
19.6 Angular Momentum of a System of Particles 

We now calculate the angular momentum about the point S associated with a system of N
j th point particles. Label each individual particle by the index j , j = 1,2,, N . Let the 

particle have mass mj and velocity v j . The momentum of an individual particle is then 
 p j = mj v j . Let rS , j be the vector from the point S to the j th particle, and let θ j be the angle 

between the vectors rS , j and p  j (Figure 19.10). 



Figure 19.10 System of particles 

r


The angular momentum LS , j of the j th particle is 

S , j 


L 

S , j = × p j . (19.5.1) 

The angular momentum for the system of particles is the vector sum of the individual angular 
momenta, 

 j=N j=N 

Lsys 
S =∑


∑   L S , j = rS , j × p j . (19.5.2) 

pr
r

∑ ∑ 


j=1 j=1 

The change in the angular momentum of the system of particles about a point S is given by 

d Lsys d j=N  j=N ⎛ d S , j  d j ⎞ S = L S , j = ⎜ × p + S , j × ⎟ . (19.5.3) 
dt dt ⎝ j

j=1 j=1 dt dt ⎠ 

 = dBecause the velocity of the j th particle is vS , j rS , j / dt , the first term in the parentheses 
vanishes (the cross product of a vector with itself is zero because they are parallel to each 
other) 
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d S , j 

dt 

r
×

p j =
 
vS , j × mj 

vS , j = 0 . (19.5.4)
 

 
Substitute Eq. (19.5.4) and Fj = dp  j / dt into Eq. (19.5.3) yielding 

sys j= j=d d
S , j S , j

r∑
r∑

 
L

p jS 
⎛
 ⎞
N N 

F
(
 )
 .
 (19.5.5)
×
 ×
=
 =
⎜
⎝


⎟
⎠
 jdt dtj=1 j=1 

Because 
j= 

j=1 
∑

N j=

j=1 
∑

N
 
τ



τ



τ



(
 )
 =
 intext +Fj (19.5.6)
×
rS , j =
 S , j SS SS 

We have already shown in Chapter 17.4 that when we assume all internal forces are directed 
along the line connecting the two interacting objects then the internal torque about the point 
S is zero, 

 
0 .
 intτSS (19.5.7)
=
 

Eq. (19.5.6) simplifies to 
j= 

j=1 
∑

N 

∑
j=

j=1 

N

(
rS j, ×
 

F
j 


τ
 =
 


τ
)
 =
 ext . (19.5.8)SS , j SS 

Therefore Eq. (19.5.5) becomes  
 d sys 

ext LSτSS = . (19.5.9)
dt 

The external torque about the point S is equal to the time derivative of the angular 
momentum of the system about that point. 

Example 19.5 Angular Momentum of Two Particles undergoing Circular Motion 

Two identical particles of mass m move in a circle of radius R , with angular velocity

ω = ω z k̂ , ω z > 0 , ω about the z -axis in a plane parallel to but a distance h above the x-y 
plane. The particles are located on opposite sides of the circle (Figure 19.11). Find the 
magnitude and the direction of the angular momentum about the point S (the origin). 

k̂= z+ z 

p2 .2 .1 
h R 

S + x 
Figure 19.11 Example 19.5 

p1 
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19.3 

+ xS 

1 

rS ,2 
LS ,2 

R 

h 

. 

Solution: The angular momentum about the origin is the sum of the contributions from each 
object. The calculation of each contribution will be identical to the calculation in Example 

. k̂ 
+ z 

+ xS 

. 
rS ,1 

p1p2 
12 

r̂1 
ˆ 
1 

k̂

LS ,1 

R 

h 

Figure 19.12 Angular momentum of particle 1 about origin 

k̂
 
k̂ + z
 .2
 p2 

2 

r̂2 p1ˆ 

Figure 19.13 Angular momentum of particle 2 about origin 

For particle 1 (Figure 19.12), the angular momentum about the point S is 


 
 
 = (R ̂ + hk̂) × mRω ˆ = mR2ω k̂ − hmRω r̂1 .r1 z θ1 z z LS ,1 ×
=
 rS ,1 p1 

For particle 2, (Figure 19.13), the angular momentum about the point S is 


 
 
 = (R ̂ + hk̂) × mRω ˆ = mR2ω k̂ − hmRω r̂2 .r2 z θ2 z z LS ,2 ×
=
 rS ,2 p2 

Because the particles are located on opposite sides of the circle, r̂1 = −r̂2 . The vector sum only 
points along the z -axis and is equal to 




 
LS = LS ,1 + LS ,2 

ˆ= 2mR2ω k . z (19.5.10)
 

The two angular momentum vectors are shown in Figure 19.14. 
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k̂ 
+ z . 

