
MITOCW | 6. Wallets and SPV

The following content is provided under a Creative Commons license. Your support will help

MIT OpenCourseWare continue to offer high-quality educational resources for free. To make a

donation, or to view additional materials from hundreds of MIT courses, visit MIT

OpenCourseWare at ocw.mit.edu.

TADGE DRYJA: Today we're going to talk about wallets and SPV. And if you don't know what SPV stands for,

that will be defined as well, so don't worry.

First, you get your software. That's something of a problem, like how do you know you got the

right Bitcoin software, there can be issues there, but anyway-- there are multiple

implementations that should be consensus compatible. I often use BTCD, which is a version

written in Go, but the main implementation is written in c++.

So, you get the software, and then you somehow connect to peers in the network, but there's

all these asterisks, which mean it's not completely decentralized. You have to find where to get

it, you have to find who to connect to.

Once you do that, you get all the headers, which are 80 bytes each, you verify all the work,

and then you start getting the blocks, looking through the transactions. You replay the history

of the last nine years of the coin, and then you arrive at a UTXO set, an unspent transaction

output set, and it should be the same as everyone else got. Everyone else has the same

headers, the same work, the same transactions. They'll get the same set of which coins are

encumbered by which keys as you do. And the idea is it would be very expensive to have

different UTXO sets because you'd have to do all that work.

So that's how a node works. But what about dealing with actual money? So far, we've just

looked at here's how to get your node running, here's how to observe the network and come

to the same conclusion as everyone else, but you probably want to actually do something with

this. You want to pay people or get paid. Those are the two fundamental functions that this

tries to address.

So the software that manages this feature is called a wallet, and it's not necessarily the same

software as what's connecting to the network, downloading, and verifying. In the case of

Bitcoin Core, it is, although many of the programmers of Bitcoin Core wish that it weren't. And

there's sort of a long-term goal of, it'd be really great if we could pull these two things apart

into maybe separate binaries, separate programs, something. But they're really intertwined,

and it's kind of ugly. But there are other things that are separate

OK, so wallet software functionality-- seems simple, you send and receive money. Simple. Of

course, you need to receive money before you can send it, so let's start with that.

OK, so we did not talk about receive addresses. We did talk about the script, and how it's

generally used pay to pubkey hash, where you put the hash of your pubkey in your output

script, and then in your redeem script, in your input, you put the pubkey itself, which is then

checked against the hash, and then the signature is verified.

Most likely, if you've looked at Bitcoin at all, you've seen these types of addresses. They

usually start with 1, they're a bunch of characters long, a weird mix of lowercase, uppercase,

Latin numbers, and letters. There is a standard for converting a 20-byte pubkey hash into this

address. So the idea is since almost everything is using the same pubkey hash script, you can

forget about the opcodes, like op_dup, op_hash160, op_equalverify because they're always

the same. And so it's this standard, like, OK we're just taking that 20-byte hash, and now let's

convert it to something hopefully somewhat human readable and writeable so that people can

write it down, say it over the phone.

This is the one Satoshi made. It's got 58 characters and then the last 4 bytes, which ends up

being like 5 or 6 of the letters, is sort of a checksum, where you take the hash of the first

however many letters and then that's supposed to like equal to the next one. So, hopefully, if

you typed something wrong, it doesn't change the hash and then you send it to the wrong

place and then no one has a matching key for that.

There's a newer standard for this where all the all the letters are lowercase. That's introduced,

actually, today in Bitcoin Core. Version 0.16 came out, and so there's a new standard called

Bech32. They did some research, and they found it was actually much faster to transmit over

the phone via voice because you didn't have to say whether things were uppercase or

lowercase, which ended up being very annoying for people, because, you know, 1 big F, a

little f, 1, 2, big E, 4-- it's annoying.

Anyway, the idea is this is just an encoding of the 20-byte pubkey hash, so when you type this

into a program, it reads this, converts it into a 20-byte hash, builds the output script. OK, so

the outputs are all the same. So this is sort of like a UI thing. The addresses don't really exist

at the protocol level. Any questions about addresses? OK. We're not going to put-- UI and

usability is super important, but not the focus yet of what we're doing.

The idea, in a lot of cases, is you want to receive money and know that you received it, or

somehow interact with people over computers, and you could put a bunch of addresses on a

server, but keep your private keys offline. Because if you keep both your public key and your

private key on the same computer, that's kind of an attractive target for someone to break into

your system because they say, oh, this guy's running Bitcoin and he's accepting payments.

There might be a bunch of money in this computer if I can get into it. I can take all the money.

So one issue that people ran up against pretty early is-- well, let's say I generate 10 keys-- 10

private keys, 10 public keys, 10 addresses. I put them on the server, then I run out. And I can

reuse addresses, but that can hurt privacy because people can then see that the same people

are using these keys.

So is there any clever way we can generate pubkeys without the private key? Is there, given

all the fun key stuff we've talked about, can anyone think of any clever ways to do that? OK,

well pretty straightforward.

This is called BIP32, Bitcoin Improvement Proposal 32. This is a super-simplified version, but

this is the basic idea of what they do, and they do it much more involved and complicated. But

basically, you've got your public key P-- big P-- and some kind of randomized data--

randomizer data, r and your private key is just little p.

So the idea is you want to send to an address, you want to generate a new address. Well, it's

just your public key plus the hash of r concatenated with 1 times G. And if you wanted to make

this 2, 3, you can make this any number you want.

And then your private key is just going to be that same public key plus the hash of r. So you

give someone some extra data, which they can throw into a hash function. Use this as a

known private key and you add it to your private key. So no one just knowing this data can

spend from it. That's really nice because then the server can generate arbitrary numbers.

Does this make sense?

AUDIENCE: What's the difference big A and a?

TADGE DRYJA: Oh, yes. So in the last one, big A is a public key. It's a point on the curve. Little a is the private

key. I screwed that up. That does not have a G. So G is the generator for the group. G is how

you convert from a private key to a public key. You just multiply by G, which is just an arbitrary

point. Yes.

AUDIENCE: So your private key doesn't change?

TADGE DRYJA: So in this case, there's two private keys. There's your standard private key that you actually

just randomly created-- this number p, multiply it by G, to get big P. But your private key for

any particular address does change. You're adding the hash of r, 1 or r, 2, r,3. Yes?

AUDIENCE: Assuming the size of r is relatively small compared to p because don't you have to keep track

of the nonce?

TADGE DRYJA: R should be, like, 32 bytes or something. You know, you don't want any--

AUDIENCE: Do you have to start with it every time that you create a new hash code?

