Massachusetts Institute of Technology

Physics 8.022 – Fall 2004

- Quiz #1
- No books, notes or calculators allowed. All needed formulae are given below.
- Please box your final answer and specify magnitude AND direction for all vectors.
- Total points in the quiz: 100. Not all problems receive equal credit. Work on the problems you are more comfortable with first!

Useful Formulae

<u>Conservative Field:</u> $\int_C \vec{F} \cdot d\vec{r} = 0$ for any closed path C, $W_{ab,C} = W_{ab,C'}$ for any C, C' connecting a and b, $\vec{F} = -\vec{\nabla}U$, $\vec{\nabla} \times \vec{F} = 0$

<u>Coulomb Law</u>: $\vec{F}_{21} = \frac{q_1 q_2}{r^2} \hat{r}_{21}$ for two point charges at distance r. $\vec{F}_{12} = -\vec{F}_{21}$, and for charges dq_1 and dq_2 that make part of continuous charge distributions 1 and 2, $d\vec{F}_{21} = \frac{dq_1 dq_2}{r^2} \hat{r}_{21}$

<u>Electric Field</u>: at point 2 due to $q_1 \vec{E}_1 = \frac{q_1}{r^2} \hat{r}_{21}$. If q_1 is not a point charge but part of a continuous distribution, $d\vec{E} = \frac{dq}{r^2} \hat{r}$

Principle of Superposition: Two or more electric fields acting at a given point P add vectorially: $\vec{E}_P = \vec{E}_1 + \vec{E}_2 + \ldots + \vec{E}_n$

<u>Electrostatic Field is Conservative</u>: $\vec{\nabla} \times \vec{E} = 0$ and thus there exists scalar function ϕ such that $\vec{E} = -\vec{\nabla}\phi$ where $d\phi = \frac{dq}{r}$

 $\begin{array}{c} \underline{ \text{Electrostatic potential:}} \\ \hline \phi(\vec{x}) - \phi(ref) = -\int_{ref}^{\vec{x}} \vec{E} \cdot d\vec{r} = -\frac{W_{ref \rightarrow \vec{x}}}{q} \end{array} \end{array}$

<u>Gauss Law:</u> $\int_S \vec{E} \cdot d\vec{a} = 4\pi \int_V \rho dV$ where S is a closed surface and V is its corresponding volume (integral form) or $\vec{\nabla} \cdot \vec{E} = 4\pi\rho$ (differential form).

Poisson Eqn: $\nabla^2 \phi = -4\pi\rho$, Laplace Eqn: $\nabla^2 \phi = 0$

Energy: $U = \frac{1}{2} \int_{V} dV \int_{V'} dV' \frac{\rho(\vec{x}')\rho(\vec{x}')}{|\vec{x}-\vec{x}'|} = \frac{1}{2} \int_{V} \rho \phi dV = \frac{1}{8\pi} \int_{V} E^{2} dV$ Electric Force on Conductors: $\frac{dF}{da} = 2\pi\sigma^{2} = \frac{E^{2}}{8\pi}$ Capacitance: Q = CV, (energy) $U = \frac{1}{2}CV^{2}$

<u>Capacitor networks</u>: Parallel: $C = C_1 + C_2$, series: $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$

 $\begin{array}{l} \underline{\text{Gradient:}} \text{ in cartesian } \vec{\nabla}f = \frac{\partial f}{\partial x} \hat{x} + \frac{\partial f}{\partial y} \hat{y} + \frac{\partial f}{\partial z} \hat{z} \text{ , in cylindrical } \vec{\nabla}f = \frac{\partial f}{\partial \rho} \hat{\rho} + \frac{1}{\rho} \frac{\partial f}{\partial \phi} \hat{\phi} + \frac{\partial f}{\partial z} \hat{z} \\ \text{, in spherical } \vec{\nabla}f = \frac{\partial f}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta} + \frac{1}{rsin\theta} \frac{\partial f}{\partial \phi} \hat{\phi} \end{array}$

