
 

      
 

         
                

   

 
    

  

 
             

 

 
    

  

 
  

 
          

             
 

 
 

      
 

  
 

 
      

 
        

         
 

 
 

 
         

      

19.8 Principle of Conservation of Angular Momentum 

Consider a system of particles. We begin with the result that we derived in Section 19.7 that 
the torque about a point S is equal to the time derivative of the angular momentum about that 
point S ,  

 d sys 

 
L

ext LSτSS = . (19.5.33)
dt 

With this assumption, the torque due to the external forces is equal to the rate of change of the 
angular momentum  

sys 

 
L

ext dLSτSS = . (19.5.34)
dt 

Principle of Conservation of Angular Momentum 

If the external torque acting on a system is zero, then the angular momentum of 
the system is constant. So for any change of state of the system the change in 
angular momentum is zero 

 
LΔ 


0
− (
 (19.5.35)
=
sys ≡ (S 

sys ) fS 
sys )iS .
 

Equivalently the angular momentum is constant 

  
sys ) f 

sys )i .(LS = (LS (19.5.36) 

So far no isolated system has been encountered such that the angular momentum is not 
constant so our assumption that internal torques cancel is pairs can be taken as an 
experimental observation. 

Example 19.7 Collision Between Pivoted Rod and Object 

A point-like object of mass m1 moving with constant speed vi strikes a rigid uniform rod of 
length l and mass m2 that is hanging by a frictionless pivot from the ceiling. Immediately 
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after striking the rod, the object continues forward but its speed decreases to vi / 2 (Figure 

19.19). The moment of inertia of the rod about its center of mass is Icm = (1/ 12)m2l
2 . Gravity 

acts with acceleration g downward. (a) For what value of vi will the rod just touch the 
ceiling on its first swing? (b) For what ratio m2 / m1 will the collision be elastic? 



  

 
  

 
      

          
         

        
        

     

 
  

 
            

             
          

    
 

frictionless pivot 

l m2g m2 

m1g m1 
vi vi / 2 

Figure 19.19 Example 19.7 

Solution: We begin by identifying our system, which consists of the object and the uniform 
rod. We identify three states; an initial state i : immediately before the collision, state a : 
immediately after the collision, and state f : the instant the rod touches the ceiling when the 
final angular speed is zero. We would like to know if any of our fundamental quantities: 
momentum, energy, and angular momentum, are constant during these state changes, state i 
to state a , state a to state f . 

. 
A 

. 

m1g 

m2g 

Fpivot ,2 

F1,2F2,1 

.S 

A 

cm 

Figure 19.20 Free-body force diagrams on particle and rod 

We start with the transition from state i to state a . The pivot force holding the rod to the 
ceiling is an external force acting at the pivot point S . There is also the gravitational force 
acting at the center of mass of the rod and on the object. There are also internal forces due to 
the collision of the rod and the object at point A (Figure 19.20). 
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The external force means that momentum is not constant. The point of action of the external 
pivot force is fixed and so does no work. However, we do not know whether or not the 
collision is elastic and so we cannot assume that mechanical energy is constant. Choose the 
pivot point S as the point about which to calculate torque, then the torque diagrams are 
shown in Figure 19.21. 

A 

. 

m1g 

m2g 

Fpivot ,2 

F1,2F2,1 

.S.S 
rS ,cm 

cm rS ,A 

A 

rS ,A 

grr
 
Fr

Figure 19.21 Torque diagrams on particle and rod with torque calculated about pivot point S 

 
F

The torque on the system about the pivot S is then the sum of terms 

rS ,S pivot ,2 S ,A 1,2 S ,A 2,1 S ,cm S , A × m1 

 
Fr

 gsys τS .(19.5.37)
 ×
 +
 ×
 +
 ×
 +
 × m2 +
=
 

 
The external pivot force does not contribute any torque because r S ,S = 0 . The internal forces 

  
between the rod and the object are equal in magnitude and opposite in direction, F1,2 = −F2,1 

(Newton’s Third Law), and so their contributions to the torque add to zero. If the collision is 
 instantaneous then the gravitational force is parallel to and so the two gravitational rS ,cm rS ,A 

  
sys torques are zero. Therefore the torque on the system about the pivot point is zero, τS = 0 . 

Thus the angular momentum about the pivot point is constant, 

  
sys sys LS ,i = LS ,a . (19.5.38) 

.S
ĵ 

.

.