TADGE DRYJA: You sort of don't. What you can do is, you have your server. You say, hey, I'm going to accept

payments for cookies or shoes or whatever I'm selling. And then you give the server your

public key, P, and the randomizer r, and you just say to the server, go wild, make whatever

number you want here.

This number should be fairly small, let's say less than a billion. And then when you want to find

how much you've gotten paid, well, you can generate a billion private keys here-- some

reasonable number that the computer can actually do it-- and you could just increment this,

generate a ton of addresses, and look for them on the blockchain. So does that makes sense

at all?

BIP32 is actually quite a bit more involved and complicated. This is the basic idea, but they

make trees of it, and you can say, oh, well, we can make instead of just one level, we can

make a whole tree of these things, and have different accounts, and make a really full-

featured system in case people want to use this kind of thing.

So you can put the public key and this random data on the server. The server can make

addresses as needed, really quickly. And what's nice is observers can't link these addresses. If

you're just looking at the blockchain, you won't see the difference between a sub 1 and a sub

2, if this number and 1 and 2 because it's going through this hash function, you never see that.

To an observer, it looks like all completely different addresses. And if someone hacks into the

server and finds this P point, and this r randomizer, well, that will allow them to link everything.

Now they can see-- oh, we can also generate all these addresses. We can see that it's all the

same person. But that doesn't let them steal any of the funds. So compromising the server

with this, well, you lose the privacy, but you don't lose your money, so that's a pretty good

trade. Other questions about BIP32? So that's one of the features for wallets. You've got to do

this.

The basic procedure-- you're going to request a payment. And you're going to say, hey, if you

want this jacket, send one coin to address F8f12E. And it's sort of important to note that

Bitcoin doesn't solve the problem of people paying money and not getting what they paid for.

That's out of the scope of this, although there's a lot of people that say it should, but know it

doesn't do fraud protection. It's like, hey, I gave you the coin, you didn't give me the jacket.

Well, Bitcoin worked fine. Bitcoin made the coin move. That's Bitcoin's job. The fact that FedEx

never delivered your jacket, well, that's FedEx or the retailer or all sorts of things like that.

You know, I don't want to say it's not a problem. It certainly is, but it is seen as out of scope.

It's, like, you know-- this is a money system. This is money. Your dollar bills don't ensure that

you're getting what you paid for. That said, there's all sorts of things that do this kind of thing,

and do try to ensure delivery versus payment-- atomic swaps, HTLCs that we'll talk about

later, Zero-Knowledge Contingent Proof-- all these different things do sort of work on top of

Bitcoin to try to help these kinds of things.

In practice, though, if you're actually buying a physical jacket that someone's going to deliver

to you, there's not really a good cryptographic proof of jacket delivery. So some reputation is

involved.

Then, from the merchant's perspective-- so, I sell jackets. I want to know if someone paid me.

I have something on the website, put in your address, now pay this address. So you add all

your pubkey hashes to a big list in your software. You say, OK, here's all the addresses I've

created. They're all these 20-byte pubkey hashes. I put them in a map or some kind of array

or some database, whatever. And from then on, every transaction I see on the network, I also

look at the output scripts.

So before, when I was verifying the blockchain, I actually never had to look at the output

scripts until they got spent. So when I was downloading transactions, I would look at their

signatures and look at the old UTXOs in the UTXO set and match them up and verify. But

where the money got sent in these new transactions, I didn't really care. It could have been

sending it to zero. It could have been sending it to some weird address that probably was

wrong.

There was no-- and I believe to this day, there's still no output validation that happens in

Bitcoin as a consensus rule because it's not important. Where are you sending the money?

Well, wherever you want. And are you able to spend it? We'll deal with that later. If you want to

destroy your money, fine. I'm not going to look at the output. There's no invalid output. There

can be an invalid input, which-- there can be an output which you can never actually use, but

you're free to send to it. So that's sort of one of the rules in Bitcoin.

However, when we're actually looking at our own money with the wallet, we do look at the

output scripts, mainly to say, hey, is this ours? Are we getting paid with this transaction? So

you look at every output script, and if you see one that matches, hey, we got paid. So you see

a transaction, one of the outputs-- hey, look, that 20 bytes-- that's me. Cool. That's one of the

addresses that I have, let me keep track of this. This is now money that's in my wallet.

So you keep track of the received payments, you save them to disk in a similar way to your

addresses. You use some kind of database or map or something, something efficient. And

then you don't need to save too much information. You need to save the outpoint, the txid of

the transaction, the index. You probably want to save how much, your amount, and which key

it was, so the actual 20-byte pubkey hash. You can look through all your keys, but it might be

nice-- oh, that's my 17th key that I've saved in my database or something.

You may also want to save the height information, when it got confirmed. So we're not going to

talk too much about unconfirmed versus confirmed today, but this can be an issue if you see a

transaction on the network that's not yet in a block and it pays you. You're like, hey, I got

money, but it's not confirmed yet, so have I really gotten money?

I am able to use that output to spend somewhere else, but now I've got two change

transactions, neither of which is confirmed. And now the second one can only be confirmed if

the first one is, so that can get ugly kind of quick.

For simplicity's sake, let's just say that you wait until it's in a block before your wallet

recognizes it. Most wallets do not do that, but most wallets maybe should. There can be a lot

of weird attacks where you say, oh, I got money, and then since it never really was confirmed

at all, it's pretty easy for someone to double spend.

The whole point of the Bitcoin system was you can't double spend because it's got all this

proof of work on top of it. It's in a block. But if we show in the UI, hey you got a payment that

has not yet gone into a block, well, there's no assurance that it won't be double spent yet,

because it's not in the blockchain. But most wallets will show that and usually they'll make it in

like red, or put a little exclamation point or something to try to indicate, hey, this is

unconfirmed, but that doesn't always get across to people. So it may be safer to just not show

it at all until it's in the block.

OK, so you amass all these you UTXOs, you're running your node, you've got all these

addresses you've given out to people, and then every transaction that comes in you look--

hey, do any of these pay me? And sometimes you'll find one that does, which is great. And

then you save that to your disk and, great. Now, next, I want to spend them.

OK, any questions about the getting money procedure? Yes.

AUDIENCE: So, what's the height again?

TADGE DRYJA: The height is what block it's in, so height zero is the first block, zero block, and we're now at

height 500,000. Usually, in diagrams, it goes this way, but I guess it could go up in numbers, I

don't know.

