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Chapter 21 Rigid Body Dynamics: Rotation and Translation 
about a Fixed Axis 

Accordingly, we find Euler and D'Alembert devoting their talent and their 
patience to the establishment of the laws of rotation of the solid bodies. 
Lagrange has incorporated his own analysis of the problem with his 

the subject under the power of a more searching analysis than that of the 

propositions supersede equations. 1 

James Clerk Maxwell 

21.1 Introduction 

We shall analyze the motion of systems of particles and rigid bodies that are undergoing 

by a translation of the center of mass and a rotation about the center of mass. By choosing 
a reference frame moving with the center of mass, we can analyze the rotational motion 

rotation about the center of mass, our rotational equation of motion is similar to one we  ext spin / dt .have already encountered for fixed axis rotation, τ = dL cm cm 

general treatment of mechanics, and since his time M. Poinsôt has brought 

lculus, in which ideas take the place of symbols, and intelligent ca

translational and rotational motion about fixed direction Because the body is a . 
slating, the axis of rotation is no longer fixed in space. We shall describe the motion tran

separately and discover that the torque about the center of mass is equal to the change in 
the angular momentum about the center of mass. For a rigid body undergoing fixed axis 

p

21.2 Translational Equation of Motion 

We shall think about the system of particles as follows. We treat the whole system as a 
single point-like particle of mass mT located at the center of mass moving with the 

 
velocity of the center of mass V cm . The external force acting on the system acts at the 
center of mass and from our earlier result (Eq. 10.4.9) we have that 

d sys 
F


d 
V
ext (mT ) . (21.2.1)
=
 =
 

dt dt cm 

21.3 Translational and Rotational Equations of Motion 

For a system of particles, the torque about a point S can be written as 

1 J. C. Maxwell on Louis Poinsôt (1777-1859) in 'On a Dynamical Top' (1857). In W. D. Niven (ed.), The 
Scientific Papers of James Clerk Maxwell (1890), Vol. 1, 248. 
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N 

ext = ∑ Fi(
 ) . (21.3.1)
×
riSτ
i=1 

where we have assumed that all internal torques cancel in pairs. Let choose the point S  
to be the origin of the reference frame O , then r S ,cm = R cm (Figure 21.1). (You may want 
to recall the main properties of the center of mass reference frame by reviewing Chapter 
15.2.1.) 



S 

cm 

Fi 

rS ,cm 

r cm,i 
rS ,i 

ith particle 

!r 

Figure 21.1 Torque diagram for center of mass reference frame 

!r

icm,

!rS , i S , cm cm,i 
!rWe can now apply to Eq. (21.3.1) yielding +
=
 

!
Fi 

!

in Eq. (21.3.2) corresponds to the external torque about the point S where all the external 
forces act at the center of mass (Figure 21.2). 

!
F!r

!
F!r !r 

!
Fi cm,i cm,i i S ,cm i 

i=1 i=1 i=1 i=1 

The term 

N N N N!
τ
 ∑
 ∑
 ∑
 ∑
ext (
 )
 ((
 ) ×
 )
 (
 )
 (
 ) . (21.3.2)
+
 ×
 +
 ×
=
 =
 =
 S 

!
 !
 
ext τS ,cm Fext (21.3.3)
×
= rS ,cm 

S 

cm 

rS ,cm 

Fext 

S ,cm 
ext 



Figure 21.2 Torque diagram for “point-like” particle located at center of mass 

The term, 

τ 

×

!rS i, 

N 
ext = ∑



(
 Fi ) . (21.3.4)
×
r cm,icm 
i=1 
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is the sum of the torques on the individual particles in the center of mass reference frame. 
If we assume that all internal torques cancel in pairs, then 

N 
ext = ∑


 
τ 

i=1 

We conclude that the external torque about the point S can be decomposed into two 

 
 ext )Fi(
 (21.3.5)
×
r cm,i .
 cm 

pieces,

τ
ext 

S =
 

τ
 +
 


τ
ext 

S ,cm 
ext . (21.3.6)cm 

We showed in Chapter 20.3 that 

S , cm cm,i 
i=1 

r

sys r 

where the first term in Eq. (21 3 7) is the orbital angular momentum of the center of mass . .

 
Lorbital 

r

S , cm 


L

Np v∑(
 ) , (21.3.7)
sys +×
 × mi =
 S cm,i 

about the point S 
psys , (21.3.8)×
=
 S 

and the second term in Eq. (21.3.7) is the spin angular momentum about the center of 
mass (independent of the point S ) 

 
L

r 

 
L

 
L


Lspin 

cm,i 
i=1 

The angular momentum about the point S can therefore be decomposed into two terms 

sys spin 

N v∑
(
 ) . (21.3.9)
× mi =
 S cm,i 

(21.3.10)
=
 .
S 
orbital +S S 



Recall that that we have previously shown that it is always true that 

 
sys ext dLSτS = . (21.3.11)

dt 

Therefore we can therefore substitute Eq. (21.3.6) on the LHS of Eq. (21.3.11) and 
substitute Eq. (21.3.10) on the RHS of Eq. (21.3.11) yielding as 

τ 


 

orbital spin LS LS= + .
dt dt 

d dext τS ,cm 
ext (21.3.12)
+
 cm 
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We shall now show that Eq. (21.3.12) can also be decomposed in two separate 
conditions. We begin by analyzing the first term on the RHS of Eq. (21.3.12). We 
differentiate Eq. (21.3.8) and find that 

S , cm 

r
orbital d S 

dt dt 
We apply the vector identity 

 
L d p(
 sys ) . (21.3.13)×
=
 

d 
dt 

(
 

A
×
 

B
) =
 

d 
 
A
 

dt 

 
B


A


 d 

d

B + 

S ,cm 

r

(21.3.14)
×
 × ,

dt 

to Eq. (21.3.13) yielding 
orbital d S S ,cm 

The first term in Eq. (21.3.21) is zero because 

r
 
L

psys 

dt 
d p (21.3.15)
×
 +
 ×
=
 .


