
 

    
 

 
 

     
 

 
      
     
     

10.9 Worked Examples 

10.9.1 Problem Solving Strategies 

When solving problems involving changing momentum in a system, we shall employ our 
general problem solving strategy involving four basic steps: 

1. Understand – get a conceptual grasp of the problem. 
2. Devise a Plan - set up a procedure to obtain the desired solution. 
3. Carry our your plan – solve the problem! 

  

     
 

 
 

    
 
The  first  question you should ask is  whether or not  momentum  is  constant  in some  
system  that  is  changing its  state  after undergoing an interaction. First  you must  identify 
the  objects  that  compose  the  system  and how  they are  changing their state  due  to the  
interaction. As  a  guide, try to determine  which objects  change  their momentum  in the  
course  of interaction. You must  keep track of the  momentum  of these  objects  before  and 
after any interaction. Second, momentum  is  a  vector quantity so the  question of whether 
momentum  is  constant  or not  must  be  answered in each relevant  direction. In order to 
determine  this, there  are  two important  considerations. You should identify any external  
forces  acting on the  system. Remember that  a  non-zero external  force  will  cause  the  
momentum  of the system to change, (Equation (10.4.9)  above),  
 

 d p
 Fext = sys .  (10.9.1) 

    dt 
 
Equation (10.9.1)  is  a  vector equation;  if the  external  force  in some  direction is  zero, then 
the  change  of momentum  in that  direction is  zero. In some  cases, external  forces  may act  
but  the  time  interval  during which the  interaction takes  place  is  so small  that  the  impulse  
is small  in magnitude  compared to the  momentum  and might  be  negligible. Recall  that  
the  average external impulse changes the momentum of the system   
 
 I


=
 


 
 F
ext Δtint = Δpsys .  (10.9.2)
     
 
If the interaction time is small enough, the momentum of the system i        s constant,  Δp


 → 0

 
 . 

If the  momentum  is  not  constant  then you must  apply either Equation (10.9.1)  or 
Equation (10.9.2). If the  momentum  of the  system  is  constant, then you can apply 
Equation (10.7.5),  
 p s = p ys, i sys, f .  (10.9.3) 

    

 
         

       
        

4. Look Back – check your solution and method of solution. 

We shall develop a set of guiding ideas for the first two steps. 

1. Understand – get a conceptual grasp of the problem 

Draw diagrams of all the elements of your system for the two states immediately before 
and after the system changes its state. Choose symbols to identify each mass and velocity 
in the system. Identify a set of positive directions and unit vectors for each state. Choose 
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If there is no net external force in some direction, for example the x -direction, the 
component of momentum is constant in that direction, and you must apply 

p = p (10.9.4)sys, x ,i sys, x , f 

2. Devise a Plan - set up a procedure to obtain the desired solution 

Draw diagrams of all the elements of your system for the two states immediately before 
and after the system changes its state. Choose symbols to identify each mass and velocity 
in the system. Identify a set of positive directions and unit vectors for each state. Choose 
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your symbols  to correspond to the  state  and motion (this  facilitates  an easy interpretation, 
for example  (v ,i )1  represents  the  x x -component  of the  velocity of object  1 in the  initial  

    state  and (v x , f )1  represents  the  x -component  of the  velocity of object  1 in the  final  state). 
  

Decide  whether you are  using components  or magnitudes  for your velocity symbols. 
Since  momentum  is  a  vector quantity, identify the  initial  and final  vector components  of 
the  momentum. We  shall  refer to these  diagrams  as  momentum  flow diagrams. Based on 
your model  you can now  write  expressions  for the  initial  and final  momentum  of your 
system. As  an example  in which two objects  are  moving only in the  x -direction, the  
initial  x -component of the momentum is  
 
 p   

   sys, x ,i = m1(v x ,i )1 + m2(v x ,i )2 +.  (10.9.5) 
 
The final  x -component of the momentum is  
 
 p  s , x , f ) + ys = m1(vx , f 1 m2(vx , ) + .  (10. .6)  

   f 2 9
 
If the  x -component of the momentum is constant then  
  
 p  sys, x ,i = psys, x , f .  (10.9.7) 

  
 
We can now substitute Equations  (10.9.5)  and (10.9.6)  into Equation (10.9.7), yielding  
 
 m1(v x ,i )1 + m    

   2 (v x ,i )2 += m1(v x , f )1 + m2 (v x , f )2 + .  (10.9.8) 
 
Equation (10.9.8)  can now  be  used for any further analysis  required by a  particular 
problem. For example, you may have  enough information to calculate  the  final  velocities  
of the  objects  after the  interaction. If  so then carry out  your plan and check your solution, 
especially dimensions or units and any relevant vector directions.  
  

