
    
 

          
         

        
 

 
         

        
  

 
          

      
          

        
   

                
   

 
          

       
           

 
 
         

          
 

 
 

 
         

         
       

   

8.1 Force Laws 

There are forces that don't change appreciably from one instant to another, which we 
refer to as constant in time, and forces that don't change appreciably from one point to 
another, which we refer to as constant in space. The gravitational force on an object near 
the surface of the earth is an example of a force that is constant in space. 

There are forces that depend on the configuration of a system. When a mass is 
attached to one end of a spring, the spring force acting on the object increases in strength 
whether the spring is extended or compressed. 

There are forces that spread out in space such that their influence becomes less 
with distance. Common examples are the gravitational and electrical forces. The 
gravitational force between two objects falls off as the inverse square of the distance 
separating the objects provided the objects are of a small dimension compared to the 
distance between them. More complicated arrangements of attracting and repelling 
interactions give rise to forces that fall off with other powers of r : constant, 1/ r , 1 / r 2 , 
1 / r3 , …,. 

A force may remain constant in magnitude but change direction; for example the 
gravitational force acting on a planet undergoing circular motion about a star is directed 
towards the center of the circle. This type of attractive central force is called a centripetal 
force. 

A force law describes the relationship between the force and some measurable 
property of the objects involved. We shall see that some interactions are describable by 
force laws and other interactions cannot be so simply described. 

8.1.1 Hooke’s Law 

In order to stretch or compress a spring from its equilibrium length, a force must be 
exerted on the spring. Consider an object of mass m that is lying on a horizontal surface. 
Attach one end of a spring to the object and fix the other end of the spring to a wall. Let 
l0 denote the equilibrium length of the spring (neither stretched or compressed). Assume 
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that the contact surface is smooth and hence frictionless in order to consider only the 
effect of the spring force. If the object is pulled to stretch the spring or pushed to 
compress the spring, then by Newton’s Third Law the force of the spring on the object is 
equal and opposite to the force that the object exerts on the spring. We shall refer to the 
force of the spring on the object as the spring force and experimentally determine a 
relationship between that force and the amount of stretch or compress of the spring. 

Choose a coordinate system with the origin located at the point of contact of the spring 
and the object when the spring-object system is in the equilibrium configuration. Choose 
the î unit vector to point in the direction the object moves when the spring is being 
stretched. Choose the coordinate function x to denote the position of the object with 
respect to the origin (Figure 8.1). 

l0 

x = 0 

î 

frictionless 

wall 

m equilibrium configuration
+

m 

surface 
x 

stretched: x > 0 

l0 î 

m

x = 0 

x î 

compressed: x < 0 

x = 0 
Figure 8.1 Spring attached to a wall and an object 

Initially stretch the spring until the object is at position x . Then release the object 
and measure the acceleration of the object the instant the object is released. The  F = m amagnitude of the spring force acting on the object is . Now repeat the 
experiment for a range of stretches (or compressions). Experiments show that for each 
spring, there is a range of maximum values x max > 0 for stretching and minimum values 

< 0 for compressing such that the magnitude of the measured force is proportional to xmin 

the stretched or compressed length and is given by the formula 

! 
F = k x , (8.1.1) 

2



 

      
 

 
 

  
 

      
 

 
        

 
         

        
    

 
    
 
      

    
 

 
      

       
           

     
      

        
    

 
          

          

where the spring constant k has units N ⋅ m−1 . The free-body force diagram is shown in 
Figure 8.2. 

î 
x 

F = F x ̂i = kx î 

x = 0 

Figure 8.2 Spring force acting on object 

The constant k is equal to the negative of the slope of the graph of the force vs. the 
compression or stretch (Figure 8.3). 

F 
slope = -k 

x 

x max 

xmin 
x 

. 
Figure 8.3 Plot of x -component of the spring force Fx vs. x 

The direction of the acceleration is always towards the equilibrium position whether the 
spring is stretched or compressed. This type of force is called a restoring force. Let Fx 

denote the x -component of the spring force. Then 

Fx = −kx . (8.1.2) 

Now perform similar experiments on other springs. For a range of stretched 
lengths, each spring exhibits the same proportionality between force and stretched length, 
although the spring constant may differ for each spring. 

It would be extremely impractical to experimentally determine whether this 
proportionality holds for all springs, and because a modest sampling of springs has 
confirmed the relation, we shall infer that all ideal springs will produce a restoring force, 
which is linearly proportional to the stretched (or compressed) length. This experimental 
relation regarding force and stretched (or compressed) lengths for a finite set of springs 
has now been inductively generalized into the above mathematical model for ideal springs, 
a force law known as a Hooke’s Law. 

This inductive step, referred to as Newtonian induction, is the critical step that 
makes physics a predictive science. Suppose a spring, attached to an object of mass m , is 
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stretched by an amount Δx . Use the force law to predict the magnitude of the force  
F = k Δxbetween the rubber band and the object, , without having to experimentally 

measure the acceleration. Now use Newton’s Second Law to predict the magnitude of the 
acceleration of the object  

 F k Δx 
a = = . (8.1.3)

m m 

Carry out the experiment, and measure the acceleration within some error bounds. 
If the magnitude of the predicted acceleration disagrees with the measured result, then the 
model for the force law needs modification. The ability to adjust, correct or even reject 
models based on new experimental results enables a description of forces between objects 
to cover larger and larger experimental domains. 

Many real springs have been wound such that a force of magnitude F0 must be applied 
Fbefore the spring begin to stretch. The value of s 0 is referred to as the pre-tension of the 

spring. Under these circumstances, Hooke’s law must be modified to account for this 
pretension, 

⎧⎪
⎨
⎪⎩


Fx = −F0 − kx, x > 0 
. (8.1.4)

Fx = +F1 − kx, x < 0 

FNote the value of the pre tension - 0

spring. 
and F1 may differ for compressing or stretching a 
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