dt dt sys 

d S ,cm 

dt 

r
×

p =
 


V
 


0= 


Vtotal (21.3.16)
× m .
 sys cm cm 

pr
 
L

Therefore the time derivative of the orbital angular momentum about a point S , Eq. 

orbital d S 
d sys 

S ,cm 

(21.3.15), becomes 

(21.3.17)
×
=
 .

dt dt 

r
 
L

In Eq. (21.3.17), the time derivative of the momentum of the system is the external force, 

d p
Fext sys = . (21.3.18)

dt 

The expression in Eq. (21.3.17) then becomes the first of our relations 

orbital d S 
S , cm 


F
ext ext τS ,cm (21.3.19)
×
=
 =
 .


dt 

Thus the time derivative of the orbital angular momentum about the point S is equal to 
the external torque about the point S where all the external forces act at the center of 
mass, (we treat the system as a point-like particle located at the center of mass). 

We now consider the second term on the RHS of Eq. (21.3.12), the time derivative of the 
spin angular momentum about the center of mass. We differentiate Eq. (21.3.9), 

21-4 



  

 
    

  

  
          

  
 

 
    

  

 
  

 

 
    

  

 
        

 

 
    

  

 
    

 

 
    

  

  
  

 

 
    

  

 
    

         

         
    

 

 
    

  

  
 

 
 

N 

∑

d =
 

dt dt 
(
 × mi 

v cm,i ) . (21.3.20)
 
i=1 

spin d S 
cm,i 

We again use the product rule for taking the time derivatives of a vector product (Eq. 
(21.3.14)). Then Eq. (21.3.20) the becomes 

spin d d
S cm,i 

cm,i 
r 

r 
 
L

r 
 
L ⎛
 ⎞
N N ⎛
 ⎞
dv v∑
 ∑
 (mi )
 (21.3.21)
× mi +
 ×
⎜

⎝
⎟
⎠

=
 
⎝⎜
 

. 
⎠⎟cm,i cm,idt dt dti=1 i=1 

The first term in Eq. (21.3.21) is zero because 

d cm,i 

Therefore the time derivative of the spin angular momentum about the center of mass, 

r 
spin d S 

cm,i 

 
L

r⎛
 ⎞
N N 
0


v v v∑
 ∑
= (
 )
 (21.3.22)
× mi × mi =
⎜⎝
 ⎟⎠
 
.
 cm,i cm,i cm,idti=1 i=1 

Eq. (21.3.21), becomes 
N ⎛ ⎞
d v∑
 (mi )
 (21.3.23)
×
=
 
⎝⎜
 

. 
⎠⎟cm,idt dti=1 

The force, acting on an element of mass mi , is 

= v  ) . (21.3.24)F
 

i dt
d (mi cm,i 

The expression in Eq. (21.3.23) then becomes 




F



r 


Fr 

 
L

 
L

spin d S 
cm,i i 

N   
The term, ∑(r × F ) , is the sum of the torques on the individual particles in the center cm,i i
 

i=1
 

of mass reference frame. If we again assume that all internal torques cancel in pairs, 
Eq. (21.3.25) may be expressed as 

spin d S τ τ cm,i 

N 

∑
(
 ) . (21.3.25)
×
=
 
dt i=1 

N N 

∑
 ∑
ext )i 
ext ext (
 (21.3.26)
×
=
 =
 =
 ,
cm,idt cm 

i=1 i=1 

which is the second of our two relations. 
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21.3.1 Summary 

For a system of particles, there are two conditions that always hold (Eqs. (21.3.19) and 
(21.3.26)) when we calculate the torque about a point S ; we treat the system as a point- 

Fext like particle located at the center of mass of the system. All the external forces act at 
the center of mass. We calculate the orbital angular momentum of the center of mass and 
determine its time derivative and then apply 

orbital d S 
S , cm 

 
Lr

 
F
ext τS ,cm 

ext (21.3.27)
×
=
 =
 .

dt 

In addition, we calculate the torque about the center of mass due to all the forces acting 

the angular momentum of the system with respect to the center of mass in the center of 
mass reference frame and then apply 


F

spin 

on the particles in the center of mass reference frame. We calculate the time derivative of 

 
LN d

τ

r icm,∑
ext ext )i(
 cm . (21.3.28)×
=
 =
 

dtcm 
i=1 

21.4 Translation and Rotation of a Rigid Body Undergoing Fixed Axis 
Rotation 

For the special case of rigid body of mass m , we showed that with respect to a reference  
frame in which the center of mass of the rigid body is moving with velocity V cm , all 
elements of the rigid body are rotating about the center of mass with the same angular 

   
velocity ω . For the rigid body of mass m and momentum p = mV , the translational cm cm 

equation of motion is still given by Eq. (21.2.1), which we repeat in the form 

  
Fext = mA cm . (21.4.1) 

For fixed axis rotation, choose the z -axis as the axis of rotation that passes through the 
center of mass of the rigid body. We have already seen in our discussion of angular 
momentum of a rigid body that the angular momentum does not necessary point in the 
same direction as the angular velocity. However we can take the z -component of Eq. 
(21.3.28) 

spin dL 
ext cm,zτ cm,z = . (21.4.2)

dt 

 ˆFor a rigid body rotating about the center of mass with ω = ω k , the z -component of cm cm,z 

angular momentum about the center of mass is 

Lspin = I ω . (21.4.3)cm,z cm cm,z 
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The z -component of the rotational equation of motion about the center of mass is 

dωext cm,zτ = I = I α . (21.4.4)cm,z cm cm cm,zdt 

21.5 Work-Energy Theorem 

For a rigid body, we can also consider the work-energy theorem separately for the 
 

like particle moving with velocity V cm in reference frame O . We can use the same 
technique that we used when treating point particles to show that the work done by the 
external forces is equal to the change in kinetic energy 

) d( cm ) 

translational motion and the rotational motion. Once again treat the rigid body as a point-

