
Suspensions and suspension 
mechanics
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Suspensions may be distinguished by 
the shape and size of the discrete phase
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Size is important: indicates the relevance of various forces



Strong function of volume fraction

3

Chong, Christiansen, & Baer J. 
App. Polymer Sci. 1971 
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Remarks:
1. Data from 16 sources
2. Divergence at 
3. Einstein limit at low
4. No rate dependence

max



© John Wiley and Sons, Inc. All rights reserved. This content is excluded from our Creative
Common license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

https://ocw.mit.edu/help/faq-fair-use/


Strong function of volume fraction

Entirety of rheology 
reduced to one 

variable.

Is this always the case?

Under what conditions 
is this valid?
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Strong function of volume fraction, 
distribution of sizes

5Chong, Christiansen, & Baer J. App. Polymer Sci. 1971 (adapted)
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The Farris effect

Contours: volume fraction

5:1 ratio in particle size
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What are the paths 
PS and PQ?

<0.75
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Particle shape is also important
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Mueller, S., et al. Proc. R. Soc. A (2010) 466:1201-1228
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Elongated particles have greater 
hydrodynamic interactions

For the same volume fraction, 
greater thickening of suspensions 

when L/D becomes large.

Particle rotates 
and sweeps out 

a volume

From Barnes, et al. “An Introduction to Rheology”
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A sample-spanning structure occurs at 
low volume fractions
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L/D = 7

Require fewer fibers for
 percolatednetwork

Require more spheres for 
a percolated network

Increasing ϕ

Percolation threshold != max packing threshold

Garboczi, et al., Phys. Rev. E. (1995) 52:819-828
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Despite this scaling, we still see a 
shear rate dependence at large Pe#
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Remarks:
1. This is a non-colloidal

suspension of spheres
2. Brownian diffusion is weak.
3. Shear thinning is observed (?)
4. How did we construct the

earlier viscosity curves with
no rate dependence?

5. Glass particles in a
Newtonian matrix

Zarraga, Hill, and Leighton J. Rheol. 2000 (44) 
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Turn on Brownian motion, 
dependence on Pe

Laun, H. M. Angew. Makro. Chem. 1984, 124:335-359
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Turn on Brownian motion, 
dependence on Pe

Laun, H. M. Angew. Makro. Chem. 1984, 124:335-359
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Turn on Brownian motion, 
dependence on Pe
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Laun, H. M. Angew. Makro. Chem. 1984, 124:335-359
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Limiting trajectories for particle–
particle interactions
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• Batchelor & Green result

• C2 accounts for pair interactions,
depends on type of flow

• Orbital capture problem,
dependence on Pe

Morris, J. F. “A review of microstructure in concentrated suspensions and its implications 
for rheology and bulk flow” (2009) 48:909-923
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Microstructure is the source of non-
Newtonian properties

Microstructure in suspensions: 
position and orientation of particles
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What is the local density 
around one particle?

Find 1st, 2nd, 3rd, etc.. 
nearest neighbors

Count neighboring particles 
as a function of distance



Radial symmetry is not guaranteed

In general, particle 
distribution is a function of 

an angle and distance
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θ Local density
( , )

Bulk density
g r 

θ
r

Investigate hydrodynamics to understand ordering by 
hydrodynamic forces



Experiments: Parsi & Gadala-Maria
High Pe # spheres
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Simulations: Péclet number 
determines symmetry of distribution
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Pe = 0, φ = .45

Color indicates density of particle centers
• At low Pe, randomized
• At higher Pe, induced structure from flow

Pe = 25, φ = .3

Increased particle density 
along shoulders of particles, 
attempting to align in rows

Morris, J. F. “A review of microstructure in concentrated suspensions and its implications 
for rheology and bulk flow” (2009) 48:909-923
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Simulations: Péclet number 
determines symmetry of distribution
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Pe = 0, φ = .45

Color indicates density of particle centers
• At low Pe, randomized
• At higher Pe, induced structure from flow

Pe = 25, φ = .3

Increased particle density 
along shoulders of particles, 
attempting to align in rows

Morris, J. F. “A review of microstructure in concentrated suspensions and its implications 
for rheology and bulk flow” (2009) 48:909-923



g(r) depends on the volume fraction
Sierou and Brady JFM (2002)
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Non-Brownian
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Foss and Brady JFM (2000)
Brownian hard spheres

Total

Hydrodynamic

Brownian
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Foss and Brady JFM (2000)
Brownian hard spheres
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Concentrated suspensions
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Laun, H. M. Angew. Makro. Chem. 1984, 124:335-359
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Mechanisms for non-Newtonian 
suspension behavior
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V
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Shear rate or stress

Newtonian plateau
Structure not 

perturbed by flow: 
ordering effects 
washed out by 

Brownian motion

Shear thinning
Structure is perturbed 

aligning particles to 
flow with decreased 

interactions

Shear thickening
Structure strongly 

observed

perturbed by flow, 
strong rise in viscosity 



Normal stresses in Brownian 
suspensions
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1 11 22N σ σ 

2 22 33N σ σ 

(typically <0)

(typically  |N2|>|N1|)

Morris, J. F. “A review of microstructure in concentrated suspensions and its implications 
for rheology and bulk flow” (2009) 48:909-923

Simulations

1 0.4 

2 0.5 
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Experimental agreement?

26Lee, M., Alcoutlabi, M., Magda, J. J. et al. “The effect of the shear-thickening transition of model colloidal 
spheres on the sign of N1 and on the radial pressure profile in torsional shear flows” JoR (2006) 50:293-311

Dispersed and stabilized latex particles, 295nm radius

Experiments, 
Brownian
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1N


2N




Experiments, non-Brownian

Experimental agreement?

27Gamonpilas, C., Morris, J. F., Denn, M. M. “Shear and normal stress measurements in non-Brownian 
monodisperse and bidisperse suspensions” JoR 60 (2016)
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Leighton & Acrivos, JFM 1987
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Viscosity decreases in time

Bottom rotates

Upper geometry stationary 
to measure torque

Pe>>1
Re<<1

45% volume fraction
Density matched
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A migration model – Couette flow 
inside and MRI, ca. 1992
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Good agreement in steady and 
transient Couette flows
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