MIT OpenCourseWare http://ocw.mit.edu

2.500 Desalination and Water Purification Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Amphiphilic Graft Copolymers for Nanofiltration Membranes with Tunable Pore Size

Ayse Asatekin¹, Anne M. Mayes²

Massachusetts Institute of Technology

¹Department of Chemical Engineering

²Department of Materials Science and Engineering

NF membranes

- Size cut-off 0.5-10 nm
 - Size scale of molecules
- Uses
 - Water treatment
 - Food industry
 - Pharmaceutical industry
 - Chemical industry
 - Textile industry
- Limitations
 - Low flux
 - Fouling
 - Wide pore size distribution

Images by steffe, kiwikewlio, mrsmagic, parinyasin on Flickr.

Molecular sieves and size-selective NF membranes

- Commercial NF
 - negatively charged → selectivity not based on size
- Different approaches

Images removed due to copyright restrictions. Please see: Fig. 1a in Jirage, Kshama B., John C. Hulteen, and Charles R. Martin. "Nanotubule-Based Molecular-Filtration Membranes." *Science* 278 (October 1997): 655-658.

Scheme 1 in Czaplewski, Kenneth F., Joseph T. Hupp, and Randall Q. Snurr. "Molecular Squares as Molecular Sieves: Size-Selective Transport Through Porous-Membrane-Supported Thin-Film Materials." *Advanced Materials* 13 (December 2001): 1895-1897.

Fig. 1 in Zhou, Meijuan, et al. "Supported Lyotropic Liquid-Crystal Polymer Membranes: Promising Materials for Molecular-Size-Selective Aqueous Nanofiltration." *Advanced Materials* 17 (2005): 1850-1853.

Jirage *et al.*, 1998

Czaplewski et al., 2001

Zhou et al., 2005

- Common drawbacks
 - Difficult to manufacture
 - Very low flux

Graft copolymers for size-selective NF membranes

- Thin film composite membranes: graft copolymer as selective layer
 - Hydrophobic backbone (PVDF)
 - Hydrophilic side-chains (PEG)

- Microphase separation → "nanopores"¹
- Hydrophilic side-chains form interconnected "nanochannels"
- Uncharged → separation based on size
- Complete resistance to irreversible fouling²

Coating Base UF membrane **Graft copolymer solution Precipitation Nanochannels Phase** separation

¹Akthakul et al., Macromolecules (2004) 37, 7663

²Asatekin et al., Journal of Membrane Science (2006) 85, 81

Graft copolymer: PVDF-g-POEM

$$H_2$$
 C
 CF
 O
 O
 O
 O

- PVDF-g-POEM
 - Poly(vinylidene fluoride)
 (PVDF) backbone semicrystalline, very hydrophobic
 - Effective poly(ethylene glycol) side-chains
 - M_n~180 kg/mol, 40 wt%
 POEM
 - Insoluble in water
 - Synthesized by ATRP-like reaction¹

SEM

Coating thickness ~2 µm

Pure water permeability

Tunable pore size

- Tuning channel size with simple processing parameters
 - Easy modification for different separations
 - Extends the range of applications
- What makes the pore size tunable?
 - Microphase separation ⇒ Pore size
- Possible parameters
 - During membrane manufacture
 - PEG addition to casting solution
 - Casting bath non-solvent
 - After membrane is manufactured
 - Solvent quality of the feed

Method 1: PEG addition to casting solution – During manufacture

Without PEG addition

With PEG addition

Method 1: PEG addition to casting solution – During manufacture

Without PEG addition

With PEG addition
Wider channels

Method 2: Changing non-solvent bath – During manufacture

Isopropanol

Ethylene glycol

Method 2: Changing non-solvent bath – During manufacture

Isopropanol

Ethylene glycol

Pore size tuning during manufacture: Results

Acid blue 45 - 474 g/mol, 8.41 Å

Casting bath

■ PVDF-g-POEM only ■ 50:50 PVDF-g-POEM:PEG600

PVDF-g-POEM contains 48 wt% POEM, tests performed at 150 psi

Method 3: Changing feed solution chemistry – After manufacture

Water → swollen PEG chains

Poorer solvent → collapsed PEG chains

Same membrane for different separations

Method 3-a: Addition of a poor solvent (ethanol) to feed

Method 3-b: Changing the temperature and pressure

- PEG dissolves because it fits into the H-bonded structure of water
- Disturbed water structure
 - → lower solvent quality
 - Increasing temperature
 - Increasing pressure
 - Increasing ionic strength
- ⇒ Higher temperature & pressure ⇒ larger pores

Phase diagram for PEG/water

Method 3-b: Changing the temperature and pressure

★0% → 68% using the same membrane, changing only temperature and pressure!!!

Conclusions

- PVDF-g-POEM coated NF membranes
 - Uncharged nanochannels ⇒ size selectivity
 - Pore size tuning by simple process parameters
 - During casting
 - After manufacture, by changing feed parameters
 - Easy to manufacture
 - High flux
 - Applicable in food and pharmaceutical industries

Acknowledgements

- Prof. Anne Mayes
- Mayes group
 - Nathan Lovell
 - Jennifer Gagner
 - Long-Hua Lee
 - Dr. Ikuo Taniguchi
 - William Kuhlman
 - Solar Olugebefola
 - Elsa Olivetti
 - Dr. Metin H. Acar
 - Sebnem Inceoglu

- Funding
 - WaterCAMPWS NSF Agreement CTS-0120978
 - ONR Award N00014-02-0343
 - MRSEC Shared
 Experimental Facilities –
 NSF Award DMR-0213282