+ xS 

. p1p2 
12 

LS ,2LS ,1 

LS 

Figure 19.14 Angular momentum about the point S of both particles and their sum 

The moment of inertia of the two particles about the z -axis is given by IS = 2mR2 . Therefore 
 LS = ISω . The important point about this example is that the two objects are symmetrically 

distributed with respect to the z -axis (opposite sides of the circular orbit). Therefore the  
2angular momentum about any point S along the z -axis has the same value LS = 2mr ωk̂ , 

r

which is constant in magnitude and points in the + z -direction. This result generalizes to any 
rigid body in which the mass is distributed symmetrically about the axis of rotation. 

Example 19.6 Angular Momentum of a System of Particles about Different Points 

Consider a system of N particles, and two points A and B (Figure 19.15). The angular 
momentum of the jth particle about the point A is given by 

A,j 

 
L


v (19.5.11)
× mj =
 j .A,j 

Figure 19.15 Vector triangle relating position of object and points A and B 

The angular momentum of the system of particles about the point A is given by the sum 


L


N 
L


N rA,j 
j=1 j=1 

The angular momentum about the point B can be calculated in a similar way and is given by 

v∑
 ∑
 (19.5.12)
× mj =
 =
 A A,j j 
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
L


N 
L


N 

× mj 
v j .
 (19.5.13)
 ∑
 ∑
=
 =
 B B,j B, j 

A,j B, j A,B . 

We can substitute Eq. (19.5.14) into Eq. (19.5.12) yielding 

r

rrr

j=1 j=1 

From Figure 19.15, the vectors 

(19.5.14)
 +
=
 

N N N
L


rB, j + A,B ) × mj B, j × mj A,B × mj 

The first term in Eq. (19.5.15) is the angular momentum about the point B . The vector r A,B is 

r

a constant and so can be pulled out of the sum in the second term, and Eq. (19 5 15) becomes . .

rA,B × 

rr v v v(
∑
 ∑
 ∑
 (19.5.15)
 +
=
 =
 .
A j j j
j=1 j=1 j=1 

∑ 
N

L


L


v (19.5.16)
 B + mj = A j
j=1 

The sum in the second term is the momentum of the system 

 = 
N  . (19.5.17) psys ∑mjv j
j=1 

Therefore the angular momentum about the points A and B are related by 

rA,B ×

Thus if the momentum of the system is zero, the angular momentum is the same about any 
point. 


L



L


p (19.5.18)
 B += A sys 


L
A =
 


L
B , (
psys =
 


0
) . (19.5.19)
 

In particular, the momentum of a system of particles is zero by definition in the center of mass 
 

reference frame because in that reference frame psys = 0 . Hence the angular momentum is the 
same about any point in the center of mass reference frame. 

19.7 Angular Momentum and Torque for Fixed Axis Rotation 

We have shown that, for fixed axis rotation, the component of torque that causes the angular 
velocity to change is the rotational analog of Newton’s Second Law, 
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 extτSS = IS α . (19.5.20) 

We shall now see that this is a special case of the more general result 

 d  ext sysτSS = LS . (19.5.21)
dt 

Consider a rigid body rotating about a fixed axis passing through the point S and take the 
fixed axis of rotation to be the z -axis. Recall that all the points in the rigid body rotate about 


the z -axis with the same angular velocity ω = (dθ / dt)k̂ = ω z k̂ . In a similar fashion, all 


points in the rigid body have the same angular acceleration, α = (d 2θ / dt2 ) k̂ = α z k̂ . Let the 
point S lie somewhere along the z -axis. 

As before, the body is divided into individual elements. We calculate the contribution of each 
element to the angular momentum about the point S , and then sum over all the elements. The 
summation will become an integral for a continuous body. 

Each individual element has a mass Δmj and is moving in a circle of radius rS 
⊥ 
, j about the axis 

of rotation. Let rS , j be the vector from the point S to the element. The momentum of the 

element, p  j , is tangent to this circle (Figure 19.16). 