Yeah, so next, you need to spend them. Spending makes sense, right? It's not too crazy. Let's

say you want to send six coins to someone. So what you do is, you look through your set of

UTXOs that are your UTXOs, and you try to find some such that the total number of coins is

over six, and then you use them as inputs, and then you add your outputs.

So, for example, I've got two UTXOs. These are much smaller numbers, but this one has five

coins in it and this one has three coins. So I received, at two different times, once I got five

coins for a fancy jacket, once I got three coins for a less fancy jacket. And now I want to buy

something, and I want to send it to Bob, and I want to send six coins.

Well, I've got eight coins in my inputs, so I'll send him six coins. There's two coins leftover. If I

don't have this, it just goes to the miners, so I create my new output, which is my change

output. And then I send the remainder, two coins here.

Now, if it's actually these nice, round numbers, the fee would be zero and it would probably not

get confirmed on the Bitcoin network. You do have to have a small fee right now. It's really

small, like a couple of cents now. It was pretty high a few months ago. But this will work. This is

the basic idea.

So, you look through your UTXOs, find some, OK, output six, output two, sign them. Once

you've built this, sign it all, broadcast to the network. Make sense? Yes.

AUDIENCE: Is the change UTXO, like, your own?

TADGE DRYJA: Yep. Yep. Generally, what you'll do is, you'll make a new private key, calculate the public key,

hash it, make this address, and then add it in here, all automatically.

You can, and some software does, just only use one key and one address, and so it'll be

pretty clear because the keys for this signature will be the same as this key that it's sending to,

and so then it's really clear. Even without doing that, it's usually pretty clear and people can

sort of guess, well, either Alice is sending six coins back to herself and two coins to Bob, or

she's sending six coins to Bob and two back to herself. Or maybe six coins to one person, two

coins to someone else entirely. That's pretty unlikely.

Usually, metrics will try to analyze the transaction graph, and say, oh, the smaller outputs are

usually the payments and the larger ones are the change, but you don't know if the addresses

are all different. Yes?

AUDIENCE: How does the fee get paid again?

TADGE DRYJA: The fee is the difference between the inputs amounts and the output amounts. So, in this

case, the fee is zero because I got 5, 3, 8, and then 8 here. So, really, what you do in real life

is, you'd make this 1.999 and then the fee would be that 0.001, or whatever that the miner

gets in the coinbase transaction.

That's another way to try to identify change outputs. If you actually had 5, 3, 6, and 1.999, I

bet the 1.999 is going back to yourself. Nice, even, round numbers seem like real payments.

And then if you've got one bunch of nines at the end, oh, that was probably just reduced a little

to make the fee.

But these are all guesses. If you're a third party observer looking at a transaction, you don't

know. This could be two different people, or this could be an exchange and it's hard to tell, but

you can get some pretty good guesses.

Yes?

AUDIENCE: In terms of fees, so if you have no fee or you had a really small fee and buyers are requiring

something higher, that just sits on everyone's computer. They still share with each other or do

they sit there until maybe there's a block?

TADGE DRYJA: There are multiple thresholds. So, there's the relay threshold, which right now I believe Bitcoin

is one Satoshi per byte. So, I think we said Satoshis are the smallest unit possible in Bitcoin.

So one coin is actually 100 million Satoshis-- and there's no decimal places, that's just a UI

thing.

So right now, the minimum relay fee, by default, is 1 Satoshi per byte. So for a 250-byte

transaction, you need 250 Satoshis, which is some fraction of a cent-- maybe more than a

cent now, I'm not sure. And then the idea is if you see a transaction below that, you won't even

relay it to anyone else. You'll be like, this is so cheap that I'm not going to bother sending it to

everyone else. I'm just going to ignore it.

But above that 1 Satoshi threshold, you will accept it, verify the signatures, and then pass it on

to everyone else you're connected to. But that doesn't necessarily mean it will get into a block

anytime soon. It's actually been really interesting the last, I'd say six months, where the fees

went up enormously and you see this really crazy price inelasticity, where people who were

paying one cent then started paying 10 cents, a dollar, $10, $20.

And what's also sort of optimistic-- that made me feel good-- it's like, well, clearly they were

getting 20 bucks worth of utility out of this because they're now perfectly willing to pay 20

bucks and they were paying one cent a few weeks ago. That's kind of weird. And then it's now

gone back down to, like, one cent. But it's very inelastic in that there's a fixed size for how

many transactions you can have per minute or per hour and when people really want to get in

there, they have to just bid everyone else out.

So we'll talk about the fee markets in a few weeks, and replace by fee. That's sort of a new

evolving thing, but it's been really interesting to see in the last few months how it's changed.

Yeah.

AUDIENCE: At $10,000 per Bitcoin, a Satoshi is 0.01 cent, a hundredth--

TADGE DRYJA: Tenth of a cent.

AUDIENCE: Hundredth of a cent.

TADGE DRYJA: Hundredth of a cent. OK. So, the minimum relay fee would be more like 2 and 1/2 cents. So

that's-- you know, it's not zero. That's still-- a fee, right? And you get enough of those and you

start making money.

But it's also interesting recently, it used to be that the initial new coins coming out to miners

was just overwhelmingly the majority of what they had earned and people would ignore fees

as a miner. But then, in December, January, I believe miners made more money in fees than

in new coins being generated. I'm not sure if that averages out. There were definitely weeks

where that was the case, or at least days, I'm not sure if it's average or the whole month.

But if you-- total aside, sorry, but this guy's site is a cool way to look at the fees. So you can

see here's-- he sort of organizes transactions by fee rate. It's too low-res to really get

everything, but if you just search for Johoe-- J-O-H-O-E-- he works on Bitcoin stuff and he

made this cool site, which is open source and you could even run it on your own node if you

wanted to, and generate the same cool JavaScript color-y things and you can see the fee

market.

And I'm not an economist, but it is really interesting seeing there's clearly market failures

occurring here in that-- so, you can pay the green-- you can pay 10 Satoshis per byte, and

you'll get confirmed in 10 minutes. Or you can pay 1,000 Satoshis per byte, and you will also

get confirmed in 10 minutes. And most people are paying 10, but someone's paying 1,000.

You know, it's got the whole spectrum. You've got multiple orders of magnitude of people

paying for the exact same thing, and they can all see each other. It's just a weird sort of--

seems broken.

And part of it is just the cost to write the software. If you're an exchange and everyone's

sending you support requests, and this happens-- OK, I don't know just, pay a 500 Satoshi per

byte fee-- and then it seems to work. And, yeah, we're losing a couple of thousand bucks a

day, but let's just not deal with that.