 
Vd(m cm 

dt 

 
V

F


R
 


V


r 
f f fext = trans ∫i 

ext ⋅ d ∫i ∫i 
W
 ⋅ d dt⋅
= m=
 

dtcm cm 
(21.5.1)



V
 


V


1
 1 2 1 
cm, f 

f 2 
cm, i∫i 

d( mV mV = ΔK
⋅
 )
 −
= m =
 .
trans 2
 2
 2
cm cm 

For the rotational motion we go to the center of mass reference frame and we determine 
the rotational work done i.e. the integral of the z -component of the torque about the 
center of mass with respect to dθ as we did for fixed axis rotational work. Then 

f  f dω f dθ fext ) cm,z(τ dθ = I dθ = I dω = I dω ω∫ cm z ∫ cm ∫ cm cm,z ∫ cm cm,z cm,zi i i idt dt . (21.5.2)
1 2 1 2= I ω − I ω = ΔKcm cm, f cm cm, i rot 2 2 

In Eq. (21.5.2) we expressed our result in terms of the angular speed ω cm because it 
appears as a square. Therefore we can combine these two separate results, Eqs. (21.5.1) 
and (21.5.2), and determine the work-energy theorem for a rotating and translating rigid 
body that undergoes fixed axis rotation about the center of mass. 

⎛ 1 1 ⎞ ⎛ 1 1 ⎞2 2 2 2W = 
⎝⎜ 

mVcm,f + I cm ω cm,f ⎠⎟ 
−
⎝⎜ 

mVcm,f + I cm ω cm,i ⎠⎟2 2 2 2 (21.5.3) 
= ΔK + ΔK = ΔK .trans rot 

Equations (21.4.1), (21.4.4), and (21.5.3) are principles that we shall employ to analyze 
the motion of a rigid bodies undergoing translation and fixed axis rotation about the 
center of mass. 
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21.6 Worked Examples 

Example 21.1 Angular Impulse 

Two point-like objects are located at the points A and B, of respective masses 
M A = 2 M , and M B = M , as shown in the figure below. The two objects are initially 

oriented along the y-axis and connected by a rod of negligible mass of length D , forming  
Fa rigid body. A force of magnitude F = along the x direction is applied to the object at 

B at t = 0 for a short time interval Δt , (Figure 21.3). Neglect gravity. Give all your 
answers in terms of M and D as needed. What is the magnitude of the angular velocity 
of the system after the collision? 

 

Figure 21.3 Example 21.1 

Solutions: An impulse of magnitude F Δt is applied in the +x direction, and the center 
of mass of the system will move in this direction. The two masses will rotate about the 
center of mass, counterclockwise in the figure. Before the force is applied we can 
calculate the position of the center of mass (Figure 21.4a), 

2 M (D / 2) ĵ+ M (D / 2)(− ĵ)
 
=
 

M ArA + M BrB =
 = (D / 6) ĵ . (21.6.1)
R
 cm M A + M B 3M 

The center of mass is a distance (2 / 3)D from the object at B and is a distance (1/ 3)D 
from the object at A. 
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(a) (b) 

Figure 21.4 (a) Center of mass of system, (b) Angular momentum about point B 

 
Because FΔtî = 3MV cm , the magnitude of the velocity of the center of mass is then 

 

FΔt / 3M and the direction is in the positive î -direction. Because the force is applied at 
the point B, there is no torque about the point B, hence the angular momentum is constant 
about the point B. The initial angular momentum about the point B is zero. The angular 
momentum about the point B (Figure 21.4b) after the impulse is applied is the sum of two 
terms, 

rB, f cm 


 

 ˆ0 DF (2 Δ / 3)(−t= 

 
LB f, 

k) + 


 

 
 
= (2D / 3) ĵ× FΔt î +0 =
 × 3MV + L
 L
=
 cm cm (21.6.2)

L . cm 

The angular momentum about the center of mass is given by 

 
. L = I ω k̂ = (2 M (D / 3)2 + M (2D / 3)2 )ω k̂ = (2 / 3) MD2ω k̂ . (21.6.3)cm cm 

Thus the angular about the point B after the impulse is applied is 

 
0 = (2DFΔt / 3)(− ̂k) + (2 / 3) MD2ω k̂ (21.6.4) 

We can solve this Eq. (21.6.4) for the angular speed 

ω = 
FΔt 
MD 

. (21.6.5) 

Example 21.2 Person on a railroad car moving in a circle 

A person of mass M is standing on a railroad car, which is rounding an unbanked turn of 
radius R at a speed v . His center of mass is at a height of L above the car midway 

21-9 



  

        
  

 

 
 

  
 

      
 

 
 

  
 

          
         

           
        

         

               
         

 
      

        
               

       
            

  
 

 
   

  

between his feet, which are separated by a distance of d . The man is facing the direction 
of motion (Figure 21.5). What is the magnitude of the normal force on each foot? 

Figure 21.5 Example 21.2
 

Solution: We begin by choosing a cylindrical coordinate system and drawing a free-body 

force diagram, shown in Figure 21.6. 

Figure 21.6 Coordinate system for Example 21.2 

We decompose the contact force between the inner foot closer to the center of the circular  
motion and the ground into a tangential component corresponding to static friction f1 and 

 
a perpendicular component, N1 . In a similar fashion we decompose the contact force 
between the outer foot further from the center of the circular motion and the ground into a  
tangential component corresponding to static friction f2 and a perpendicular component, 
 
N2 . We do not assume that the static friction has its maximum magnitude nor do we 

    
assume that f1 = f2 or N1 = N2 . The gravitational force acts at the center of mass. 

