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Probability and Statistics
Trick Question

I flip a coin 100 times, and it shows heads every time.

Question: What is the probability that it will show
heads on the next flip?
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Probability and Statistics
Another Trick Question

I flip a coin 100 times, and it shows heads every time.

Question: How much would you bet that it will show
heads on the next flip?
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Probability and Statistics
Still Another Trick Question

I flip a coin 100 times, and it shows heads every time.

Question: What odds would you demand before you
bet that it will show heads on the next flip?
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Probability and Statistics

Probability 6= Statistics

Probability: mathematical theory that describes
uncertainty.

Statistics: set of techniques for extracting useful
information from data.
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Interpretations of probability
Frequency

The probability that the outcome of an experiment is A
is P(A)...

if the experiment is performed a large number of times
and the fraction of times that the observed outcome is
A is P(A).
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Interpretations of probability
Parallel universes

The probability that the outcome of an experiment is A
is P(A)...

if the experiment is performed in each parallel universe
and the fraction of universes in which the observed
outcome is A is P(A).
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Interpretations of probability
Betting odds

The probability that the outcome of an experiment is A
is P(A)...

if before the experiment is performed a risk-neutral
observer would be willing to bet $1 against more than
$1−P(A)

P(A) .
The expected value (slide 35) of the bet is greater than

1− P(A)(1− P(A))× (−1) + P(A)× = 0P(A)
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Interpretations of probability
State of belief

The probability that the outcome of an experiment is A
is P(A)...

if that is the opinion (ie, belief or state of mind) of an
observer before the experiment is performed.
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Interpretations of probability
Abstract measure

The probability that the outcome of an experiment is A
is P(A)...

if P() satisfies a certain set of conditions: the axioms of
probability.
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Interpretations of probability
Axioms of probability

Let U be a set of samples . Let E1, E2, ... be subsets of
U .
Let ∅ be the null (or empty ) set , the set that has no
elements.
• 0 ≤ P(Ei) ≤ 1
• P(U) = 1
• P(∅) = 0
• If Ei ∩ Ej = ∅, then P(Ei ∪ Ej) = P(Ei) + P(Ej)
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Probability Basics
Discrete Sample Space

Notation, terminology:

• ω is often used as the symbol for a generic sample.

• Subsets of U are called events.

• P(E ) is the probability of E .
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Probability Basics
Discrete Sample Space

• Example: Throw a single die. The possible
outcomes are {1, 2, 3, 4, 5, 6}. ω can be any one
of those values.

• Example: Consider n(t), the number of parts in
inventory at time t. Then

ω = {n(1), n(2), ..., n(t), ....}

is a sample path.
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Probability Basics
Discrete Sample Space

• An event can often be defined by a statement. For example,

E = {There are 6 parts in the buffer at time t = 12}

Formally, this can be written

E = the set of all ω such that n(12) = 6

or,
E = {ω|n(12) = 6}
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Probability Basics
Discrete Sample Space

High probability

U

Low probability
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Probability Basics
Set Theory

Venn diagrams

U

A

A

P(Ā) = 1− P(A)
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Probability Basics
Set Theory

Venn diagrams

U

U

AUB

A B

A   B

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

Probability 17 Copyright ©c 2016 Stanley B. Gershwin.



Probability Basics
Independence

A and B are independent if

P(A ∩ B) = P(A)P(B).
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Probability Basics
Conditional Probability

If P(B) 6= 0,

P(AP(A|B) = ∩ B)
P(B)

U

U

AUB

A B

A   B

We can also write P(A ∩ B) = P(A|B)P(B).
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Probability Basics
Conditional Probability

P(A|B) = P(A ∩ B)/P(B)

Example: Throw a die.Let
• A is the event of getting an odd number (1, 3, 5).
• B is the event of getting a number less than or

equal to 3 (1, 2, 3).
Then P(A) = P(B) = 1/2,P(A ∩ B) = P(1, 3) = 1/3.
Also, P(A|B) = P(A ∩ B)/P(B) = 2/3.
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Probability Basics
Law of Total Probability

B

U

C D
A

A   C

U

A   D

U

• Let B = C ∪ D and assume C ∩ D = ∅. Then
P(AP(A|C) = ∩ C) P(Aand P(AP(C) |D) = ∩ D)

P(D) .
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Probability Basics
Law of Total Probability

Also,
P(C• P(C |B) = ∩ B) P(C)=P(B) because CP(B) ∩ B = C .