And I think that's part of it, is that there's a lot of software out there that just has a fixed fee

rate, or even a fixed fee, regardless of how big the transaction is. There's a lot of software

that, years ago, wouldn't have to deal with this issue because there wasn't really competition

to get into a block, and now they do. So it's kind of cool to look at and see the history of it. But

I'll get into depth of fees and stuff in, I think, two weeks or something.

OK, any questions about-- yeah.

AUDIENCE: What was that website again?

TADGE DRYJA: Well, it's in some Dutch, or something. Just search J-O-H-O-E, Johoe. He's the guy. It's the

first thing on Google. J-O-H-O-E is his Dutch nickname, or something, I don't know. He's a

cool guy.

He actually-- I think I talked-- did I talk-- there was some randomness problems at some site.

He stole a bunch of Bitcoins and gave them back to their owners. He found there was a K

reuse, like nonce reuse vulnerability in some wallets. And so he's like, hey, look, there's like

100 Bitcoins that I can just take because I can calculate the private key. And he took them,

and he was like, I think I know who these are and can you prove it, and then I'll give them

back?

So he sort of grabbed-- you know, finding a wallet with, like, thousands of dollars coming out of

it on the street, he grabbed them all and tried to get them back to people. I don't know the guy.

I've never met him but seems like a nice guy. Anyway.

[LAUGHTER]

That's how Bitcoin works. You don't meet anyone, but you see these people-- oh he's a nice

guy. Oh, he's a jerk. The weekend was kind of interesting over Twitter, but anyway--

AUDIENCE: I saw that.

TADGE DRYJA: Yeah. OK, so you build these transactions. There are issues here. Two inputs, two outputs--

that's going to be kind of big. You're going to have two different signatures. It's going to be a

little bit higher fee. What would work better than this? It's kind of a silly question. What would

work better than having two inputs and two outputs to make this transaction to pay someone

six coins? Yeah?

AUDIENCE: Maybe if you wanted to have an anonymous transaction doing something like multiple

transactions in smaller sizes?

TADGE DRYJA: Sure. Yeah, that's-- you could send-- so, that's actually two slides from now. The next slide

was just, well, what if you had a UTXO that was exactly the right size? Then it's easy. You just

send them the six coins.

If you have the exact right size UTXO in your wallet, great. You just send it over. It's like if you

go to a shop and they're like, OK, that's $10 for lunch. You're like, great, I have a $10 bill. Here

it is. We don't need to deal with pennies and quarters and stuff. It's annoying. So sometimes

this happens. It's great. Generally, it won't. Generally, you will have change and multiple inputs

and outputs and it's kind of annoying.

So coin selection is a tricky problem. For CSE terms it's NP-hard, actually, but there's

heuristics that work OK. If you have a ton of UTXOs and you have to send these payments,

you can actually, in a reasonable amount of time, calculate the optimal way to do it. But there's

some heuristics at work, and the question is what are we optimizing for?

Generally, you want to optimize-- minimize the number of inputs used. The inputs are much

bigger, they're going to be like a hundred something bytes, and the outputs are pretty small,

they're like 20-30 bytes. So if you want to minimize size of your transaction, minimize the

number of inputs, which is easy. You just pick your biggest UTXO and spend that one.

Yes?

AUDIENCE: Isn't it like the knapsack problem, though?

TADGE DRYJA: Yeah, it basically is, yeah. Well, because it's multi-iteration, if you're just trying to optimize your

transaction right now, you just use your biggest UTXO.

So for example, it's sort of the analogy of you're at a checkout counter and someone says,

OK, that's $12.93. If you want to minimize the number of bills you're handing to the cashier,

you just take the 100 out of your wallet. That'll always work. You just say, I take my biggest bill,

hand it to you, OK, I'm minimizing the amount of bills I'm handing you in this one transaction.

However, that could result in a whole bunch of bills coming back, a bunch of weird change.

And then also, long-term that doesn't work. If your strategy is always just hand over the 100,

or you go through your wallet and just hand over the biggest bill you have every time, no

matter what they ask, that's super suboptimal because if they say $12.93, and you have a 20

and 100 and you hand over the 100 like, why did you do that? And then you're going to have

four 20s.

So, it's very similar to that, except now that the change and bills have arbitrary denominations.

There isn't a fixed-- you have 100s, 50s, 20s, 10s, 5s. Now it can be any number.

So if you're just looking at one time, just pick your biggest UTXO, you'll have the smallest

transaction.

But you want to minimize next time, so you ideally can eliminate the change output and get

you a perfect target. It's actually really complicated. There's really cool research on how do we

select coins for long term? Yeah?

AUDIENCE: So why don't you just take the biggest UTXO that's larger-- or, the smallest UTXO that's larger

than your output size?

TADGE DRYJA: Yep, that can work. That's not-- that's a good heuristic. That's a good-- pretty easy to code,

sort your UTXOs, go here, use that one.

It's not really optimal because then-- it's a lot better than taking big ones-- what do I have in

my wallet? So I've actually written an SPV wallet and all this stuff just from scratch, and it's kind

of interesting. You learn a lot about how it works.

I target two inputs instead of one, because then eventually-- if you do that, what will happen is

you're going to be using one input, which is great, and then you're going to run out of big

inputs. And then you're going to always have to use two or three, and you can get a lot of dust.

Dust is like the colloquial term for really small UTXOs, where you've got a bunch of pennies.

So that's one issue.

Another issue is privacy concerns. When you use two UTXOs or have two inputs in the same

transaction, that's linking those transactions, linking those two UTXOs. It's not definitive. You

can interactively create transactions with other people. In practice, that doesn't happen.

You could say, hey, I want to pay Alice five coins, and you want to pay Bob six coins, and let's

put my two UTXOs and your two UTXOs and we'll pay these two people, and we'll put our own

change outputs, and we'll sort of mix this transaction together and we'll all sign it. And you can

do that securely since you only sign when it all looks right to you, and everyone only signs

when it's done.

But the coordination problem is pretty severe. You have to find other people who want to make

transactions at the same time that you do. It's annoying. So, in practice, since you're just using

your wallet, if you see a transaction with multiple inputs, you can you can surmise, OK, those

are the same person or the same company.

And if you want privacy, if you want maximum anonymity what kind of coin selection or

payment strategy would you use?

AUDIENCE: Would you make just a bunch of transactions?

TADGE DRYJA: Yeah. If someone says, hey, pay me six coins, well I have these three inputs, and I'm paying

you two coins here and one coin here, and three coins here. And I paid you six coins but in

three completely separate transactions.