.S 
k̂= a aî 

k̂l cm rS ,A 

state i state arS ,A 

vi / 2viA A
 

Figure 19.22 Angular momentum diagram 
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In order to calculate the angular momentum we draw a diagram showing the momentum of 
the object and the angular speed of the rod in (Figure 19.22). The angular momentum about S 
immediately before the collision is 


 
 
 = l(− ĵ) × m1vi ̂i = lm1vik̂ .sys LS , i × m1 =
 rS ,1 v i 

The angular momentum about S immediately after the collision is 

ω

 
 
 = l(− ĵ) × m1(vi / 2)î + ISω a k̂ = (lm1vi / 2) k̂ + ISω a k̂ .sys LS , a / 2 + IS× m1 =
 rS ,1 v i a 

Therefore the condition that the angular momentum about S is constant during the collision 
becomes 

lm1vik̂ = (lm1vi / 2 + ISω a )k̂ . 

We can solve for the angular speed immediately after the collision 

lm1viω = . a 2IS 

By the parallel axis theorem the moment of inertial of a uniform rod about the pivot point is 

IS = m2(l / 2)2 + Icm = (1/ 4)m2l
2 + (1/ 12)m2l

2 = (1/ 3)m2l
2 . (19.5.39) 

Therefore the angular speed immediately after the collision is 

3m1viω 2 = . (19.5.40) 
2m2l 

.S .S 

A 

a = ak̂

. 

. 
state a 

l / 2
%

U g = 0cm
 

state f 

A
 

Figure 19.23 Energy diagram for transition from state a to state f . 

For the transition from state a to state f , we know that the gravitational force is conservative 
and the pivot force does no work so mechanical energy is constant. 
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mech mech E a = E f 

We draw an energy diagram only for the rod because the kinetic energy for the particle is not 
changing between states a and f , (Figure 19.23), with a choice of zero for the potential 
energy at the center of mass. The mechanical energy of the rod and particle immediately after 
the collision is 

mech 1 1E = ω 2 + / 2)2 . a IS a m1(vi2 2 

Using our results for the moment of inertia IS (Eq. (19.5.39)) and ω 2 (Eq. (19.5.40)), we 
have that 

2 2 2 
mech 1 ⎛ 3m1vi 

⎞ 1 3m1 vi 1E = (1/ 3)m2l
2 + (vi / 2)2 = + m1(vi / 2)2 (19.5.41)a m1 .

2 ⎝⎜ 2m2l ⎠
⎟ 2 8m2 2 

The mechanical energy when the rod just reaches the ceiling when the final angular speed is 
zero is then 

mech 1E f = m2 g(l / 2) + m1(vi / 2)2 .
2 

Then the condition that the mechanical energy is constant becomes 

3m1
2vi 

2 1 1+ m1(vi / 2)2 = m2 g(l / 2) + m1(vi / 2)2 . (19.5.42)
8m2 2 2 

We can now solve Eq. (19.5.42) for the initial speed of the object 

m2 4gl . (19.5.43)vi = 
m1 3 

We now return to the transition from state i to state a . and determine the constraint on the 
mass ratio in order for the collision to be elastic. The mechanical energy before the collision is 

mech 1 2Ei = m1vi . (19.5.44) 
2 

If we impose the condition that the collision is elastic then 

mech mech Ei = Ea . (19.5.45) 

Substituting Eqs. (19.5.41) and (19.5.44) into Eq. (19.5.45) yields 

19-5 



  

 

  
 

 

  
 

 
           

 
 

 
  

  

 
   

 
      

 
             

   
 

 
    

  

 
     

 

 
    

  

 
  

 

 
    

  

 
 

 
            

           
           

           

            

1 2 3m1
2vi 

2 1 m1vi = + m1(vi / 2)2 .
2 8m2 2 

This simplifies to 
3 2 3m1

2vi 
2 

m1vi = 
8 8m2 

Hence we can solve for the mass ratio necessary to ensure that the collision is elastic if the 
final speed of the object is half it’s initial speed 


L

m2 = 1 . (19.5.46) 
m1 


L

Notice that this mass ratio is independent of the initial speed of the object. 