We shall use our two dynamical equations of motion, Eq. (21.4.1) for translational 
motion and Eq. (21.4.4) for rotational motion about the center of mass noting that we are 


considering the special case that α cm = 0 because the object is not rotating about the 
center of mass. In order to apply Eq. (21.4.1), we treat the person as a point-like particle 
located at the center of mass and all the external forces act at this point. The radial 
component of Newton’s Second Law (Eq. (21.4.1) is given by 

2vr̂ : − f1 − f2 = −m . (21.6.6)
R 
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The vertical component of Newton’s Second Law is given by 

k̂ : N1 + N2 − mg = 0 . (21.6.7) 

The rotational equation of motion (Eq. (21.4.4) is 

 total τ cm = 0 . (21.6.8) 

We begin our calculation of the torques about the center of mass by noting that the 
gravitational force does not contribute to the torque because it is acting at the center of 
mass. We draw a torque diagram in Figure 21.7a showing the location of the point of 
application of the forces, the point we are computing the torque about (which in this case 

is the center of mass), and the vector from the point we are computing the torque rcm,1 

about to the point of application of the forces.  

(a) (b) 

Figure 21.7 Torque diagram for (a) inner foot, (b) outer foot 



The torque on the inner foot is given by 

τcm,1 



 ⎛ d ⎞ ⎛ d ⎞ˆ ˆr̂ − Lk̂
⎠⎟ 
× (− f1r̂ + N1k) = N1 + Lf1 θ . 
 × (
f1 + N1) =
 −
 (21.6.9)
= rcm,1 ⎝⎜
 ⎝⎜
 ⎠⎟
2
 2
 



We draw a similar torque diagram (Figure 21.7b) for the forces applied to the outer foot. 
The torque on the outer foot is given by 

τcm,2 



 ⎛ d ⎞ ⎛ d ⎞ˆ ˆr̂ − Lk̂
⎠⎟ 
× (− f2r̂ + N2k) = − N2 + Lf2 θ . (21.6.10)
 × (
f2 + N2 ) =
 +
= rcm,2 ⎝⎜
 ⎝⎜
 ⎠⎟
2
 2
 

   
Notice that the forces f1 , N1 , and f2 all contribute torques about the center of mass in the 

 
positive θ̂ -direction while N2 contributes a torque about the center of mass in the 
negative θ̂ -direction. According to Eq. (21.6.8) the sum of these torques about the center 
of mass must be zero. Therefore 
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⎛ d ⎞ ⎛ d ⎞ˆ ˆθ + − θ= + =τcm,1 τcm,2 ⎝⎜ 


ext 

cm N1 + Lf1 N2 + Lf2⎠⎟
 ⎝⎜
 ⎠⎟
2
 2

τ 

Notice that the magnitudes of the two frictional forces appear together as a sum in Eqs. 
(21.6.11) and (21.6.6). We now can solve Eq. (21.6.6) for f1 + f2 and substitute the result 
into Eq. (21.6.11) yielding the condition that 

d v2 

(N1 − N2 ) + Lm = 0 . (21.6.12)
2 R 

We can rewrite this Eq. as 
2Lmv2 

N2 − N1 = . (21.6.13)
Rd 

We also rewrite Eq. (21.6.7) in the form 

N2 + N1 = mg . (21.6.14) 

We now can solve for N2 by adding together Eqs. (21.6.13) and (21.6.14), and then 
divide by two, 



1 ⎛ 2Lmv2 ⎞
N2 = Mg + (21.6.15)

⎠⎟ 
.

2 ⎝⎜ Rd 

We now can solve for N1 by subtracting Eqs. (21.6.13) from (21.6.14), and then divide 
by two, 

1 ⎛ 2Lmv2 ⎞
N1 = mg − (21.6.16)

2 ⎝⎜ Rd ⎠⎟ 
. 

Check the result: we see that the normal force acting on the outer foot is greater in 
magnitude than the normal force acting on the inner foot. We expect this result because 
as we increase the speed v , we find that at a maximum speed v max , the normal force on 

the inner foot goes to zero and we start to rotate in the positive θ̂ -direction, tipping 
outward. We can find this maximum speed by setting N1 = 0 in Eq. (21.6.16) resulting in 

(21.6.11)

⎛ d ⎞ 
⎝⎜ ⎠⎟ 

ˆ(N1 − N2 ) + L( f1 + f2 ) θ = 

 
0.
=
 

2
 

gRd v = . (21.6.17)max 2L 
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Example 21.3 Torque, Rotation and Translation: Yo-Yo 

A Yo-Yo of mass m has an axle of radius b and a spool of radius R . Its moment of 
inertia about the center can be taken to be Icm = (1 / 2)mR2 and the thickness of the string 
can be neglected (Figure 21.8). The Yo-Yo is released from rest. You will need to 
assume that the center of mass of the Yo-Yo descends vertically, and that the string is 
vertical as it unwinds. (a) What is the tension in the cord as the Yo-Yo descends? (b) 
What is the magnitude of the angular acceleration as the yo-yo descends and the 
magnitude of the linear acceleration? (c) Find the magnitude of the angular velocity of 
the Yo-Yo when it reaches the bottom of the string, when a length l of the string has 
unwound. 

Figure 21.8 Example 21.3 Figure 21.9 Torque diagram for Yo-Yo 

Solutions: a) as the Yo-Yo descends it rotates clockwise in Figure 21.9. The torque about 
the center of mass of the Yo-Yo is due to the tension and increases the magnitude of the 
angular velocity. The direction of the torque is into the page in Figure 21.9 (positive z -
direction). Use the right-hand rule to check this, or use the vector product definition of 
torque, 

   
τcm = rcm,T × T . (21.6.18) 

  
About the center of mass, rcm, T = −b î and T = −T ĵ , so the torque is 


τ = r T = (−b ̂i) × (−T ĵ) = bT ˆcm cm,T × 

Apply Newton’s Second Law in the ĵ -direction, 

mg − T 

k . (21.6.19) 

= may . (21.6.20) 

