
  

          
   

 
                 

  

 
   

  

 
  

 

 
   

  

19.3 Torque and the Time Derivative of Angular Momentum about a Point 
for a Particle 

We will now show that the torque about a point S is equal to the time derivative of the 
angular momentum about S ,  

 dLSτS = . (19.3.1) 
dt 

rS 

Take the time derivative of the angular momentum about S , 

S 

 
Ld 
dt 

=
 
d 
dt ( ×


p) .
 (19.3.2)
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In this equation we are taking the time derivative of a vector product of two vectors. There are 
two important facts that will help us simplify this expression. First, the time derivative of the 
vector product of two vectors satisfies the product rule, 

d S 
rr rS S 

d 
dt dt 

 
LS 

p⎛
 ⎞ ⎛
 ⎞
⎛
 ⎞
 ⎛
 ⎞
d dp p(
 ) =
 (19.3.3)
×

⎠⎟ 
×
 ⎟ +

⎠
×
=
 ⎜

⎝ ⎝⎜
 ⎠⎟ 
.
 

⎝⎜
 ⎝⎜
 ⎠⎟
dt S dt 

Second, the first term on the right hand side vanishes, 

drS     
×p = v × m v = 0 . (19.3.4)

dt 

The rate of angular momentum change about the point S is then 

d 
dt 

 
L pdrS 

S 

From Newton’s Second Law, the force on the particle is equal to the derivative of the linear 
momentum, 

 dp  F = . (19.3.6)
dt 

Therefore the rate of change in time of angular momentum about the point S is 

(19.3.5)
×
=
 .

dt 

 
Ld 
dt 


F


rS 

 

S 

 
Recall that the torque about the point S due to the force F acting on the particle is 

   
τS = rS × F . (19.3.8) 

Combining the expressions in (19.3.7) and (19.3.8), it is readily seen that the torque about the 
point S is equal to the rate of change of angular momentum about the point S , 

 dLSτS = . (19.3.9) 
dt 

19.4 Conservation of Angular Momentum about a Point 

(19.3.7)
×
=
 .
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So far we have introduced two conservation principles, showing that energy is constant for 
closed systems (no change in energy in the surroundings) and linear momentum is constant 
isolated system. The change in mechanical energy of a closed system is 

Wnc = ΔEm = ΔK + ΔU , (closed system) . (19.3.10) 

If the non-conservative work done in the system is zero, then the mechanical energy is 
constant, 

0 = W = ΔK + ΔU , (closed system) . (19.3.11) nc = ΔEmechanical 

The conservation of linear momentum arises from Newton’s Second Law applied to systems, 


F


N d p = i 

d 
dt 
psys (19.3.12)
 ext = ∑ dti=1 

Thus if the external force in any direction is zero, then the component of the momentum of the 
system in that direction is a constant. For example, if there are no external forces in the x -
and y -directions then 


0


F
ext )

d = x dt 
p= (
 (
 )
sys x 

(19.3.13)

0


F
ext )

d = y 

p= (
 (
 )
 .

dt sys y 

We can now use our relation between torque about a point S and the change of the angular 
momentum about S , Eq. (19.3.9), to introduce a new conservation law. Suppose we can find 
a point S such that torque about the point S is zero, 


 

 dLS

 
L

τS 

then the angular momentum about the point S is a constant vector, and so the change in 

Δ 

0 =
 (19.3.14)
=
 ,
dt 

angular momentum is zero,  
L


 
L



0
≡
 −
 (19.3.15)
=
 .
S S , f S ,i 

Thus when the torque about a point S is zero, the final angular momentum about S is equal 
to the initial angular momentum,   

LS , f = LS ,i . (19.3.16) 

Example 19.4 Meteor Flyby of Earth 

A meteor of mass m is approaching Earth as shown in the figure. The radius of Earth is RE . 

The mass of Earth is M E . Assume that the meteor started very far away from Earth with 
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speed vi and at a perpendicular distance h from the axis of symmetry of the orbit. At some 
later time the meteor just grazes Earth (Figure 19.9). You may ignore all other gravitational 
forces except due to Earth. Find the distance h . Hint: What quantities are constant for this 
orbit? 

. 

. 

h 

v i ( ) 

v f ( ) 

. 
v(RE ) 

E (ME ,RE ) 

Figure 19.9 Meteor flyby of earth 

Solution: In this problem both energy and angular momentum about the center of Earth are 
constant (see below for justification). 

The meteor’s mass is so much small than the mass of Earth that we will assume that the 
earth’s motion is not affected by the meteor. We’ll also need to neglect any air resistance 
when the meteor approaches Earth. Choose the center of Earth, (point S ) to calculate the 
torque and angular momentum. The force on the meteor is 

 
FE ,m 

G = − 
GmM E 

r 2 r̂ 

The vector from the center of Earth to the meteor is  rS = rr̂ . The torque about S is zero 
because they two vectors are anti-parallel 


τS 

 
FE ,m 

G = rr̂ × − 
GmM E ×= rS 2 

 
r̂ = 0 

r

Therefore the angular momentum about the center of Earth is a constant. 

The initial angular momentum is 


 
 × mv i 


 = (xi ̂i + hĵ) × mvi ̂i = −hmvik̂LS ,i =
 rS ,i 

When the meteor just grazes Earth, the angular momentum is 


 
 × mv 
 p = RE ̂i × mv p (− ĵ) = −REmv p k̂LS , E =
 rS , E 
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where we have used vp for the speed of the meteor at its nearest approach to Earth. The 
constancy of angular momentum requires that 

mvih = mv p RE 

In order to solve for h , we need to find vp . Because we are neglecting all forces on the 
meteor other than Earth’s gravity, mechanical energy is constant, and 

1 2 1 GmM E2 −mvi = mv p ,
2 2 RE 

where we have taken the meteor to have speed vi at a distance “very far away from Earth” to 
mean that we neglect any gravitational potential energy in the meteor-Earth system, when 
r →∞ , U (r) = −GmM E / r → 0 . From the angular momentum condition, vp = vih / RE and 
therefore the energy condition can be rewritten as 

⎛ h ⎞ 
2

2GM Evi 
2 = vi 

2 − 
⎝⎜ RE ⎠

⎟ RE 

which we solve for the impact parameter h 

h = RE 
2 + 

2GM E RE 

vi 
2 . 


L

 
L

19.5 Angular Impulse and Change in Angular Momentum 


If there is a total applied torque τS about a point S over an interval of time Δt = t f − ti , then 
the torque applies an angular impulse about a point S , given by 

 t f = dt . (19.4.1)JS ∫ τSti 

 
total /Because τS = d LS dt , the angular impulse about S is equal to the change in angular 

momentum about S , 
d

τS
S = Δ 


J



L



L


t f t f∫ti 
∫ti 

dt dt −
 (19.4.2)
=
 =
 =
 S ,i .S S S , fdt 
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This result is the rotational analog to linear impulse, which is equal to the change in 
momentum, 

= Δp
pdt f t f =
 =
 


I
 ∫ti 


F
dt = ∫ti dt 

dt p f −

pi . (19.4.3)
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