P(D)Similarly, P(D|B) = P(B)

• A ∩ B = A ∩ (C ∪ D) = (A ∩ C) ∪ P(A ∩ D)

• Therefore
P(A ∩ B) = P(A ∩ (C ∪ D))

= P(A ∩ C) + P(A ∩ D) because (A ∩ C) and (A ∩ D) are
disjoint.
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Probability Basics
Law of Total Probability

• Or, P(A|B)P(B) = P(A|C)P(C) + P(A|D)P(D)
or,

P(A|B)P(B) P(A= |C)P(C)
P(B)

P(A+ |D)P(D)
P(B) P(B)

or,

P(A|B) = P(A|C)P(C |B) + P(A|D)P(D|B)
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Probability Basics
Law of Total Probability

D = C

U

U

U

A   D

A
C

A   C

An important case is when C ∪ D = B = U , so that A ∩ B =
A. Then P(A) = P(A ∩ C) + P(A ∩ D) or

P(A) = P(A|C)P(C) + P(A|D)P(D)
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Probability Basics
Law of Total Probability

A

Ei

More generally, if A and
E1, . . . Ek are events and

Ei and Ej = ∅, for all i 6= j

and⋃
j
Ej = the universal set

(ie, the set of Ej sets is mutu-
ally exclusive and collectively
exhaustive ) then ...
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Probability Basics
Law of Total Probability

∑
P(

j
Ej) = 1

and

P(A) = ∑
j P(A|Ej)P(Ej).
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Probability Basics
Law of Total Probability

Example
A = {I will have a cold tomorrow.}
E1 = {It is raining today.}
E2 = {It is snowing today.}
E3 = {It is sunny today.}

(Assume E1 ∪ E2 ∪ E3 = U and E1 ∩ E2 = E1 ∩ E3 = E2 ∩ E3 = ∅.)

Then A ∩ E1 = {I will have a cold tomorrow and it is raining today}.
And P(A|E1) is the probability I will have a cold tomorrow given that it is
raining today.
etc.
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Probability Basics
Law of Total Probability

Then

{I will have a cold tomorrow.}=
{I will have a cold tomorrow and it is raining today} ∪
{I will have a cold tomorrow and it is snowing today} ∪
{I will have a cold tomorrow and it is sunny today}

so

P({I will have a cold tomorrow.})=
P({I will have a cold tomorrow and it is raining today}) +
P({I will have a cold tomorrow and it is snowing today}) +
P({I will have a cold tomorrow and it is sunny today})

Probability 28 Copyright ©c 2016 Stanley B. Gershwin.



Probability Basics
Law of Total Probability

P({I will have a cold tomorrow.})=

P({I will have a cold tomorrow | it is raining today})P({it is raining today}) +

P({I will have a cold tomorrow | it is snowing today})P({it is snowing today}) +

P({I will have a cold tomorrow | it is sunny today}) P({it is sunny today})

or

P(A) = P(A|E1)P(E1) + P(A|E2)P(E2) + P(A|E3)P(E3)
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Probability Basics
Random Variables

Let V be a vector space. Then a random variable X is a mapping
(a function) from U to V .
If ω ∈ U and x = X (ω) ∈ V , then X is a random variable.
Example: V could be the real number line.
Typical notation :
• Upper case letters (X ) are usually used for random variables and

corresponding lower case letters (x) are usually used for possible values
of random variables.

• Random variables (X (ω)) are usually not written as functions; the
argument (ω) of the random variable is usually not written. This
sometimes causes confusion.
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Probability Basics
Random Variables

Flip of a Coin

Let U=H,T. Let ω = H if we flip a coin and get heads; ω = T if
we flip a coin and get tails.