= zk̂
fixed axis 
of rotation 

+ z 

. 
.mj 

S rS , j 

rS , j. 
rS , j ˆ 

k̂

r̂ 

rigid body 

p j 

Figure 19.16 Geometry of instantaneous rotation. 

The angular momentum of the jth element about the point S is given by r

r
r
r


S , j 
 vector rS , j can be decomposed into parallel and perpendicular components with respect to the 

     ⊥ ⊥ ⊥ rS , j rS , j rS , jS , j S , j S , j rS , j 

 
L


p j . The×
=
 S , j 

axis of rotation (Figure 19.16), where and The+
=
 =
 =
 . 


momentum is given by p  j = Δmj rS 
⊥ 
, jω θ̂ . Then the angular momentum about the point S is z 
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   ⊥ LS , j = rS , j × p j = (rS , jr̂ + rS , jk̂) × (Δmj rS 
⊥ 
, jω θ̂ )z . (19.5.22) 

⊥ ˆ  ⊥ ω= Δmj (rS , j )
2ω z k − ΔmjrS , j rS , j z r̂

In the last expression in Equation (19.5.22), the second term has a direction that is 
perpendicular to the z -axis. Therefore the z -component of the angular momentum about the 

⊥point S , (LS , j )z , arises entirely from the second term, r S , j ×p j . Therefore the z -component 
of the angular momentum about S is 

⊥ )2ω(LS , j )z = Δmj (rS , j z . (19.5.23) 

The z -component of the angular momentum of the system about S is the summation over all 
the elements, 

sys ⊥LS , z = ∑(LS , j )z =∑Δmj (rS , j )
2ω z . (19.5.24) 

j j 

For a continuous mass distribution the summation becomes an integral over the body, 

sys = dm (rdm )
2ω , (19.5.25)LS , z ∫ z 

body 

where rdm is the distance form the fixed z -axis to the infinitesimal element of mass dm . The 
moment of inertia of a rigid body about a fixed z -axis passing through a point S is given by 
an integral over the body 

= )2 . (19.5.26) IS ∫ dm (rdm 
bo dy 

Thus the z -component of the angular momentum about S for a fixed axis that passes through 
S in the z -direction is proportional to the z -component of the angular velocity, ω z , 

sys LS , z = IS ω z . (19.5.27) 

For fixed axis rotation, our result that torque about a point is equal to the time derivative of 
the angular momentum about that point, 

ext d  sys τS = LS , (19.5.28)
dt 

can now be resolved in the z -direction, 

sys dLS , zext d dω z d 2θτ S ,z = = (IS ω z ) = IS = IS = IS α , (19.5.29) zdt dt dt dt2 
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in agreement with our earlier result that the z -component of torque about the point S is equal 
to the product of moment of inertia about IS , and the z -component of the angular 
acceleration, α z . 

Example 19.6 Circular Ring 

A circular ring of radius R , and mass M is rotating about the z -axis in a plane parallel to 
but a distance h above the x-y plane. The z -component of the angular velocity is ω z (Figure 

 
19.17). Find the magnitude and the direction of the angular momentum LS along at any point 
S on the central z -axis. 

ˆ= kz+ zM 

+ xS 

R 

h LS 

. . 
Figure 19.17 Example 19.6 

Solution: Use the same symmetry argument as we did in Example 19.5. The ring can be 
thought of as made up of pairs of point like objects on opposite sides of the ring each of mass 
m (Figure 19.18). 

+ z 

+ xS 

R 

h 

= zk̂
M 

LS 

. . 




 

Figure 19.18 Ring as a sum of pairs of symmetrically distributed particles 

Each pair has a non-zero z-component of the angular momentum taken about any point S 
pair R2ωk̂ = m k̂ . The angular momentum of the pair LS = 2mR2ωalong the z -axis, =
 LS ,1 + LS ,2 z z 

ring about the point S is then the sum over all the pairs 

 
pair R2ωLS = ∑ m z k̂ = MR2ω z k̂ . (19.5.30) 

pairs 
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Recall that the moment of inertia of a ring is given by 

IS = dm (rdm )
2 = MR2 . (19.5.31)∫ 

For the symmetric ring, the angular momentum about S points in the direction of the angular 
velocity and is equal to  

LS = ISω z k̂ . (19.5.32) 

body 
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