajectory

™

\
Closed

trajectory

&

=5 L
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X
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Morris, J. F. “A review of microstructure in concentrated suspensions and its implications _
for rheology and bulk flow” (2009) 48:909-923
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oo Microstructure is the source of non-

HML Newtonian properties "l

Microstructure in suspensions:
position and orientation of particles

What is the local density Count neighboring particles Find 1st, 2nd 3rd etc..
around one particle? as a function of distance nearest neighbors
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Radial symmetry is not guaranteed [I|ii
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In general, particle
distribution is a function of g(r,0)=
an angle and distance

Local density
Bulk density

~ -
Il e

Investigate hydrodynamics to understand ordering by

hydrodynamic forces




wooue:s — EXperiments: Parsi & Gadala-Maria .
HML High Pe # spheres UIT
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(@) y = 0, steady state (h) v < 0, steady state

Y

S

Yy ppssssses .15 < gir)=1.30

TR TR R =

glr) = 1.15

—we =040
P

gir) < 1.00

_ glF <0.70 Re — 3-2 >< 10

—
- II

Fiaure 2. Pair-distribution function g in the plane of shear for a suspension of polystyrene spheres in
silicone oil at particle volume fraction ¢ = 0.4 in simple shear at Pe = 3.0 < 107 and Re = 3.2 107",
The shear rate is opposile in the two plois. Note the fore-alt asymmetry of the pair distribution and
the reversal of the asymmelry lor reversal ol the shear rate, From Parsi & Gadala-Maria (1987).
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ey Simulations: Péclet number -
HML determines symmetry of distribution I
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Pe=0, Q= 45

9
8
7
6
5
4
3
2
1
|
" ol

Color indicates density of particle centers Increased particle density

* Atlow Pe, randomized along shoulders of particles,

* At higher Pe, induced structure from flow attempting to align in rows
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license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.
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ey Simulations: Péeclet number __
B8 determines symmetry of distribution I
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Color indicates density of particle centers Increased particle density

* At low Pe, randomized along shoulders of particles,

* At higher Pe, induced structure from flow attempting to align in rows

Morris, J. F. “A review of microstructure in concentrated suspensions and its implications
for rheology and bulk flow” (2009) 48:909-923




B g(r) depends on the volume fraction i
MICROFLUIDS Sierou and Brady JFM (2002) I
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FIG. 10. The dependence of the angularly averaged pair-distribution function, (g(7))g . on the volume fraction.
The pamr-distribution function is averaged over all orientations and results for 2 < » << 7 are shown. Smmu-
lation results are for N = 512. 7 = 1000. and y* = 1000.
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— Foss and Brady JFM (2000 -
HML Brownian ha}ld sphere(s ) Illll
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FiGURE 2. Peclet number dependence of the different contributions to the relative viscosity of
hard-sphere suspensions at ¢ = 0.45 and N = 27 determined by Stokesian Dynamics. The horizontal
lines on the far left represent the Pe — 0 limits independently determined by an equilibrium

Green—Kubo analysis.
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aTsorouL0s Foss and Brady JFM (2000 -
HRL v JFM (2000) Ult

MICROFLUIDS Brownian hard Spheres
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HML Concentrated suspensions Uk
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ATsoROULS Mechanisms for non-Newtonian

HML

MICROFLUIDS
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Equilibrium

Viscosity

suspension behavior

Shear thinning Shear thickening

Shear rate or stress

Newtonian plateau
Structure not
perturbed by flow:
ordering effects
washed out by
Brownian motion

Shear thinning
Structure is perturbed
aligning particles to
flow with decreased
interactions

Shear thickening
Structure strongly
perturbed by flow,
strong rise in viscosity
observed




— Normal stresses in Brownian e
MICROFLUIDS SuspenSionS I III
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N, = 0,1 =09,

(typically <0)

N, = 05, — 033

(typically |N,|[>|N,])

4 SIS R e i Simulations
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Morris, J. F. “A review of microstructure in concentrated suspensions and its implications _
for rheology and bulk flow” (2009) 48:909-923
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HML Experimental agreement? U
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Experiments,
Brownian

© AIP Publishing LLC. All rights reserved. This content is excludedfrom our Creative
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Dispersed and stabilized latex particles, 295nm radius
Lee, M., Alcoutlabi, M., Magda, J. J. et al. “The effect of the shear-thickening transition of model colloidal

spheres on the sign of N1 and on the radial pressure profile in torsional shear flows” JoR (2006) 50:293-311 _
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Experimental agreement? U
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Gamonpilas, C., Morris, J. F.,, Denn, M. M. “Shear and normal stress measurements in non-Brownian
monodisperse and bidisperse suspensions” JoR 60 (2016)

Volume fraction (o) Volume fraction (¢)

Experiments, non-Brownian
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HML Leighton & Acrivos, JFM 1987 U

MICROFLUIDS
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Upper geometry stationary
25 L to measure torque
Pe>>1
Re<<1
20 - 45% volume fraction
Density matched A
15
Mr
10 |- I_} 4J
51k . . ..
Viscosity decreases in time
1 L 1 1 1 B | 1
0 10 20 30 40 50 60 70
Time (h) Bottom rotates
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woones A Migration model — Couette flow e
HML inside and MR, ca. 1992 "l
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A constitutive equation for concentrated suspensions that accounts
for shear-induced particle migration

Ronald J. Phillips, Robert C. Armstrong, and Robert A. Brown
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139 o '

Alan L. Graham and James R. Abbott
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
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Good agreement in steady and
transient Couette flows
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FIG. 8. Transient profiles of the particle volume fraction are shown for a

suspension of 675 um particles at ¢ == 0.55. Results are shown for the ini-
tial profile (O) and after 50 (X ), 100 (1), 200 ({)), 800 (/\}, and 12 000
(®) revolutions of the inner cylinder. Solid curves are the model predic-

tions with K, = 0.43 and X, = 0.65.
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