3, f 

does the larger piece land? 
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Example 10.5 Exploding Projectile 

An instrument-carrying projectile of mass m1 accidentally explodes at the top of its 
trajectory. The horizontal distance between launch point and the explosion is xi . The 
projectile breaks into two pieces that fly apart horizontally. The larger piece, m3 , has 
three times the mass of the smaller piece, m2 . To the surprise of the scientist in charge, 
the smaller piece returns to earth at the launching station. Neglect air resistance and 
effects due to the earth’s curvature. How far away, x3, f , from the original launching point 
does the larger piece land? 
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Figure 10.8 Exploding projectile trajectories  
 
Solution:  We  can solve  this  problem  two different  ways. The  easiest  approach is  utilizes  
the  fact  that  the  external  force  is  the  gravitational  force  and therefore  the  center of mass  
of the  system  follows  a  parabolic  trajectory. From  the  information given in the  problem  
m2 = m1  / 4  and m3 = 3m1  / 4 . Thus  when the  two objects  return to the  ground the  center  
of mass  of the  system  has  traveled a  distance     Rcm = 2xi .  We  now  use  the  definition of 
center of mass  to find where  the  object  with the  greater mass  hits  the  ground. Choose  an 
origin at the starting point. The center of mass of the system  is given by  
 

 m2 r

 + m rR = 2 3 3 

cm . 
m2 + m3 



             

      
     

 
 

   
 

 

  
 

! 
So when the objects hit the ground R cm = 2xi î , the object with the smaller mass returns 

  
to the origin, r2 = 0 , and the position vector of the other object is r! 3 = x3, f î . So using 
the definition of the center of mass, 

(3m1 / 4)x3, f î (3m1 / 4)x3, f î 3
2xi î = = = î .
x3, fm1 / 4 + 3m1 / 4 m1 4 
Therefore 

8 = xi .x3, f 3 
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Note that the  neither the  vertical height above ground nor the gravitational acceleration g  
entered  into our solution.  
 
Alternatively, we  can use  conservation of momentum  and kinematics  to find the  distance  
traveled. Because  the  smaller piece  returns  to the  starting point  after the  collision, the  
velocity of the  smaller piece  immediately after the  explosion is  equal  to the  negative  of 
the  velocity of original  object  immediately before  the  explosion. Because  the  collision is  
instantaneous, the  horizontal  component  of the  momentum  is  constant  during the  
collision. We  can use  this  to determine  the  speed of the  larger piece  after the  collision. 
The  larger piece  takes  the  same  amount  of time  to return to the  ground as  the  projectile  
originally takes  to reach the  top of the  flight. We  can therefore  determine  how  far the  
larger piece traveled horizontally.  
 
 
We  begin by identifying various states in the problem.  
 
Initial state, time     t0 = 0 : the projectile is launched.  
 
State  1 time    t1 : the  projectile  is  at  the  top of its  flight  trajectory immediately before  the  

explosion. The mass is  m1  and the  velocity  of the projectile is  !  ˆ
    v1 = v1i .  

 
 
State  2 time t2 : immediately after the  explosion, the  projectile  has  broken into two 
pieces, one  of mass  m      2 moving backwards (in the negative x -direction) with velocity 
! 

 
! 

    v2 = −v1 .  The  other piece  of mass  m3  is  moving in the  positive  x -direction with  velocity 
! 
    v3 = v ˆ

3i , (Figure 10.8).  

              
   

 
      

 
       
 

      

momentum flow diagram with state 1 as the initial state and state 2 as the final state are 
shown in the upper two diagrams in Figure 10.8. 

The initial momentum at time t1 immediately before the explosion is 

p! sys (t1
!) = m1 v1 . (10.9.9) 

The momentum at time t2 immediately after the explosion is 
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The initial momentum at time t1 immediately before the explosion is 

p! sys (t1
!) = m1 v1 . (10.9.9) 

The momentum at time t2 immediately after the explosion is 
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!psys ! ! 
 ! 
 !(t ) = m v + m v = 
 2 3 3 − m   

 1 v1 +
 2 2 m


 1 v3 (10.9.10)
 1
4

3
4

During  the  duration of the  instantaneous  explosion, impu
gravitational  force  may be  neglected and therefore  the  mo
constant.  In the horizontal direction,  we have that  

lse due to the external 
mentum of the system is 

1 1 1mmm 1
 3
!v !v !v= −
 (10.9.11)
+
 3 .1 14
 4


Equation (10.9.11)  can now  be  solved for the  velocity of the  larger piece  immediately 
after the collision,  

! 5 !  v3 = v1 .  (10.9.12)  
   3 

The larger piece travels  a distance   
5 5  x    

 
3, f = v v xi .  (  

 
3 t1 = 1 t1 = 10.9.13) 

3 3 
 
Therefore the total distance the larger piece traveled from the launching station is  
 

5 8  x
 

f = x   i + xi = xi ,  (10.9.14) 
 3 3 

 
in agreement with our previous approach.  

