
      
 

           

     
 
   

6.4 Period and Frequency for Uniform Circular Motion 

If the object is constrained to move in a circle and the total tangential force acting on the 
total object is zero, Fθ = 0 , then (Newton’s Second Law), the tangential acceleration is zero, 

aθ = 0 . (6.4.1) 

  

 
 This  means  that  the  magnitude  of the  velocity (the  speed) remains  constant. This  motion  
is  known as  uniform  circular  motion.  The  acceleration is  then given by only the  
acceleration radial component vector  
 
     a


r (t) = ω 2 −r   (t) r̂(t) uniform circular motion .  (6.4.2)  

 
Because  the  speed v = r ω  is constant, the  amount  of time  that  the  object  takes  to  
complete  one  circular  orbit  of  radius  r  is also  constant.  This time  interval,  T ,  is called  
the  period.  In one  period the  object  travels  a  distance  s = vT  equal  to the  circumference, 
  s = 2πr ; thus   
   s = 2πr = vT .  (6.4.3)  
 
The period T  is then given by  

2πr 2πr 2π T = = =  .  (6.4.4) 
  v rω ω 

 
The  frequency  f  is defined to be the reciprocal of the period,  
 

1 ω f = = .  (6.4.5) 
  T 2π 

 
The  SI unit  of frequency is  the  inverse  second, which is  defined as  the  hertz, ⎡s−1⎤ ≡ [Hz] . ⎣  ⎦   

 
The  magnitude  of the  radial  component  of the  acceleration can be  expressed in several  
equivalent  forms  since  both the  magnitudes  of the  velocity and angular velocity are  
related by  v = rω . Thus  we  have  several  alternative  forms  for the  magnitude  of the  
centripetal acceleration.  The first is    that in  Equation (6.5.3).  The second  is  in terms  of the  
radius and the angular velocity,  
 a   

  r = rω 2 . (6.4.6) 
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The third form expresses the magnitude of the centripetal acceleration in terms of the 
speed and radius, 

2va = . (6.4.7)r r 

Recall that the magnitude of the angular velocity is related to the frequency by 
ω = 2π f , so we have a fourth alternate expression for the magnitude of the centripetal 
acceleration in terms of the radius and frequency, 

a = 4π 2r f 2 . (6.4.8)r 
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A fifth form commonly encountered uses the fact that the frequency and period 
are related by f = 1/ T = ω / 2π . Thus we have the fourth expression for the centripetal 
acceleration in terms of radius and period, 

4π 2r a = . (6.4.9)r T 2 

Other forms, such as 4π 2r 2 f / T or 2πrω f , while valid, are uncommon. 

Often we decide which expression to use based on information that describes the 
orbit. A convenient measure might be the orbit’s radius. We may also independently 
know the period, or the frequency, or the angular velocity, or the speed. If we know one, 
we can calculate the other three but it is important to understand the meaning of each 
quantity. 

6.4.1 Geometric Interpretation for Radial Acceleration for Uniform Circular 
Motion 

An object traveling in a circular orbit is always accelerating towards the center. Any 
radial inward acceleration is called centripetal acceleration. Recall that the direction of 
the velocity is always tangent to the circle. Therefore the direction of the velocity is 
constantly changing because the object is moving in a circle, as can be seen in Figure 6.4. 
Because the velocity changes direction, the object has a nonzero acceleration. 

Figure 6.5 Change in velocity vector. 
Figure 6.4 Direction of the velocity for 

circular motion. 
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The calculation of the magnitude and direction of the acceleration is very similar to the 
calculation for the magnitude and direction of the velocity for circular motion, but the change in velocity vector, Δv , is more complicated to visualize. The change in velocity   Δv = v(t + Δt) − v( ) t is depicted in Figure 6.5. The velocity vectors have been given a 

common point for the tails, so that the change in velocity, Δv , can be visualized. The 
length Δv  of the vertical vector can be calculated in exactly the same way as the 

displacement Δr  . The magnitude of the change in velocity is 

Δv  = 2vsin( Δθ / 2) . (6.5.1) 

We can use the small angle approximation sin (Δθ / 2 )≅ Δ θ / 2 to approximate the 
magnitude of the change of velocity, 

Δv  ≅ v Δθ . (6.5.2) 

The magnitude of the radial acceleration is given by 

Δ v v Δθ Δθ dθ a = lim = lim = v lim = v = v ω . (6.5.3)r Δt→0 Δt Δt→0 Δt Δt→0 Δt dt 

The direction of the radial acceleration is determined by the same method as the direction  of the velocity; in the limit Δθ → 0 , Δv ⊥ v , and so the direction of the acceleration 
 radial component vector a r (t) at time t is perpendicular to position vector v( ) t and 

directed inward, in the −r̂ -direction. 
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