That no one does either because it's annoying. You could. It would be the most anonymous,

but even then, what if they all happened at the same time, and you see they all get in the

same block? And you're like, OK, well they're not linked nearly as closely, but I am seeing that

these three transactions happened temporally similar times. So there's all sorts of things to try

to optimize for.

OK, any other questions about-- yeah?

AUDIENCE: So does this mean that every time people are going to have a smaller and smaller split of a

Bitcoin in their wallets? They're just going to have smaller and smaller amounts because

you're going to-- if you have a $100 bill and then you're paying $20, then you're going to get

four other $20 bills.

TADGE DRYJA: Yeah.

AUDIENCE: Eventually you're just going to have smaller and smaller-- is that a fair implication, or--

TADGE DRYJA: OK, short-term, yes. If you start out with a bunch of coins then start using it, yes. But it does

reach equilibrium in that let's say you've got all these little tiny outputs-- you've got all these $1

bills-- but then you need to buy something that is 20 bucks. You have 20 inputs and one

output. And whoever you're sending to now gets that one big output.

And so, yeah, if you graph that over time, initially everyone was getting-- all their outputs were

50 coins each because that's how you mined them. And now they're getting smaller, but there

is sort of an equilibrium after you've used it for a while. Any other questions about sort of coin

selection, UTXO selection? Yes.

AUDIENCE: According to a news report, I guess if you [INAUDIBLE] transaction, you also have

[INAUDIBLE] transactions.

TADGE DRYJA: Yeah, yeah. So that's costly. That's another reason probably people don't do this. I think the

biggest reason is it's just annoying to code, and you can have failures where like-- here, give

me six coins. OK, I'll give you 3, 2, and 1. Oh, the 3 didn't work, but the 2 and 1 did. Well, now

what do we do? You paid me half of it. It's nice to have all or nothing payments. And also we

have to send different addresses. There's all sorts of things. Also, it will be higher fees. In

practice, it's actually not much higher.

Let's say having three one input, one output transactions versus one three input, three output

transaction-- you don't save too much space. Most of the space is taken by the inputs. And the

overhead for a transaction is only 10 or 20 bytes or something, so it is not a huge difference.

The main difference is that you're never coalescing into larger output sizes, so you're going to

always have to sign since you going to have more inputs overall. This is a really, kind of, cool

problem. There's a lot of computer science-y stuff but a lot of heuristics and how people use it.

Also, the fact that fees are variable over time means you might want different strategies when

fees are low versus when fees are high. So when fees are low now, I should make-- or maybe

I just make a transaction to myself where I condense all my little $2 outputs into one big

$1,000 output so that when, later on, if fees are higher, I want to spend my money, I can do so

more efficiently.

And there is evidence of this with exchanges and stuff where a lot of times fees will be lower

on the weekends because people aren't buying and spending Bitcoin as much, I guess. And

so certain companies would say, OK, over the weekends we're going to sort of condense all

our UTXOs and combine them and then we can make smaller transactions during the week.

So there's all sorts of cool strategies here. It's an interesting topic. I haven't gone super in-

depth, but the guys that chain code work on it. There's a lot of discussion about it, so it's kind

of cool.

OK, I'm a little bit behind. OK, next we'll talk about losing money, and that's another really

important part of detecting the blockchain. It's hard to do, but you have to detect when you've

lost money. And it's tricky because just because you signed the transaction doesn't really

mean your money is gone. You can't just unilaterally say, OK, well, I'm making this. I signed it.

There, my money is gone from my wallet.

Well, not necessarily. Maybe this never gets confirmed. So maybe you still have that money.

So you broadcast it, but you sort of have to wait until it gets into a block, and you also need to

listen for your own UTXOs, even if you haven't made a transaction, and see if they've gotten

spent. And why would that be? Can anyone think of a reason why? I haven't signed anything,

as far as my program is concerned, but I might lose money anyway. Why would that be?

Yeah.

AUDIENCE: Well, one reason is you get hacked.

TADGE DRYJA: Sure, you get hacked. That's the bad reason. A good reason is, well maybe you have the

same wallet on multiple computers. You've got the same keys. So, getting hacked is sort of a

malicious instance of this problem where I thought the wallet was only on my computer, but

actually, someone else has a copy.

But even non-maliciously, I've got a copy on my phone and I've got a copy on my computer.

It's the same addresses, the same keys, the same UTXOs. That's totally doable. And then

when I spend money with my phone and get to my desktop, my desktop needs to sort of

download and see oh, money got-- you know, you lost money. And it's like, oh, yeah, yeah, I

remember spending that. So you can have that over multiple computers.

So if you're designing wallet software, you do definitely need to make sure that even if it's

unexpected from the wallet itself, and it doesn't seem like I generated a transaction, there can

still be a transaction taking your money away.

Wallets without Bitcoin, and that's sort of a cheeky phrase. OK, I don't mean they don't have

any Bitcoins in their wallets, I mean they're not running Bitcoin in the same sense that we've

talked of.

So we talked about running Bitcoin where you download the software, you get the headers,

you verify all the signatures, you build the UTXO set. Can you use Bitcoin without doing this?

What do you guys think? What's a simple way to possibly use Bitcoin without having to do all

these things? So, a really, really simple way? If you don't want to do work, what's the simplest

way to not have to do work? Get someone else to do it, right.

So, for example, my dad has Bitcoin, but he just gives it-- he's like, you deal with it. So I've got

a couple of Bitcoins that's my dad's, and I have to make sure like, no, this is not my money.

Yeah, get someone else to do it, right? So that's what we're going to talk about, the different

ways to get someone else to do this.

And what we called before, running Bitcoin, many now call a "full node." And there's also the

idea of a "light node" or "SPV node," which we'll talk about.

Some people don't really like this distinction, and it's like, well, wait. Full node is running

Bitcoin. These other things, we shouldn't have to call it a full node. We should just call this a

Bitcoin node and these other things are not quite there.

I will prefix there's a lot of argument about terms in this space. So there's some people who

say, SPV doesn't exist. And other people, this isn't SPV. So people argue about the words. It's

not like we have really nice, definitive terms. I'm generally trying to use the most widely used

terms, but there's probably people who will take issue with it, so sorry.

So, SPV is sort of a step down below running a full node in terms of security. It's called

Simplified Payment Verification. It's written up in the white paper on how to do it. And you can

verify all the work without doing too much signature verification or having too much data.