 
 
Example 10.6 Landing Plane and Sandbag 

Figure 10.9 Plane and sandbag 



 

         
           

       
       

         
 

 

A light plane of mass 1000 kg makes an emergency landing on a short runway. With its 
engine off, it lands on the runway at a speed of 40 m s-1 . A hook on the plane snags a ⋅ 
cable attached to a 120 kg sandbag and drags the sandbag along. If the coefficient of 
friction between the sandbag and the runway is µk = 0.4 , and if the plane’s brakes give 
an additional retarding force of magnitude 1400 N , how far does the plane go before it 
comes to a stop? 

           
 

 
     
  

       

Solution: We shall assume that when the plane snags the sandbag, the collision is 
instantaneous so the momentum in the horizontal direction remains constant, 

p = p (10.9.15)x ,i x ,1 . 

We then know the speed of the plane and the sandbag immediately after the collision. 
After the  collision, there  are  two external  forces  acting on  the  system  of the  plane  and 
sandbag, the  friction between the  sandbag and the  ground and the  braking force  of the  
runway on the  plane. So we  can use  the  Newton’s  Second Law to  determine  the  
acceleration and then one-dimensional  kinematics  to find the  distance  the  plane  traveled 
since we can determine the change in kinetic energy.  
 
The momentum of the plane immediately before the collision is  
 
 p = i m ˆ

pv p,i i  (10.9.16) 
    

 
The momentum of the plane and sandbag immediately after the collision is  
 
 p =  1 (m + m )v î  (10.9.17  

    p s p,1 )
 
Because  the   x - component  of the  momentum  is  constant, we  can  substitute  Eqs. 
(10.9.16)  and (10.9.17)  into Eq. (10.9.15)  yielding  
 
 m p,i p s )v 

  pv = (m + m p,1 .  (10.9.18) 
 
The  speed of the plane and sandbag immediately after the collision is  
 

m v 
 v p p,i

p,1 =  (10.9.19) 
m p + m   s 

 
The  forces  acting on the  system  consisting of the  plane  and the  sandbag are  the  normal  
force on the sandbag,  
 N 

 
= N ˆ

g ,s g ,s j ,  (10.9.20) 

10-6



  
 
 

      
  

 
      

 
 

 

the frictional force between the sandbag and the ground 

 
f = − f î = −µ N î , (10.9.21)k k k g ,s 

the braking force on the plane  
F = −F î , (10.9.22)g , p g , p 

and the gravitational force on the system, 
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 (m + g  m = − m + s )
 ( p m s )gˆ

p j .  (10.9.23)     
   
Newton’s Second Law in the    ̂i -direction becomes  
 
 − F    

  g , p − fk = (mp + m s )ax .  (10.9.24) 
 
If we  just  look at  the  vertical  forces  on the  sandbag alone  then Newton’s  Second Law  in 
the  ĵ-direction becomes  

N − m g =   s 0 .  
 
The  frictional  force on the sandbag is then  
 
 f

 
= −µ N ˆ = k k g ,s i −µ ˆ

k ms gi .  (10.9.25) 
    

 
Newton’s Second Law in the    ̂i -direction becomes  
 

−F   
  g , p − µ  k m s g = (m p + m s )a x .  

 
The   x -component of the acceleration of the plane and the sand bag is  then  
 

− F − g , p µk m sg ax =  (10.9.26) 
m + p m 

  s 

 
We  choose  our origin at  the  location of the  plane  immediately after the  collision, 
x (0) = p 0 . Set    t = 0  immediately after the  collision. The   x -component  of the  velocity of 
  
the  plane  immediately after the  collision is  v   

  x ,0 = vp,1 . Set  t = t  when the  plane  just   f 

comes  to a  stop. Because  the  acceleration is  constant, the  kinematic  equations  for the  
change in velocity is   

v x , f (t f ) − v = a t f .    p,1 x 

 
  

  

 

1 2 1 v2 
p,1 x (t ) − x (0) = v t + a t = − . (10.9.27)p f p p,1 f x f2 2 a x 
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We can solve this equation for t = t f , where vx , f (t f ) = 0 

t f = −v / a t . p,1 x 

Then the position of the plane when it first comes to rest is 

1 2 1 v2 
p,1 x (t ) − x (0) = v t + a t = − . (10.9.27)p f p p,1 f x f2 2 a x 
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  p 

  
1 (m  2 

 x p + m s )vp,1 
p (t f ) = .  (10.9.28) 

2 (F + µ m g)  g , p k s 

 
We  now  use  the  condition from  conservation of the  momentum  law  during the  collision, 
Eq. (10.9.19)  in Eq. (10.9.28)  yielding  
 

m2 2

 x (t ) = pv p,i
p f .  (10.9.29) 

2(m + p m s )(F g , p + µk ms g)  
 
Substituting the given values into Eq. (10.9.28)  yields  
 

(1000 kg)2(40 m ⋅ s-1 )2

xp (t f ) =   2 
-2 = 3.8 ×10 m .  (10.9.30) 

  2(1000 kg + 120 kg)(1400 N + (0.4)(120 kg)(9.8m ⋅ s )) 

     Then using x (0) = 0 and substituting Eq. (10.9.26) into Eq. (10.9.27) yields 
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