 $\begin{array}{l} \underline{\text{Divergence:}} \text{ in cartesian } \vec{\nabla} \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}, \text{ in cylindrical } \vec{\nabla} \cdot \vec{F} = \frac{F_\rho}{\rho} + \frac{\partial F_\rho}{\partial \rho} + \frac{1}{\rho} \frac{\partial F_\phi}{\partial \phi} + \frac{\partial F_z}{\partial z}, \text{ in spherical } \vec{\nabla} \cdot \vec{F} = \frac{2F_r}{r} + \frac{\partial F_r}{\partial r} + \frac{F_\theta}{r} \cot\theta + \frac{1}{r} \frac{\partial F_\theta}{\partial \theta} + \frac{1}{r \sin\theta} \frac{\partial F_\phi}{\partial \phi} \end{array}$

Binomial expansion:

$$(1\pm x)^{n} = 1\pm \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} \pm \cdots + (x^{2} < 1); \quad (1\pm x)^{-n} = 1\mp \frac{nx}{1!} + \frac{n(n+1)x^{2}}{2!} \mp \cdots + (x^{2} < 1)$$

Problem 1: Electric charges and fields (25 points)

An electrostatic potential in the 3-dimensional Euclidean space is given by

$$\phi = \frac{Q_0}{a}(1 - \frac{z}{3a} - \frac{a}{r}) \text{ for } 0 < r < a, \ \phi = -\frac{Q_0 a z}{3r^3} \text{ for } r > a$$

where $\vec{r} = r\hat{r} = x\hat{x} + y\hat{y} + z\hat{z}$ while Q_0 and a are positive definite constants of appropriate dimensions. The accompanying electrostatic field derived from the gradient of ϕ (*i.e.*, $\vec{E} = -\vec{\nabla}\phi$) is found to be

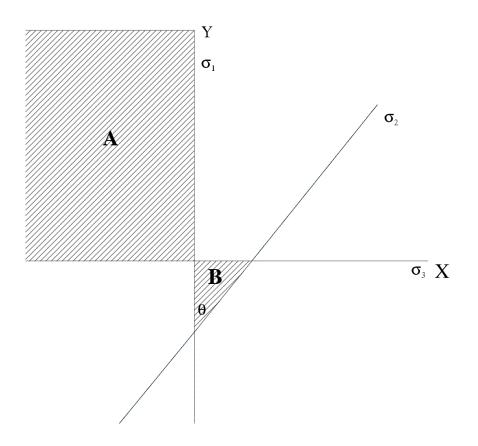
$$\begin{split} \vec{E} &= -\hat{r}\frac{Q_0}{a^2}(\frac{a^2}{r^2} - \frac{\cos\theta}{3}) - \hat{\theta}\frac{Q_0 \sin\theta}{3a^2} \quad for \quad 0 < r < a, \\ \vec{E} &= -\hat{r}\frac{2Q_0 a \cos\theta}{3r^3} - \hat{\theta}\frac{Q_0 a \sin\theta}{3r^3} \quad for \quad r > a, \end{split}$$

where $z = r\cos\theta$. Our goal is to find the electric charges that set up this field by following the next steps. Please box your final answers in each part.

- 1. Is ϕ continuous at r = a? Was that expected?
- 2. Is \vec{E} continuous at r = a? What does this tell us for a spherical shell at a?
- 3. Find ρ , the volume electric charge density ($\rho = dq/dv$) anywhere for r < a.
- 4. Now find ρ for r > a.
- 5. Consider a sphere of radius R < a and find the total charge Q_1 inside it.
- 6. Is your answer in the previous part consistent with your answer in part (3)? Where can Q_1 be located?
- 7. Now consider a sphere of radius R > a and find the total charge Q_2 inside it. Find $Q_3 = Q_2 Q_1$.
- 8. Given your answer in parts (3) and (4), where can Q_3 be located?
- 9. Find the surface charge density everywhere on a sphere of radius *a*. In order to do this, perform a Gaussian experiment using an infinitesimal cylinder positioned with its axis radially and centered onto the sphere of radius *a*.
- 10. Associate the various terms of the charge distributions with the given electric potential ϕ inside and outside of r = a.