So the basic idea is you're optimizing for not having to download as much and not having to

store as much at the cost of some security, and I'll talk about those costs.

OK, so before we have this list of what you do for a full node, the SPV method is a bit different.

You still do the same part in the beginning. You connect, you get your headers, you verify all

the work. OK, cool.

The next step, you tell another node that you're connected to all of your addresses, all of the

public keys that you've ever generated. You tell it to them.

Then, for each header you go through-- and instead of downloading the whole block and

getting all the transactions and verifying them, you ask the other node, hey, did I get any

money, or did I lose any money in this block because I've told you all my addresses? Oh,

sorry. You also tell them all your UTXOs.

You also tell him, here's all the money I have, here's all the addresses I could possibly receive

money on, did I get or lose any money in this block? And then they will return to you a Merkle

proof of the transactions where they think, yeah, you got some money here, or yeah, you lost

some money here, and you can verify this. Yes?

AUDIENCE: What's the other nodes' incentive to respond to you?

TADGE DRYJA: There is none. You're not paying them. They don't know who you are. There's sort of a meta

incentive in that I run a node that will provide these Merkle proofs because it's like, well, it

helps Bitcoin, and maybe if I have some Bitcoin and I'm helping other people use it, my Bitcoin

will be worth more.

But that's a pretty diffuse sort of thing. And it can be problematic because some of these

things-- I didn't mention that in these slides, but the server side can get a little bit costly in

terms of CPU because you're potentially-- as a server-- the client requests hey, here's this

block. Can you filter it for me, find things that I'm looking for.

So now you have to load that block into memory, look through it. It's not too CPU intensive, but

it can be-- you know, when you have a bunch of them, like 20 or 30 of them connecting to you-

- I've gotten 30%, 40% CPU for doing this kind of thing to serve other users.

Most-- almost all phone wallets-- well, many phone wallets and many desktop wallets are

using this model, and so you'll see-- for example, so here's a full node in this building. I

actually rebooted it recently, so there's not very many connections incoming.

In practice, these two are actual full nodes, I bet. This is a fake node. This is a fake node. This

is-- they're all fake, yeah. Well, sorry-- these are all-- no, that one may be not. Well, you can

look. But a lot of nodes will say they're nodes and they're not, and they're just trying to track

where transactions are coming from and keep track tabs on you and stuff.

And these are SPV nodes, these bitcore, because they don't really ask for-- I don't know what

they're doing. They're not asking for anything. So you can look through all the messages. I

think Ethan will talk about this a bit more Wednesday, but there are a lot of SPV nodes.

There's a lot of stuff out on the network and you have no idea what it's doing, but it's pretty

clearly not running a Bitcoin node.

So, yeah so I'll go through these steps a little bit. Oh, yeah. So the Merkle verification we

talked about last week, where, if there's a block and there's thousands of transactions in it and

this server wants to prove that one of these transactions is yours and is in there, you say, OK,

here's my transaction. They just need to provide you this transaction ID, this hash, and then

you're able to see, OK, yeah, it was in the header. So my transaction is in there, you're not just

making it up.

I didn't talk about the good part. Well, the good part is you don't really need to maintain a

UTXO set and it's pretty small, so it saves space, saves time.

What are the problems? There's a lot, and I definitely admit before writing my own SPV wallet

code, I didn't think there were a lot of problems with it. I thought it was like, oh this is SPV, this

is cool. This is how wallets work. But when writing the code myself, I'm like wait, this is horrible.

What do we do?

OK, so the first thing you do is you connect, you get the headers, you verify them. This is

exactly the same procedure as what a full node does so there's no difference, it works. No

difference there.

The next step, you tell a node all of your addresses. What? There goes all your privacy, right,

because you're just connecting to a computer. You have no idea who they are, who's running

it, and you're telling them hey, here's all of my addresses, and also here's how much money I

have. Here's all my UTXOs.

You can lie. You can add things that are not-- you can also add some addresses that aren't

yours, or add some UTXOs that aren't yours, and you'll get some transactions back that you

can then filter out on your own. So you can you can raise the rate of false positives for that

server.

And so there's these Bloom filters that are in the Bitcoin Core code. They said the idea was

well, you can sort of dial your own false positive rate. I'm not going to go into Bloom filters

work. If you've used those in other classes, cool. But it basically gives some data which allows

people to match things. But they don't in practice have good privacy.

You can create a Bloom filter where they've got 10% false positive rate. And so when the

server says, oh, looks like their transaction, maybe it's not because 10% of the time it's just a

false positive. However, when you have really high false positives, you lose all the efficiency

savings of SPV and it sort of cascades where you've got these false positives and the server

thinks, oh, you got money, but it's a false positive. And they add that "you got money" into the

Bloom filter itself and the Bloom filter can really quickly become saturated, and then they just

start giving you everything.

So in practice, and there's some papers about how the people who put the Bloom filters into

Bitcoin thought, oh this is good for privacy, it's fine, and in practice, it really is not good for

privacy. So you end up basically telling a node all your addresses.

And there's research on how to do this in a better way, and it's one of those kind of things

where some random anonymous person with a, I think, inappropriate swear word email

address posted to the mailing list and said, hey why don't you guys do it this way? And it was

like, oh, yeah, we should have done it that way, oops.

The basic idea is instead of creating a Bloom filter as a client sending it to a server, basically

instead of telling the node all your addresses and asking, what the nodes will do-- the full

nodes-- will create a Bloom filter based on the entire block. And then the client can retrieve

that, match that against their addresses, and see, hey, did this block have anything of interest

to me? And if so, request it-- much better privacy at a pretty small cost in overhead. And so,

just no one thought of it. There's a lot of things in Bitcoin where it's like, no one thought of it,

we did something dumb. And then something better came out and now we're working on it.

OK, so you tell the node all your addresses. That's a problem. For each header, ask if you

gained or lost you UTXOs? So can you think of any problems here? Yeah.

AUDIENCE: Could they lie and not pay some of them?

TADGE DRYJA: Yup. Easy to lie. You just don't tell them. If you're a server, you just omit things, and you can

maybe mitigate that by connecting to a bunch of different nodes but then you lose even more

privacy because you've now shared all your addresses and money with multiple anonymous

nodes.

But it's really easy to lie by omission. Someone says, hey, here's all my addresses, OK, did I

get any money? Yup, yup. And then you see one where they got a bunch of money and just

don't tell them. And they don't know.

This can be annoying in regular wallets in the Lightning Network stuff that I work on that I'll talk

about, hopefully, later. This can actually be very damaging. You can lose money because of

this. But, in general, in Bitcoin, you won't lose money because you're not aware of a

transaction.

