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Solution of Problem Set 1 22-101, Fall 2003
Prof. Sow-Hsin Chen

Problem 1 (20Pts)

()
The current can be expressed as I=NZe. N is the rate of protons captured by the Tungsten target;
Zis 1 for proton.
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(b) The force, by using Newton 2™ law, is:
dp
F=—=N0-p)=N
5 (0—p)=Np

where p is the linear momentum of individual protons before smashed into the target.
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F=-Np=-1.25%10" x9.05x10™ = -1.13x107* Newton

The force protons exert to the target is the anti-force of the force exert to the proton by the target.
So they are equal in terms of magnitude. Thus, the magnitude of the force protons exert to the

target is [1.13x 107 Newton .
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(d) #neutrons = N X n(neutrons each proton produced) = 1.25x10" x 20 = 2.5x 10" sec”

Problem 2 (20Pts)

We note that E_ = 0.025¢V << m_c”. So we calculate the velocity of neutron from its kinetic .
energy as follows:
. JzEn :\/2><0.025xl.6><10"9
! 1.66x107"

The flux of neutrons can be obtained as:
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And lem’ of observation volume includes N, =9.111x 10’ neutrons. The number of neutrons

=2.195%10°m/s=2.195x10°cm/s

m

decayed within 1 minute can be calculated as:

1 60

=N, -Nge™ =N, (1—-e “)=9111x(1—e =) =5254

N

decay

Problem 3 (20Pts)

Assume that the nucleus is static before collision and the collision is elastic.
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M, and M, are the masses of the neutron and the nucleus; v_and v/, the velocity of neutron
before and after collision; v, and v, the velocity of nucleus before and after collision. So
v: =0, the maximum kinetic energy the nucleus can obtain from the collision can be computed
from the following two equations:
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where E, is the maximum kinetic energy the nucleus can obtain from the collision and E, is the
kinetic energy of the neutron before collision.
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In compare with the modern value of |[M_ =1.0086650 a.m.u.|, the error is [about 5.63% |.

Problem 4 (20Pts)

- Hydrogen : M, =lamu. E, =

Nitrogen: M =14amu.E =

(a) The thermal efficiency of an ideal Carnot engine is
p oo Loy 100427315 o
T 500 +273.15

So the real thermal efficiency of the system is

n=04xn, =20.7%

Typical fission can be written as ™ U + n—"Rb+'“Cs + 2n. So each fission even will cost
235x1.66x10™ =3.901x107 gram*’U. In order to provide 1000MW thermal power, =y
used up per day can be determined by

1000x10° x 86400
200x10°x1.6x107™"° x20.7%

(b) The number of U nuclei undergoing fission per second can be determined as
1000x10° x1
200x10°x1.6x10™" x20.7%
1000x10° x 86400
7000x4.1868 % 20.7%

%3.901x107 = 5088 gram/ day

=1.51x10% sec®

© %107 =1.42x10* ton/ day

Problem 5 (20Pts)

(a) Activity A = AN, where A = activity, A = decay constant (0.693/half life), and
N = number of atoms present. Also, in terms of units, activity is defined as the number of
disintegrations (also known as transformations) that occur per unit time.
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The initial rate of production (s™) of activated atoms is ( = ] =R . As the population of
0

dt

active atoms increase, they decay at the rate AN_ (s ). Thus the net rate at which they
accumulate can be expressed as

dt

dN — dN act
dt

) ~AN_ =R-AN_, (1)
1]

- - - R —AL
General solution of this differential equation after one transit (t)isN _, = I(xl +x,e7" )(2)

dN R
Differentiating with respect to time gives dtm = £y (— X, A e““‘) (3)
Now substituting Eqgs. (2) and (3) into Eq. (1), we get
dN_, R 5 %
W R (g, hoe)R-AN,, =RR(x, +x6™)
R

I(_ X, A-e™ )= R—R(x, +x,e™),N

=X, =1x,=-1

=0

act I 1,=0

N, = —[%(1 —e™)

The activity A added per cm® of the coolant per transit of the target is given by
A=AN_ =R(—e™)
(b) At very first, the activity is 0. Then after one time through the target, the activity becomes
R(1—e™) . We can do the same as (a). We calculate as above. It is obvious that second time the
coolant goes through the external circuit and the target (to+t;), the activity added is

R(l —e™ )3_;”“““”. And so on...

So that, after m cycles, the activity per cm’ of the coolant leaving the target is

R(l = e—.lt; ) + R(l - e—:\li )e——l(tiﬂn) + R(l . C-M‘ )e—l((i+t“)e—l(ti+ln) e

R (1 _ e-;\.t. )(1 . e—m?\(tﬁln))

—At —(m-DA{1+5,)
+R(l_e i)e - l_e—f\.(li+t°]

(c) The maximum coolant activity at the exit is:

—hy
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