Apply the rotational equation of motion for the Yo-Yo, 
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bT = I α , (21.6.21)cm z 

where α is the z -component of the angular acceleration. The z -component of the z 
angular acceleration and the y -component of the linear acceleration are related by the 
constraint condition 

ay = bα z , (21.6.22) 

where b is the axle radius of the Yo-Yo. Substitute Eq. (21.6.22) into (21.6.20) yielding 

mg − T = mbα . (21.6.23)z 

Now solve Eq. (21.6.21) for α and substitute the result into Eq.(21.6.23),z 

mb2T mg − T = . (21.6.24)
Icm 

Solve Eq. (21.6.24) for the tension T , 

mg mg mg T = = = . (21.6.25)
⎛
 ⎛
⎞
 ⎛
⎞
 ⎞
mb2 mb2 2b2 
1+
 1+
 1+
⎜
⎝


⎜
⎝


⎟
⎠


⎜
⎝


⎟
⎠


⎟
⎠
(1 / 2)mR2 R2Icm 

b) Substitute Eq. (21.6.25) into Eq. (21.6.21) to determine the z -component of the 
angular acceleration, 

bT 2bgα = = . (21.6.26)z I (R2 + 2b2 )cm 

Using the constraint condition Eq. (21.6.22), we determine the y -component of linear 
acceleration 

2b2g gay = bα z = = (21.6.27)
(R2 + 2b2 ) 1+ R2 / 2b2 . 

Note that both quantities a > 0 and α > 0 , so Eqs. (21.6.26) and (21.6.27) are the z z 
magnitudes of the respective quantities. For a typical Yo-Yo, the acceleration is much 
less than that of an object in free fall. 

c) Use conservation of energy to determine the magnitude of the angular velocity of the 
Yo-Yo when it reaches the bottom of the string. As in Figure 21.9, choose the downward 
vertical direction as the positive ĵ -direction and let y = 0 designate the location of the 
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center of mass of the Yo-Yo when the string is completely wound. Choose U ( y = 0) = 0 
for the zero reference potential energy. This choice of direction and reference means that 
the gravitational potential energy will be negative and decreasing while the Yo-Yo 
descends.  For this case, the gravitational potential energy is 

U = −mg y . (21.6.28) 

The Yo-Yo is not yet moving downward or rotating, and the center of mass is located at 
y = 0 so the mechanical energy in the initial state, when the Yo-Yo is completely wound, 

is zero 
Ei = U ( y = 0) = 0 . (21.6.29) 

Denote the linear speed of the Yo-Yo as v f and its angular speed as ω f (at the point 

y = l ). The constraint condition between v f and ω f is given by 

v f = bω f , (21.6.30) 

consistent with Eq. (21.6.22). The kinetic energy is the sum of translational and rotational 
kinetic energy, where we have used I = (1 / 2)mR2 , and so mechanical energy in the cm 

final state, when the Yo-Yo is completely unwound, is 

E f = K f +U f = 
1 mv 2 

f + 
1 I ω 2 

f − mgl cm2 2 (21.6.31) 
= 

1 mb2ω 2 
f + 

1 mR2ω 2 
f − mgl.

2 4 

There are no external forces doing work on the system (neglect air resistance), so 

0 = E f = Ei . (21.6.32) 
Thus 

⎛ ⎞ 21 mb2 + 
1 mR2 = mgl . (21.6.33)

⎝⎜ 2 4 ⎠⎟ 
ω f 

Solving for ω f , 

ω f = 
4gl 

(2b2 + R2 ) 
. (21.6.34)
 

We may also use kinematics to determine the final angular velocity by solving for the 
time interval Δt that it takes for the Yo-Yo to travel a distance l at the constant 
acceleration found in Eq. (21.6.27)), 
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Δt = 2l / ay = 
l(R2 + 2b2 ) 

b2g 
(21.6.35)
 

The final angular velocity of the Yo-Yo is then (using Eq. (21.6.26) for the z -component 
of the angular acceleration), 

4gl
= α Δt = ,	 (21.6.36)ω f z (R2 + 2b2 ) 

in agreement with Eq. (21.6.34). 

Example 21.4 Cylinder Rolling Down Inclined Plane 

A uniform cylinder of outer radius R and mass M with moment of inertia about the 
center of mass, Icm = (1/ 2) M R 2 , starts from rest and rolls without slipping down an 
incline tilted at an angle β from the horizontal. The center of mass of the cylinder has 
dropped a vertical distance h when it reaches the bottom of the incline Figure 21.10. Let 
g denote the gravitational constant. The coefficient of static friction between the cylinder 
and the surface is µs . What is the magnitude of the velocity of the center of mass of the 
cylinder when it reaches the bottom of the incline? 

Figure 21.10 Example 21.4 

Solution: We shall solve this problem three different ways. 

1.	 Apply the torque condition about the center of mass and the force law for the 
center of mass motion. 

2.	 Apply the energy methods. 
3.	 Use torque about a fixed point that lies along the line of contact between the 

cylinder and the surface, 

First Approach: Rotation about center of mass and translation of center of mass 

21-16 



  

         
       

           
   

 
 

  
 
 

          
     

 
     
     
 

          
          

 
   
 

      
   

 
   
 

   
 
     
 

 
  

   

 

We shall apply the torque condition (Eq. (21.4.4)) about the center of mass and the force 
law (Eq. (21.4.1)) for the center of mass motion. We will first find the acceleration and 
hence the speed at the bottom of the incline using kinematics. The forces are shown in 
Figure 21.11. 

