21M.385 Lecture Notes

Lecture 2
Audio files / Wave Files

Wave files are recordings of audio data, stored as a linear set of samples (known as PCM - pulse

code modulation). The Wave file header describes attributes such as:

e Bitdepth

e Sampling rate

e Number of channels

Wave file data is the actual audio samples, generally uncompressed.

Most audio files are stereo - storing 2 channels of audio (left/right).

e This data is stored as interleaved samples.

e A frame is a multi-channel sample. So, a one second stereo wave file, sampled at 44.1kHz has
44,100 frames, and 88,200 samples.

MP3 files are compressed (usually about 10:1) using a lossy compression scheme. We can use

conversion tools (like Audacity) to recreate PCM data from compressed audio.

Most wave files represent CD-quality audio: 16 bit, 44.1Khz, stereo.

Example: streaming

To play stereo wave files, we have to configure Audio as stereo (last week was mono).
Therefore, NoteGenerator must now provide interleaved audio data.

We can play wave files as a stream or by preloading a buffer.

WaveFileGenerator uses the built-in python module wave to read a wave file’s header data and
stream the samples themselves. Nice!

Some notes:

e wave's interface is in terms of frames, not samples

¢ must convert from 16bit data to floating point data

e pay attention to end of file condition

Note how we deal with the end condition. If we ask wave for N frames of data, but we get back less
than N, we know we have hit the end of the file.

Press ‘p’ to play wave file. Note bug if ‘p’ is pressed twice.

Playing snippets

Playing a wave file from start to end is boring!
Instead, let’s identify snippets of audio and use those to create new kinds of music and
interactions.
Refactor WaveFileGenerator into two classes: WaveFile (knows how to read wave data) and
WaveGenerator (asks WaveFile for the right window of data at the right time).
Create a new class: WaveBuffer. It is similar to WaveFile in that it provides wave audio data. But,
it keeps an in-memory copy of the data instead of streaming that data from disk.
WaveBuffer and WaveFile are both classes that implement a WaveSource interface:
class WaveSource: 7

def get_frames(self, start_frame, end_frame) 7

def get_num_channels(self) 7
This refactoring is a common thing to do when developing software systems. We break up the
functionality of WaveFileGenerator into two pieces: an audio data provider, and an audio
playback location manager. We can now supply an alternative method of serving up audio data
and reuse the same playback system.
Reasons to use audio streaming vs. in-memory audio buffer:

e Streaming: fixed memory usage for unlimited audio size. But assumes just one access
pointer, or else HDD thrashing occurs.
e In-memory: fast access. No HDD constraints. But uses more memory.

Creating Regions using Sonic Visualizer

Get Sonic Visualizer from http://www.sonicvisualiser.org
Open a Wave File
Add a new regions layer (Layer->Add New Region Layer). There should now be 4 layers: global

. . . alu 2 w3 = 4
scroll/zoom control, time grid, waveform, regions: e =

Use up/down arrows or mouse wheel to zoom in/out

Use the arrow tool /% to select a region. You can use shortcut keys 1,2,3,4,5 to quickly pick a
tool. Careful to get beginning and ending just right.

Enable “constrain playback” and/or “loop playback” - ™ & to hear your selection.

Once you like your regions, Edit->Insert Item at Selection. This will create a new region.

Use Layer ->Edit Layer Data to edit regions. Make sure to give each region a unique name (label).
You can save your session. It will make a .sv file.

After you made your regions, File->Export Annotation Layer. Make sure to export as a text file.

Reading the annotation layer with python

Open a file using open(). Use readlines() to grab all the lines.

For each line, you can either use the regular expressions module (re) or, look at the string
functions for splitting strings. See split(). Sonic Visualizer outputs tab-delimited files.
Remember that the data in the regions annotation files is in units of seconds.

Looping

An audio region can be looped if the start/end points are chosen correctly. Loop points can be

e Butt-spliced

e Cross-faded

So far, we've triggered sounds by “fire and forget”. Each sound had a predetermined duration
Looping audio will have infinite duration, so we must allow for a user-determined stop function
(sometimes called release()).

Careful about looping with respect to buffer filling. Do the math correctly to avoid gaps or
popping. There will be a buffer at some point that must be filled from the end AND the beginning.

Changing speed

Create a SpeedModulator - an audio generator that receives audio data and provides audio data.
However, the number of input frames consumed is different from the output frames provided.
For example, if a SpeedModulator consumes 300 samples, but provides 400 samples, the
resultant audio will be slower by the ratio 3:4. See Figure below.

In order to convert X audio samples into Y audio samples, we must resample the data.

There are a few different resampling techniques: nearest neighbor, sample and hold, or
interpolation. Interpolation can be linear or more complex (like cubic). Linear is good for our
needs.

Linear Interpolation

In python, the function np.interp() is useful for interpolation of a time series. Read the numpy
docs to remember how this function works.

Careful about interpolation in stereo. You must split the channels, interpolate, and then re-
interleave.

http:http://www.sonicvisualiser.org

Recording Audio

e We can use pyAudio for recording microphone data into a buffer as well.

e Similar to writing audio: on every update(), ask for number of frames available without blocking.
Then grab the frames. Finally, convert from string to numpy array.

e We can playback the bits of recorded audio by creating another WaveSource object: ArrayWave -
very similar to WaveBuffer.

10 QOriginal

0.5 1

0.0

-1.0

Resampling at T1 = .75 TO

1.0 —

IE ‘ 1 |
I It |

-1.0

10 Playback

0.5 1

0.0 ./l

-1.0

A buffer of 16 samples needs to be filled. The desired modified speed ratio is 3:4.
Use only 12 samples of input to create 16 samples of output.
The resultant audio speed is changed by a factor of 3:4.

MIT OpenCourseWare
https://ocw.mit.edu

21M.385 Interactive Music Systems
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu
https://ocw.mit.edu/terms
http:https://ocw.mit.edu