Let V be the real number line. Let X (ω) be the number of times
we get heads. Then X (ω) = 0 or 1.

Assume the coin is fair. (No tricks this time!) Then
P(ω = T ) = P(X = 0) = 1/2
P(ω = H ) = P(X = 1) = 1/2
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Probability Basics
Random Variables

Flip of Three Coins
Let U=HHH, HHT, HTH, HTT, THH, THT, TTH, TTT.

Let ω = HHH if we flip 3 coins and get 3 heads; ω = HHT if we
flip 3 coins and get 2 heads and then one tail, etc. The order
matters! There are 8 samples.
• P(ω) = 1/8 for all ω.

Let X be the number of heads. Then X = 0, 1, 2, or 3.
• P(X = 0)=1/8; P(X = 1)=3/8; P(X = 2)=3/8;

P(X = 3)=1/8.
There are 4 distinct values of X .
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Probability Basics
Probability Distributions

Let X (ω) be a random variable. Then P(X (ω) = x) is the
probability distribution of X (usually written P(x)). For three coin
flips:

P(x)

3/8

1/4

1/8

0 1 2 3 x
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Probability Basics
Probability Distributions

Mean and Variance

Mean (average): x̄ = µx = E (X ) = ∑
x xP(x)

Variance: Vx = 2σx = E (x − µx )2 = ∑
x (x − µx )2P(x)

Standard deviation: σx =
√

Vx

Coefficient of variation (cv): σx/µx
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Probability Basics
Probability Distributions

For three coin flips:

x̄ = 1.5
Vx = 0.75
σx = 0.866
cv = 0.577
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Probability Basics
Functions of a Random Variable

• A function of a random variable is a random
variable.

• Special case: linear function

For every ω, let Y (ω) = aX (ω) + b. Then

? Ȳ = aX̄ + b.
? VY = a2VX ; σY = |a|σX .
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Probability Basics
Covariance

X and Y are random variables. Define the covariance of X and Y
as:

Cov(X ,Y ) = E [(X − µx )(Y − µy )]

Facts:

• Var(X + Y ) = Vx + Vy + 2Cov(X ,Y )

• If X and Y are independent, Cov(X ,Y ) = 0.

• If X and Y vary in the same direction, Cov(X ,Y ) > 0.

• If X and Y vary in the opposite direction, Cov(X ,Y ) < 0.
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The correlation of X and Y is

Cov(XCorr(X ,Y ) = ,Y )
σxσy

−1 ≤ Corr(X ,Y ) ≤ 1
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Discrete Random Variables
Bernoulli

Flip a biased coin. Assume all flips are independent.

X B is 1 if outcome is heads; 0 if tails.

P(X B = 1) = p.

P(X B = 0) = 1− p.

X B is Bernoulli.
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Discrete Random Variables
Binomial

The sum of n independent Bernoulli random variables
X B

i with the same parameter p is a binomial random
variable X b.

n
X b =

i

∑
X B

i
=0

P(X b n!= x) = px (1 p)(n−x)
x !(n − x)! −
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Discrete Random Variables
Binomialprobability distribution

20 25 30 35 40 45 50 55 60
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Discrete Random Variables
Geometric

The number of independent Bernoulli random variables X B
i with

the same parameter p tested until the first 1 appears is a
geometrically distributed random variable X g .

1 2 3 4 ... k − 4 k − 3 k − 2 k − 1 k
0 0 0 0 ... 0 0 0 0 1
←−−−−−−−−− k −−−−−−−−−−−−−−−−−−−−−−−→

X g = k if X B
1 = 0, X B

2 = 0, ..., X B
k−1 = 0, X B

k = 1
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Discrete Random Variables
Geometric

To calculate P(X g = k), recall that P(X g = 1) = p, so P(X g > 1) = 1− p.