So this is also a problem, easy to lie by omission. The Merkle proofs help, but they prove

inclusion, not exclusion. There's no way to construct a proof that-- I'm going to I'm going to

give you proof that I'm not omitting anything. Although, with the idea of the block-based filters

sending, there are ways to construct that, so it's even better in that sense. OK, so these are

some of the disadvantages of SPV. Can anyone think of any other problems with it, or-- yeah?

AUDIENCE: Fee estimation.

TADGE DRYJA: Yeah, OK. So, yeah, you don't know-- since you're not downloading the blocks, you don't really

know how much fees other people are paying. You're not verifying. So even when you get

transactions, you cannot verify any signatures because you don't have UTXO sets, so you just

see that it came from somewhere, but you don't know if the thing it's spending even exists or

has a key or anything, so you can't verify the signature.

You don't know how much money was coming in, so even if you look at the transactions, you

can't tell what fees they're paying. You sort of can if you download the entire block. There's

ways around it, but it's really ugly, so it can be very difficult to estimate fees. So, in practice,

you'd probably ask the same server that you've told all your addresses and all your UTXOs to,

hey, what fee should I use, then they tell you that. The idea is, well, if I ask five people,

hopefully, most of them will be around the same. So there's a bunch of problems with SPV.

OK, so SPV sounds pretty bad, right? I think I'll stick to my full node. But is there anything

worse than SPV? Asking for a friend. Can I go worse? So does anyone know something we

can do that's worse security, worse privacy than SPV and that's also very popular? Yeah.

AUDIENCE: [INAUDIBLE]

TADGE DRYJA: Yeah, that's even worse. But, yeah there's a step in between. So you can take out some of

these steps where you just use an API and you just ask people. You have a website,

blockchain.info or Mycelium Wallet, or bunch of wallets-- BitPay's, Copay, things like that

where you don't verify any headers, you don't look at any Merkle proofs, you just skip right to

the tell the remote node all your addresses and UTXOs and ask how much money you've

gained or lost.

So you've sort of outsourced the entire process. You don't store really anything on your

computer. And you say, well, but you do have your private keys. You say, I made some private

keys, I made some addresses, and then I tell this website, hey, here's all my addresses, how

much money do I have? And the servers responds, yeah, you've got UTXOs, cool. So then

you can build the transaction, sign them, and send them to the server.

So what are some advantages and disadvantages of this? There's probably some obvious

disadvantages, right? Can anyone think of an attack that this does not help you against?

Yeah.

AUDIENCE: You can just make up transactions.

TADGE DRYJA: The server can just say, hey, you've got 1,000 Bitcoins. You're like, awesome, but it's just

completely made up. As the client, you don't verify anything about these transactions. So that's

a pretty big problem.

And the thing is, in practice, one of the issues is that people are generally not as aware of

these types of attacks because mostly people worry about spending their money, and they

don't really-- merchants worry about charge-backs and worry about receiving and verifying

that they've received funds all the time, but most people's experience is they get paid once a

month or twice a month with a paycheck, and the money shows up in their bank or whatever,

and they never really worry about that. They worry about spending their money and getting

defrauded or things like that. So it's not something a lot of people think about all the time is,

did I actually get paid?

So there's easy fraud that you can do with this kind of attack vector where you sell a car on

Craigslist, and someone comes and says, yeah, I paid you the Bitcoins, but they've actually

compromised the server and you haven't gotten paid at all. But you think you have, so you

give over the goods. So, yeah potential problems-- they can say you got paid when you didn't,

they can say you lost money when you didn't.

And if it's in a browser, that's even more fun because they can change the code. The

JavaScript is not pinned to anything, so if someone compromises that server, they can change

the code and potentially get your private keys. So you have, really, very little security. The

blockchain is not really providing anything in this case.

However, this is much more popular than running a full or SPV node, because you know,

blockchain.info, you just sign in, there's a lot of wallets on the phones that work this way as

well. And you do at least have your private keys, hopefully. So you've got that, right? You're

not giving custody in any sense to them but they learn a lot of information.

OK, so not even SPV. Can we do worse? Yeah, so the Coinbase company was an example of

"can we do worse?" Yes, you can. Someone else's coins is worse. The case where my dad

said, hey can you hold on to these coins for me, it's worse. He doesn't run a node, he doesn't

have his private keys, he doesn't really understand Bitcoin that well. He wants to, but he's busy

and he's like, hey, you know this stuff, you deal with it. You know way more about this than I

do. I trust you since, you know, we're dad and son and stuff so not a huge trust problem there,

so I do it for him.

But you know, banks, right? So the idea of a site or an exchange or something like this where

you don't even have your private keys. You just have a website where they run a node and a

wallet and they owe you the money.

It tends to end badly, and even if it doesn't end badly, it misses the point. The whole idea of

Bitcoin was like, hey, you can have your own money. It's kind of cool. It's running on your

computer. It feels like it's missing the point to just hand it over to some bank. And it's not even

a bank.

Most of these sites, a big reason why it tends to end badly is there aren't the same

protections. Banks have to do a lot of work, and there's FDIC, there's all sorts of rules, and

they also build these big structures with really heavy stone pillars, so you're like, yeah, they

can't run off because this bank's not going to move. It's made out of rocks. And the banks in

Bitcoin do not have big stone pillars. IP addresses are really easy to change and move the

computers around.

Another thing, they're running a node, right, these Bitcoin banks that hold all your funds.

Sometimes they don't, so these banks themselves might run SPV nodes or API things. I don't

want to name any names, but there's pretty good evidence that big exchanges might even just

connect to an API and not even run their own node.

Another-- there's a lot of things like this where, when something bad doesn't happen, people

just keep pushing it-- where miners themselves don't verify the blocks because they think, well,

he must have created a valid block and I'm not going to verify it and everything works.

So the other thing is, while it sounds really bad, in practice, there haven't been really many

SPV attacks or API attacks. We know of this, but in practice it's hard to do. If you want to

defraud someone by compromising blockchain.info, you have to compromise blockchain.info.

You don't have to do all the proof of work, because they're not validating it, but it's still hard to

do and it requires a coordinated active attacker with quite a bit of resources.

And so when it doesn't happen, people say, well, SPV is just as good. We don't have any

evidence of people being defrauded, so it's just as good. But that is kind of dangerous

because when everyone starts doing it, you start to lose these protections. Any questions

about the someone else's coins model? There's all sorts of legal issues. There's a very long

list of ways it ends badly. I don't know-- what is the half life of a custodial exchange in Bitcoin?