Figure 21.11 Torque diagram about center of mass 

Choose x = 0 at the point where the cylinder just starts to roll. Newton’s Second Law, 
applied in the x - and y -directions in turn, yields 

Mg sin β − fs = Ma x , (21.6.37) 
−N + Mg cosβ = 0 . (21.6.38) 

Choose the center of the cylinder to compute the torque about (Figure 21.10). Then, the 
only force exerting a torque about the center of mass is the friction force, therefore the 
rotational equation of motion is 

f R = I α . (21.6.39)s cm z 

Use Icm = (1/ 2) M R 2 and the kinematic constraint for the no-slipping condition 
α z = ax / R in Eq. (21.6.39) to solve for the magnitude of the static friction force yielding 

fs = (1/ 2) Ma x . (21.6.40) 

Substituting Eq. (21.6.40) into Eq. (21.6.37) yields 

Mg sinθ − (1 / 2) Ma x = Ma x , (21.6.41) 

which we can solve for the acceleration 

2 
a = g sin β . (21.6.42)x 3 
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In the time t f it takes to reach the bottom, the displacement of the cylinder is 
x f = h / sin β . The x -component of the velocity v at the bottom is v = a t . Thus x x, f x f 

x f = (1/ 2) a t x f 
2 . After eliminating t f , we have x f = vx, f 

2 / 2 ax , so the x -component of 
the velocity when the cylinder reaches the bottom of the inclined plane is 

v x , f = 2a x x f = 2((2 / 3)g sin β)(h / sin β) = (4 / 3)gh . (21.6.43) 

Note that if we substitute Eq. (21.6.42) into Eq. (21.6.40) the magnitude of the frictional 
force is 

fs = (1 / 3) Mg sin β . (21.6.44) 

In order for the cylinder to roll without slipping 

fs ≤ µs Mg cosβ . (21.6.45) 

Combining Eq. (21.6.44) and Eq. (21.6.45) we have the condition that 

(1 / 3) Mg sin β ≤ µs Mg cosβ (21.6.46) 

Thus in order to roll without slipping, the coefficient of static friction must satisfy 

1 µ ≥ tan β . (21.6.47)s 3 

Second Approach: Energy Methods 

We shall use the fact that the energy of the cylinder-earth system is constant since the 
static friction force does no work. 

Figure 21.12 Energy diagram for cylinder 
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Choose a zero reference point for potential energy at the center of mass when the cylinder 
reaches the bottom of the incline plane (Figure 21.12). Then the initial potential energy is 

Ui = Mgh . (21.6.48) 

For the given moment of inertia, the final kinetic energy is 

1 1
Kf = 

2 
M v x , f 

2 + 
2 

I cm ω z , f 
2 

= 
1 

M v 2 + 
1 (1/ 2) MR2(v / R)2 (21.6.49)x , f x , f2 2 

3 2= M v . x , f4 

Setting the final kinetic energy equal to the initial gravitational potential energy leads to 

3 2Mgh = M v x, f . (21.6.50)
4 

The magnitude of the velocity of the center of mass of the cylinder when it reaches the 
bottom of the incline is 

vx , f = (4 / 3)gh , (21.6.51) 
in agreement with Eq. (21.6.43). 

Third Approach: Torque about a fixed point that lies along the line of contact 
between the cylinder and the surface 

Choose a fixed point P that lies along the line of contact between the cylinder and the 
surface. Then the torque diagram is shown in Figure 21.13. 

Figure 21.13 Torque about a point along the line of contact 
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The gravitational force Mg  = Mg sin β î + Mg cosβ ĵ acts at the center of mass. The 
vector from the point P to the center of mass is given by r = d î − R ĵ , so the torque P,mg P 

due to the gravitational force about the point P is given by 

τP,Mg g = (dP 
 
 î − R ĵ) × ( Mg sinβ î + Mg cosβ ĵ)× M
= rP,Mg (21.6.52)
 

= (dP Mg cosβ + RMg sin β )k̂. 

The normal force acts at the point of contact between the cylinder and the surface and is  
given by N = − N ĵ . The vector from the point P to the point of contact between the 

cylinder and the surface is r = d î . Therefore the torque due to the normal force P, N P 

about the point P is given by 

τ
 
 


î) × (−N ĵ) = −d N k̂ .PN = (d (21.6.53)
×
= rP, N P, N P 

Substituting Eq. (21.6.38) for the normal force into Eq. (21.6.53) yields 


τ = −d Mg cosβk̂ . (21.6.54)P, N P 

Therefore the sum of the torques about the point P is 

τ


= τ + τP P, Mg P, N 


= (dP Mg cosβ + RMg sin β)k̂ − dP Mg cos βk̂ = Rmg sin βk̂ . (21.6.55)
 



The angular momentum about the point P is given by 

LP rP,cm 


= Lcm + k̂ + (dP î − R ĵ) × (Mvx ) î× MVcm = Icmω z . (21.6.56)
 
= (Icmω z + RMvx ) k̂ 

The time derivative of the angular momentum about the point P is then 

LPd
dt 


= (Icmα z + RMax ) k̂ . (21.6.57) 

Therefore the torque law about the point P , becomes 

RMgsin βk̂ = (Icmα z + RMax )k̂ . (21.6.58) 

Using the fact that Icm = (1 / 2)MR2 and α = a / R , the z -component of Eq. (21.6.58)x x 

is then 
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RMg sin β = (1/ 2) MRa + Rma = (3 / 2) MRa . (21.6.59)x x x 

We can now solve Eq. (21.6.59) for the x -component of the acceleration 

ax = (2 / 3) g sin β , (21.6.60) 

in agreement with Eq. (21.6.42). 

Example 21.5 Bowling Ball 

A bowling ball of mass m and radius R is initially thrown down an alley with an initial 
speed vi , and it slides without rolling but due to friction it begins to roll (Figure 21.14). 

The moment of inertia of the ball about its center of mass is I cm = (2 5)mR2 . Using 
conservation of angular momentum about a point (you need to find that point), find the 
speed v f and the angular speed ω f of the bowling ball when it just starts to roll without 
slipping? 

Figure 21.14 Example 21.5 

Solution: We begin introducing coordinates for the angular and linear motion. Choose 
an angular coordinate θ increasing in the clockwise direction. Choose the positive k̂
unit vector pointing into the page in Figure 21.15. 