Then

P(X g > k) = P(X g > k g g|X > k − 1)P(X > k − 1)

= (1− p)P(X g > k − 1),

because

P(X g k|X g k − 1) = P(X B = 0 X B = 0 |X B B> > 1 , ..., k 1 = 0, ...,Xk−1 = 0)
= 1− p

so

P(X g > 1) = 1− p, P(X g > 2) = (1− p)2, ... P(X g k 1− 1) = (1 k> − p) −

and P(X g = k) = P({X g > k − 1} and {X B
k = 1}) = (1− p)k−1p.
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Discrete Random Variables
Geometric probability distribution
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Discrete Random Variables
Poisson Distribution

x
P(X P = x) = e−λλx !
Discussion later.
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Continuous Random Variables
Philosophical Issues

1. Mathematically , continuous and discrete random
variables are very different.

2. Quantitatively , however, some continuous models
are very close to some discrete models.

3. Therefore, which kind of model to use for a given
system is a matter of convenience .
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Continuous Random Variables
Philosophical Issues

Example: The production process for small metal parts
(nuts, bolts, washers, etc.) might better be modeled as
a continuous flow than as a large number of discrete
parts.

Probability 47 Copyright ©c 2016 Stanley B. Gershwin.



Continuous Random Variables
Philosophical Issues

High density

Low density

The probability of a
two-dimensional random
variable being in a small square
is the probability density times
the area of the square. (The
definition is similar in
higher-dimensional spaces.)
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Continuous Random Variables
Philosophical Issues
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Continuous Random Variables
Spaces

Dimensionality
• Continuous random variables can be defined

? in one, two, three, ..., infinite dimensional spaces;
? in finite or infinite regions of the spaces.

• Continuous random variables can have
? probability measures with the same dimensionality as

the space;
? lower dimensionality than the space;
? a mix of dimensions.
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Continuous Random Variables
No change in water levels

M B11

x 1
M 2

B2

x M32

M1 B1 M 2 B2 M3
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Continuous Random Variables
One kind of change in water levels

M B11

x 1
M 2

B2

x M32

M1 B1 M 2 B2 M3
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Continuous Random Variables
Two-dimensional probability distribution

One−dimensional density

Two−dimensional 

Zero−dimensional 

density (mass)

density

x1

M1 M3

x2

B1 M 2 B 2

Probability distribution
of the amount of
material in each of the
two buffers.
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Continuous Random Variables
Trajectories

x2

x1

M1 B1 M 2 B2 M3

001

011

010

101

100

110

Trajectories of buffer
levels in the three-
machine line if the
machine states stay
constant for a long
enough time period.
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Continuous Random Variables
Discrete approximation of the probability distribution

x2

M1

x1

B M B M1 2 2 3

Probability
distribution of the
amount of material
in each of the two
buffers.
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Continuous Random Variables
Densities and Distributions

In one dimension, F () is the cumulative probability distribution of
X if

F (x) = P(X ≤ x)
f () is the density function of X if

F (x) =
∫ x

f (t)dt
or −∞

dFf (x) = dx
wherever F is differentiable.
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Continuous Random Variables
Densities and Distributions

Fact: F (b)− F (a) =
∫ b

f (t)dt
a

Fact: f (x)δx ≈ P(x ≤ X ≤ x + δx) for sufficiently
small δx .

Definition: x̄ =
∫ ∞

tf (t)dt
−∞
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Continuous Random Variables
Law of Total Probability

Scalar version

fX (x) =
∫ ∞

fX |Y (x
−∞

|y)fY (y)dy

This is also extended to more dimensions.
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Continuous Random Variables
Normal Distribution

The density function of the normal (or gaussian ) distribution with
mean 0 and variance 1 (the standard normal ) is given by

1f (x) = √ e 1−

2π
2

2 x

The normal distribution function is

F (x) =
∫ x

f (t)dt
−∞

(There is no closed form expression for F (x).)
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Continuous Random Variables
Normal Distribution

f(x
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Continuous Random Variables
Normal Distribution

Notation: N(µ, σ) is the normal distribution with mean µ and
variance 2σ .

Note: Some people write N( 2µ, σ ) for the normal distribution with mean µ
and variance 2σ .