It's like a year or two, and they drop off.

So why do people do this? And here's a table of trade-offs with these things. It's mainly

convenience, and so that's a real reason to do it. So if you're running a full node, you're going

to have to download at least 170 gigabytes. That's a lot, right? It's going to take a while.

Storage-- you're going to have to store at least 4 gigabytes long term. And that's going up, but

not going up too much. It's actually gone down the last few weeks. That's the UTXO set you

have to keep track of. You don't have to keep track of this 170 gigabytes. It, by default, does

but you can turn on pruning. But that's also super user-unfriendly. You have to edit a

bitcoin.conf file and type "pruning=500" or something, and then save it, and then it'll prune

down to 4 gigs. There's no-- at least, that I'm aware of-- there's no GUI nice menu thing where

you can say, hey, I want to enable pruning. I don't have to store it.

Speed-- on a really nice computer, it will take at least six hours to download all this and verify

it. That's pretty impressive because it used to be more, but that's still six hours. People don't

want to deal with that.

Privacy-- certainly, we can do better. There's a lot of research on how to make privacy and

Bitcoin better but this is what we got.

Security-- this is as good as we've got

So then you go down to SPV. Network-- you only have to download about 50 megs, all those

headers. If you've got a wallet with lots of transactions, you're going to download 100, 200,

300 megs because you're going to have to download all the transactions that pay you or

you're paying out to.

Speed-- I said seconds, I think I want to change it to minutes. It's not that fast. It's a lot faster. I

think seconds is an exaggeration. Well, it's like 60 seconds. Anyway, it's pretty fast. You

download all the headers. That takes the same amount of time, but that can be a minute or

two, and then you're syncing the blocks. It's really quick, they're small.

Privacy is poor. You lose a lot of your privacy in SPV because you're basically telling random

computers on the internet, hey, here's all my money. Hey, here's all my addresses. You're not

completely losing everything, but it's pretty easy for actors to reconstruct your wallet from that.

Security-- medium. I don't know, there haven't been any real attacks on this, but you're not

verifying the rules of Bitcoin. If everyone's running SPV, then a miner can say, hey, I just

generated 1,000 coins out of nowhere, and no one's looking for that transaction. It only pays

me, and no one's going to see that and reject the block. So if everyone runs SPV, you're not

checking up on the miners, which is a very real threat. Miners do crazy stuff and you got to

watch out for them. So, security-- questionable.

API query, where you just ask a website hey, here's all my addresses, how much money do I

have?

Network traffic-- I don't know, less than a megabyte. You have to load the websites and stuff

but it's pretty light.

Storage-- you basically don't have to store anything. I mean, you have to store your private

keys, but those can be password-based and derived on the fly.

Speed-- like a second, right. It's real quick. You're making an HTTP query, you're getting a

response, you're parsing it, it's real quick.

Privacy is poor. It's worse than SPV, but because it's really easy because you just hand them

over all your addresses in the clear.

And security is also quite poor, in that they can say hey, you got money or you lost money,

and you just accept what they say.

Hold my key-- this is network traffic. I don't know, you have to go to a website, I guess. There's

no storage, there's no speed, there's no privacy, there's no security. You're just handing the

entire thing off to someone else.

So what would you guys guess are the popularity of the different models? Most popular to

least popular. Yeah, this is definitely the most popular. Second most, third most, fourth most.

Everyone does this, a few people do this, some people do this, and a couple thousand people

do this.

It's a problem, and this is something that is one of the ongoing problems, not just in Bitcoin.

Ethereum would be a little different, but still, it's going to be a lot of this. Ethereum has a weird

different SPV. There's other models. There's one in the middle for Ethereum that's also quite

popular. It's like SPV with UTXO commitment. Well, no, I guess it would be more here.

Anyway, I'm not going to go into Ethereum.

But it's a problem and there's different ways to attack it. One of the issues is that a lot of

people who program Bitcoin itself really only focus on this, and they say, look, this is not our

problem. We can't solve this.

We're going to try to make this-- the way we're going to try to solve this, is let's try to get the

speed down. If it takes days, people are going to move this way. If it takes hours, maybe a lot

of people will say, hey I was using SPV, but yeah, it's not too bad running this. I'm going to run

this and get the more security. Let's try to keep this number down. Let's try to keep speed

down. Let's try to improve privacy and security of the full node.

That is generally what most of the Bitcoin Core developers focus on, which I don't argue with.

But it does lead to some neglect of SPV, where there's not-- it's been over a year, year and a

half, almost two years where we know how to make SPV better and more secure, but there's

not a lot of enthusiasm and people working on it. And people argue about the security of these

things.

This, there's not much you can do. I mean, there is kind of cryptography research like, hey, is

there some cool way I can send you all my addresses so that you can figure out how much

money I have without you learning all my addresses? That's called private information

retrieval, and there's all sorts of papers on that. In practice, there aren't any that use that.

And this, well, yeah multi-sig. That's more like regulation. Can we have restrictions and rules

on these, essentially, banks to try to make it safer, maybe? These are the two where software

development can definitely help make this a lot easier to use.

So we can encourage people to use it, but most people-- security is hard because most

people, if you don't see a problem, this is a lot easier, and a lot of people think, well, I'm not

good at computers, so-- they are, and it's safer if I give all my money to someone else. In

some cases, it could be true.

But that has systemic effects where now you've got these five computers in the world, and if

you're able to compromise those, they have just billions of dollars worth of Bitcoins on them.

And so that's why black hat hacker kind of people, it's like the best thing to do. It's like, there's

a computer somewhere and it's got a billion dollars of untraceable money that I can just steal.

Like, it's-- what could be better? Yeah, I could get everyone's passwords. That's cool. Or yeah,

I could read people's emails. Whatever. Or, I can just steal a billion dollars. So what do you

think they're going to do? So this leads to huge concentrations of coins in a very small number

of nodes, and people try to attack it.

So this is sort of the landscape we're in now. It's certainly not ideal. There's a lot of technology

that's pretty good that's not being used. There's a lot of technology that's crummy that's being

used a lot and how we make this stronger and faster, how to make this faster, things like that

are really interesting research areas.

Almost done. Wallets are fun, but usability issues. If you want to try testing out wallets you can

try downloading them, playing around with them. They often leave quite a bit to be desired.

The one I work on, Lit, leaves enormous amounts to be desired. It's all in text.

And Ethan should be here Wednesday and good luck with the problem set.