Figure 21.15 Coordinate system for ball 

 ˆThen the angular velocity vector is ω = ω z k = dθ / dt k̂ , and the angular acceleration 


vector is α = α z k̂ = d 2θ / dt2 k̂ . Choose the positive î unit vector pointing to the right in 

Figure 21.15. Then the velocity of the center of mass is given by v  = v î = dx / dt î ,cm cm,x cm 
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and the acceleration of the center of mass is given by a = a î = d 2 x / dt2 î . The cm cm,x cm 

free-body force diagram is shown in Figure 21.16. 

Figure 21.16 Free-body force diagram for ball 

 
At t = 0 , when the ball is released, v = v î and ω0 = 0 , so the ball is skidding and cm,0 0 

hence the frictional force on the ball due to the sliding of the ball on the surface is kinetic 

r

 


f

friction, hence acts in the negative î -direction. Because there is kinetic friction and non-
conservative work, mechanical energy is not constant. The rotational equation of motion 
  



is τS = dLS / dt . In order for angular momentum about some point to remain constant 
throughout the motion, the torque about that point must also be zero throughout the 
motion. As the ball moves down the alley, the contact point will move, but the frictional 
force will always be directed along the line of contact between the bowling bowl and the 
surface. Choose any fixed point S along the line of contact then 

τS , fk S , fk k 


0
 (21.6.61)
×
=
 =
 

rS f, k 


 



fk 

hence the torque due to gravity about S is 
τS ,mg 

because and 

 

are anti-parallel. The gravitation force acts at the center of mass 

g = dmg k̂ , (21.6.62)
× m= rS ,mg 



where d is the distance from S to the contact point between the ball and the ground. The 
torque due to the normal force about S is 

τS ,N 

 g = −dNk̂ , (21.6.63)
× m= rS ,N 



with the same moment arm d . Because the ball is not accelerating in the ĵ -direction, 
from Newton’s Second Law, we note that mg − N = 0 . Therefore 

τS ,N τS ,mg 


 
= d(mg − N )k̂ =+
 0 . 
 (21.6.64)
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There is no torque about any fixed point S along the line of contact between the bowling 
bowl and the surface; therefore the angular momentum about that point S is constant, 

  
LS ,i = LS , f . (21.6.65) 

Choose one fixed point S along the line of contact (Figure 21.17). 

(a) (b) 

v 

Figure 21.17 Angular momentum about S : (a) initial, (b) final 

r

The initial angular momentum about S is only due to the translation of the center of 

× mS ,cm,i 

mass (Figure 21.17a),  
L
 = m Rv cm,ik̂ . (21.6.66)=
 S ,i cm,i 

In Figure 21.17b, the ball is rolling without slipping. The final angular momentum about 
S has both a translational and rotational contribution 


 
 
 
cm ω f cm, f cm 

ˆ ˆk + I ω k .LS , f + I
 = m Rv (21.6.67)
× mv=
 rS ,cm, f cm, f z , f 

When the ball is rolling without slipping, v cm, f 

Therefore the final angular momentum about S is 
= Rω z , f and also I cm = (2 / 5)m R2 . 

 
LS , f = (m R + (2 / 5)m R)v cm, f k̂ = (7 / 5)m Rv cm, f k̂ . (21.6.68) 

Equating the z -components in Eqs. (21.6.66) and (21.6.68) yields 

which we can solve for 
m Rv cm,i = (7 / 5)m Rv cm, f , 

v cm, f = (5 / 7)v cm,i . 

(21.6.69) 

(21.6.70) 

The final angular velocity vector is 
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 v 5vcm, f cm,iω = ω z , f k̂ = k̂ = k̂ . (21.6.71)
R 7R 

We could also solve this problem by analyzing the translational motion and the rotational 
motion about the center of mass. Gravity exerts no torque about the center of mass, and 
the normal component of the contact force has a zero moment arm; the only force that 
exerts a torque is the frictional force, with a moment arm of R (the force vector and the 
radius vector are perpendicular). The frictional force should be in the negative x -
direction. From the right-hand rule, the direction of the torque is into the page, and hence 
in the positive z -direction. Equating the z -component of the torque to the rate of change 
of angular momentum about the center of mass yields 

τ = R fk = I α , (21.6.72)cm cm z 

where fk is the magnitude of the kinetic frictional force and α z is the z -component of 
the angular acceleration of the bowling ball. Note that Eq. (21.6.72) results in a positive 
z -component of the angular acceleration, which is consistent with the ball tending to 
rotate as indicated Figure 21.15. The frictional force is also the only force in the 
horizontal direction, and will cause an acceleration of the center of mass, 

acm,x = − fk / m . (21.6.73) 

Note that the x -component of the acceleration will be negative, as expected. Now we 
need to consider the kinematics. The bowling ball will increase its z -component of the 
angular velocity as given in Eq. (21.6.72) and decrease its x -component of the velocity 
as given in Eq. (21.6.73), 

Rfkω z (t) = α z t = t
I cm (21.6.74)
fkv (t) = v − t. cm,x cm,i m 

As soon as the ball stops slipping, the kinetic friction no longer acts, static friction is 
zero, and the ball moves with constant angular and linear velocity. Denote the time when 
this happens as t f . At this time the rolling without slipping condition, 

ω (t f ) = v (t f ) / R , holds and the relations in Eq. (21.6.74) become z cm,x 

fkR2 = vt f cm,x , fI cm (21.6.75)
fkv − = v cm,x ,i t f cm,x , f .m 
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We can now solve the first equation in Eq. (21.6.75) for t f and find that 

I cm t f = v . (21.6.76)cm,x , fR2fk 

We now substitute Eq. (21.6.76) into the second equation in Eq. (21.6.75) and find that 

fk I cm v = v − v cm,x , f cm,x ,i cm,x , fm R2fk (21.6.77)
I 

v = v − cm v cm,x , f cm,x ,i cm,x , f .m R2 

The second equation in (21.6.77) is easily solved for 

v0 5 
v = = v (21.6.78)cm,x , f cm,x ,i ,1+ I cm / mR2 7 

agreeing with Eq. (21.6.70) where we have used I cm = (2 / 5)m R2 for a uniform sphere. 