Fact: If X and Y are normal, then aX + bY + c is normal.

Fact: If X is N(µ, σ), then X−µ ,
σ

is N(0 1), the standard normal.

This is why N(0, 1) is tabulated in books and why N(µ, σ) is easy
to compute from N(0, 1).
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Continuous Random Variables
Truncated Normal Density

truncated
not truncated
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f (x)P(x ≤ X ≤ x + δx) = ()1 δx where F () and f are the normal
− F (0)

distribution and density functions with parameters µ and σ.
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Continuous Random Variables
Another Kind of Truncated Normal Density

probability mass

 0.5

truncated
 0.45

not truncated
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P(x ≤ X ≤ x + δx) = f (x)δx for x > 0 and P(X = 0) = F (0) where F () and
f () are the normal distribution and density functions with parameters µ and σ.
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Continuous Random Variables
Law of Large Numbers

Let {Xk} be a sequence of independent identically distributed
(i.i.d.) random variables that have the same finite mean µ. Let Sn
be the sum of the first n Xks, so

Sn = X1 + ... + Xn

Then for every ε > 0,

lim P
→∞

(∣∣∣S∣ n
n ∣ =n − µ

∣∣∣∣ > ε

)
0

That is, the average approaches the

∣
mean.
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Continuous Random Variables
Central Limit Theorem

Let {Xk} be a sequence of i.i.d. random variables with
finite mean µ and finite variance 2σ .
Then as n→∞, P(Sn−nµ√ .n ) ,

σ
→ N(0 1)

If we define An as Sn/n, the average of the first n Xks,
then this is equivalent to:

As n→∞, P(An) N(µ, σ/
√

→ n).

Probability 65 Copyright ©c 2016 Stanley B. Gershwin.



Continuous Random Variables
Coin flip examples

Probability of x heads in n flips of a fair coin

probability (n=3) probability (n=15)
0 0

0
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0
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0
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0
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Continuous Random Variables
Binomial probability distribution approaches normal for
large N .
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Continuous Random Variables
Binomial distributions

Note the resemblance to a truncated normal in these examples.
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Normal Density Function
... in Two Dimensions
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More Continuous Distributions
Uniform

1f (x) = for ab − a ≤ x ≤ b

f (x) = 0 otherwise
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More Continuous Distributions
Uniform

Uniform density

Uniform distribution
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More Continuous Distributions
Triangular

Probability density function
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More Continuous Distributions
Triangular

Cumulative distribution function
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More Continuous Distributions
Exponential

• f (t) = λe−λt for t
λt

≥ 0; f (t) = 0 otherwise;
P(T > t) = e− for t ≥ 0; P(T > t) = 1 otherwise.

• Close to the geometric distribution but for continuous time.

• Very mathematically convenient. Often used as model for
the first time until an event occurs.

• Memorylessness:
P(T > t + x |T > x) = P(T > t)

The cumulative probability distribution
F (t) = 1− P(T > t) = 1− e−λt for t ≥ 0; F (t) = 0 otherwise.
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More Continuous Distributions
Exponential

exponential distribution

exponential density

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10

Probability 75 Copyright ©c 2016 Stanley B. Gershwin.



Discrete Random Variables
Poisson Distribution

P(X P = x) = e−λt (λt)x

x !

is the probability that x events happen in [0, t] if the
events are independent and the times between them are
exponentially distributed with parameter λ.

Typical examples: arrivals and services at queues. (Next
lecture!)
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NOT Random
...but almost

A pseudo-random number generator is a set of numbers X0,X1, ... where there
is a function F such that

Xn+1 = F (Xn)

and F is such that the sequence of Xn satisfies certain conditions.

For example 0 ≤ Xn ≤ 1 and the sequence X0,X1, ... looks like uniformly
distributed, independent random variables.

That is, statistical tests say that the probability of the sequence not being
independent uniform random variables is very small.

However the sequence is deterministic: it is determined by X0, the seed of the
random number generator.

Pseudo-random number generators are used extensively in simulation.
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