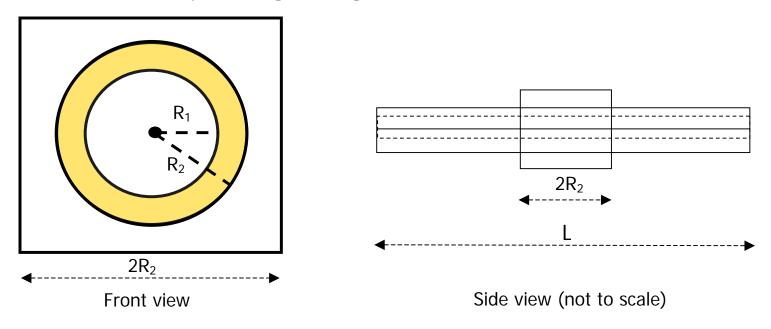
Problem 2: Infinite charged sheets (25 points)

Three infinite charged **non conductive** sheets are arranged as in the figure below. Each sheet carries surface charge density of $\sigma_1 = \sigma_0$, σ_2 and σ_3 . Only σ_0 and the angle θ between the two planes carrying the σ_1 and σ_2 charged sheets are known. **Please box your final answers in each part.**



- a) Find σ_2 and σ_3 such that the electric field inside the enclosed triangular region marked (B) in the figure is zero (express all your answers in terms of σ_0 and θ).
- b) Find the energy density (energy per unit volume) of the electric field in the region marked (A) in the figure (express all your answers in terms of σ_0 and θ).
- c) If the sheet carrying surface charge density σ_2 is moved downward along the y axis does the total energy of the system increase of decrease?
- d) If the sheets were released from the positions shown, how would they move? Hint: think about your answer to part (3)

Problem # 3: cylindrical capacitor (35 points)



A charge +Q is deposited on a **conductive wire** of length L and radius R_0 . An electrically neutral, **conductive cylindrical shell** of inner radius R_1 , outer radius R_2 and length L is symmetrically positioned around the wire (see figure). NB: in this problem $R_0 \ll R_1 \sim R_2$ are $\ll L$.

Calculate:

- a) The line charge density on the wire (λ)
- b) The surface charge density on the inner (σ_{inner}) and outer (σ_{outer}) shell of the cylinder and the volume charge density (ρ) inside the cylindrical shell, for R₁<r<R₂. NB: always specify the sign of the charge.
- c) The electric field \vec{E} everywhere in space (r<R₀, R₀<r<R₁, R₁<r<R₂, r>R₂)
- d) The flux of the electric field (Φ_E) through a cube of side $2R_2$ centered on the center of the wire (see figure).

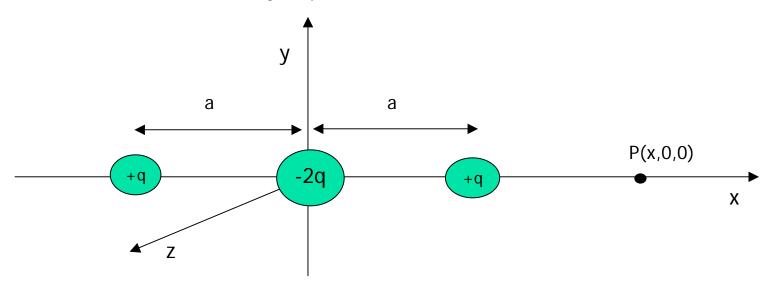
Now deposit a charge –Q on the cylindrical shell. Calculate:

- e) The surface charge density on the inner (σ'_{inner}) and outer (σ'_{outer}) shell of the cylinder and the volume charge density (ρ') inside the cylindrical shell, for $R_1 < r < R_2$. NB: always specify the sign of the charge.
- f) The electric field \vec{E} ' everywhere in space
- g) The difference in potential V between the cylinder and the wire: $V = \phi_{cylinder} \phi_{wire}$
- h) What is the capacitance C of the system (wire + cylindrical shell)?
- i) What is the energy stored in the system?
- j) What is the capacitance C' when we double the charge on the wire (+2Q) and on the cylinder (-2Q)?

Please box your final answers in each part.

Problem #4: electric quadrupole (15 points)

Two positive charges (+q each) and one negative charge (-2q) are positioned as shown in the following figure: the negative charge is in the center of the coordinate system while the two positive charges are at coordinates (-a,0,0) and (+a,0,0) respectively.



Calculate:

- a) Electric potential ϕ created by the distribution of charges in the point P(x,0,0)
- b) Electric field \vec{E} in P(x,0,0)
- c) What is the asymptotic behavior of the electric field when |x|>>a? (e.g. E~ const, 1/x, 1/x², 1/x³, ln x, ...)

Please box your final answers in each part.