Example 21.6 Rotation and Translation Object and Stick Collision 

A long narrow uniform stick of length l and mass m lies motionless on ice (assume the 
ice provides a frictionless surface). The center of mass of the stick is the same as the 
geometric center (at the midpoint of the stick). The moment of inertia of the stick about 
its center of mass is I cm . A puck (with putty on one side) has the same mass m as the 

stick. The puck slides without spinning on the ice with a velocity of v i toward the stick, 
hits one end of the stick, and attaches to it (Figure 21.18). You may assume that the 
radius of the puck is much less than the length of the stick so that the moment of inertia 
of the puck about its center of mass is negligible compared to I cm . (a) How far from the 
midpoint of the stick is the center of mass of the stick-puck combination after the 

collision? (b) What is the linear velocity v of the stick plus puck after the collision? cm, f 

(c) Is mechanical energy conserved during the collision? Explain your reasoning. (d)


What is the angular velocity ω of the stick plus puck after the collision? (e) How far cm, f 

does the stick's center of mass move during one rotation of the stick? 
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Figure 21.18 Example 21.6 

Solution: In this problem we will calculate the center of mass of the puck-stick system 
after the collision. There are no external forces or torques acting on this system so the 
momentum of the center of mass is constant before and after the collision and the angular 
momentum about the center of mass of the puck-stick system is constant before and after 
the collision. We shall use these relations to compute the final angular velocity of the 
puck-stick about the center of mass. 

Figure 21.19 Center of mass of the system 

a) With respect to the center of the stick, the center of mass of the stick-puck combination 
is 

mstickdstick + mpuck dpuck m(l / 2) ld cm = = = . (21.6.79)
m + m 4mstick + mpuck 

where we are neglecting the radius of the puck (Figure 21.19). 

b) During the collision, the only net forces on the system (the stick-puck combination) 
are the internal forces between the stick and the puck (transmitted through the putty).  
Hence, the linear momentum is constant. Initially only the puck had linear momentum 
  pi = mv i = mvi ̂i . After the collision, the center of mass of the system is moving with 

velocity v  = v î . Equating initial and final linear momenta, cm, f cm, f 
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vimvi = (2m)v ⇒ v = . (21.6.80)cm, f cm, f 2 

The direction of the velocity is the same as the initial direction of the puck’s velocity. 

c) The forces that deform the putty do negative work (the putty is compressed 
somewhat), and so mechanical energy is not conserved; the collision is totally inelastic. 

d) Choose the center of mass of the stick-puck combination, as found in part a), as the 
point S about which to find angular momentum. This choice means that after the 
collision there is no angular momentum due to the translation of the center of mass.  
Before the collision, the angular momentum was entirely due to the motion of the puck, 


 
 
 = (l / 4)(mvi )k̂ , (21.6.81)
LS ,i ×
=
 rpuck pi 

ˆwhere k is directed out of the page in Figure 21.19. After the collision, the angular 
momentum is  

LS , f = I cm, f ω cm, f k̂ , (21.6.82) 

where I is the moment of inertia about the center of mass of the stick-puck cm, f 

combination. This moment of inertia of the stick about the new center of mass is found 
from the parallel axis theorem and the moment of inertia of the puck, which is m(l / 4)2 . 
Therefore 

I cm, f = Icm, stick + Icm, puck = (I cm + m(l / 4)2 ) + m(l / 4)2 = I cm + 
ml2 

. (21.6.83)
8 
  

Inserting this expression into Eq. (21.6.82), equating the expressions for LS , i and LS , f 

and solving for ω yields cm, f 

m(l / 4) ω = vi . (21.6.84)cm, f I cm + ml2 / 8 

If the stick is uniform, I cm = ml2 / 12 and Eq. (21.6.84) reduces to 

6 viω = . (21.6.85)cm, f 5 l 

It may be tempting to try to calculate angular momentum about the contact point C , 
where the putty hits the stick. If this is done, there is no initial angular momentum, and 
after the collision the angular momentum will be the sum of two parts, the angular 
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momentum of the center of mass of the stick and the angular moment about the center of 
the stick, 

ω
 

L
 =
 C , f 
r ×


p + I
 cm cm cm, f . (21.6.86)
cm 

There are two crucial things to note: First, the speed of the center of mass is not the 
speed found in part b); the rotation must be included, so that v = vi / 2 −ω (l / 4) . cm cm, f 

 
Second, the direction of r ×p with respect to the contact point C is, from the right-cm cm 


hand rule, into the page, or the −k̂ -direction, opposite the direction of ω cm, f . This is to 

be expected, as the sum in Eq. (21.6.86) must be zero. Adding the k̂ -components (the 
only components) in Eq. (21.6.86), 

−(l / 2)m(vi / 2 −ω (l / 4)) + I ω = 0 . (21.6.87)cm, f cm cm, f 

Solving Eq. (21.6.87) for ω yields Eq. (21.6.84). cm, f 

This alternative derivation should serve two purposes. One is that it doesn’t matter which 
point we use to find angular momentum. The second is that use of foresight, in this case 
choosing the center of mass of the system so that the final velocity does not contribute to 
the angular momentum, can prevent extra calculation. It’s often a matter of trial and 
error (“learning by misadventure”) to find the “best” way to solve a problem. 

e) The time of one rotation will be the same for all observers, independent of choice of 
origin. This fact is crucial in solving problems, in that the angular velocity will be the 
same (this was used in the alternate derivation for part d) above). The time for one 
rotation is the period T = 2π / ω f and the distance the center of mass moves is 

v cm x = v T = 2π cm cm ω cm, f 

vi / 2 
= 2π (21.6.88)

⎛ m(l / 4) ⎞ 

⎝⎜ I cm + ml2 / 8 ⎠⎟ 
vi 

I cm + ml2 / 8 
= 2π . 

m(l / 2) 

Using I cm = ml2 / 12 for a uniform stick gives 

5 
x = π l . (21.6.89)cm 6 
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