L

19.9 External Angular Impulse and Change in Angular Momentum 

Define the external angular impulse about a point S applied as the integral of 
the external torque about S 



t f ext ≡ ext dtJS τS . (19.5.47)∫ 
ti 

Then the external angular impulse about S is equal to the change in angular momentum 

d sys 
S sys sys 

t f t f
J
ext ≡S ∫ ext dt =τS ∫ dt −
 (19.5.48)
=
 .
S , f S ,idtti ti 

Notice that this is the rotational analog to our statement about impulse and momentum, 

pd sys 

Example 19.8 Angular Impulse on Steel Washer 

A steel washer is mounted on the shaft of a small motor. The moment of inertia of the motor 
and washer is I0 . The washer is set into motion. When it reaches an initial angular speed ω0 , 
at t = 0 , the power to the motor is shut off, and the washer slows down until it reaches an 
angular speed of ω a at time ta . At that instant, a second steel washer with a moment of inertia 

w is dropped on top of the first washer. Assume that the second washer is only in contact 

t f t f
I



F


p pext ≡S ∫ ext dt = ∫ dt −
 (19.5.49)
=
 sys,i . sys, fdtti ti 
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with the first washer. The collision takes place over a time = tb − t . Assume the Δtint a 

frictional torque on the axle is independent of speed, and remains the same when the second 
washer is dropped. The two washers continue to slow down during the time interval 
Δt2 = t f − tb until they stop at time t = t f . (a) What is the angular acceleration while the 

washer and motor are slowing down during the interval Δt1 = ta ? (b) Suppose the collision is 
nearly instantaneous, Δtint = (tb − ta )  0 . What is the angular speed ωb of the two washers 
immediately after the collision is finished (when the washers rotate together)? 

washer 
motor 

= zk̂

Figure 19.24 Example 19.8 

Now suppose the collision is not instantaneous but that the frictional torque is independent of 
the speed of the rotor. (c) What is the angular impulse during the collision? (d) What is the 
angular velocity ωb of the two washers immediately after the collision is finished (when the 
washers rotate together)? (e) What is the angular deceleration α2 after the collision? 

Solution: a) The angular acceleration of the motor and washer from the instant when the 
power is shut off until the second washer was dropped is given by 

ω a −ω0α1 = < 0 . (19.5.50) 
Δt1 

(b) If the collision is nearly instantaneous, then there is no angular impulse and therefore the 
z -component of the angular momentum about the rotation axis of the motor remains constant 

0 = ΔL = (I0 + I )ωb − I0ω . (19.5.51)z = Lf ,z − L0,z w a 

We can solve Eq. (19.5.51) for the angular speed ωb of the two washers immediately after the 
collision is finished 
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I0= ω . (19.5.52) ωb aI0 + I w 

(c) The angular acceleration found in part a) is due to the frictional torque in the motor. 

motor 

f 

washer 

overhead view 

Figure 19.25 Frictional torque in the motor 

Let 

τ f = −τ f k̂ where τ f is the magnitude of the frictional torque (Figure 19.25) then 

−τ f = I0α1 = 
I0 (ω a − ω0 ) 

Δt1 

. (19.5.53) 

During the collision with the second washer, the frictional torque exerts an angular impulse 
(pointing along the z -axis in the figure), 

Jz = −∫
tb τ f dt = −τ f Δtint = I0 (ω a −ω0 ) 

Δtint . (19.5.54)
ta Δt1 

(d) The z -component of the angular momentum about the rotation axis of the motor changes 
during the collision, 

ΔL + I ω . (19.5.55) z = Lf ,z − L0,z = (I0 w )ω b − I0 a 

The change in the z -component of the angular momentum is equal to the z -component of the 
angular impulse 

Jz = ΔLz . (19.5.56) 

Thus, equating the expressions in Equations (19.5.54) and (19.5.55), yields 

⎛ ⎞Δtint (ω −ω0 ) = (I0 + I )ωb − (I0 )ω . (19.5.57) I0 a w a⎝⎜ Δt1 ⎠
⎟ 
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Solve Equation (19.5.57) for the angular velocity immediately after the collision, 

⎛ ⎛ ⎞ ⎞ 
ωb = 

I0 ⎜ (ω a −ω0 ) 
Δtint 

⎠⎟ 
+ ω a ⎟ . (19.5.58)

(I0 + I w ) ⎝ ⎝⎜ Δt1 ⎠

If there were no frictional torque, then the first term in the brackets would vanish, and the 
second term of Eq. (19.5.58) would be the only contribution to the final angular speed. 

(e) The final angular acceleration α2 is given by 

⎛ ⎛ ⎞ ⎞0 −ωb I0 Δtint α2 = = − ⎜ (ω a −ω0 ) 
⎠⎟ 
+ ω a ⎟ . (19.5.59) 

Δt2 (I0 + I w )Δt2 ⎝ ⎝⎜ Δt1 ⎠
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