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8.022 (E&M) – Lecture 15
Topics:

� More on Electromagnetic Inductance 

� Mutual and self inductance  

� Practical applications
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Last time     

� Electromagnetic inductance  

� Faraday’s (and Lentz’s) law: 

� Integral form:   

� Differential form: 

� Let’s elaborate a bit more on this important law…  
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Cu pendulum in B field (H13)   

� A copper pendulum is oscillating 
� Application of Lentz’s law

� Turn on the magnetic field for the 
following 3 different situations: 
� Pendulum #1: 

� B crosses area with cuts 

� B crosses area above cuts 

� Pendulum #2: 
� No cuts in Cu

• No effect 

• Stops slowly: Lentz’s law

• Stops abruptly: Lentz’s law 

Pendulum #1

Pendulum #2
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Three ways of creating e.m.f.

� Faraday’s law can be used to build generators:   

� 3 ways of creating e.m.f.:

� Vary the area: S=S(t)  
� Vary the angle between B and da
� Vary magnitude of B: B=B(t)  

1
. . .

S

e m f B da
c t

∂
= −

∂ ∫
G G
i



3

G. Sciolla – MIT  8.022 – Lecture 15 5

Changing the area 
� Sliding rod on rails:   

� As derived last week: 
� Because of Lentz’s law, direction of current is counterclockwise to 

oppose the change of flux of B
� Demo H4:

� Loop + light bulb moving in B created by electromagnet 
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Changing angle between B and S

� Constant B and loop rotating around its axis with angular 
velocity ω

� If S is the area of the loop:  

� This is an easy way to build an AC power generator
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DC vs. AC current  

� DC current
� Electrons flow all in the same direction 

at the same rate 
� AC current 

� The flow of electron varies with time in 
amplitude and direction: 

� DC/AC generator 
� Uses DC to power electromagnet and induce AC on rotating loop
� Why AC? Easier to step up and down for efficient transportation 

I(t)
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Changing magnitude of B

� Suppose you have a way to vary over time the magnitude 
of B: B=B(t) 
� Flux of B: 

� Generated e.m.f.: 

� How to created B=B(t)? 
� Loop of wire: 
� If I=I(t) Æ B=B(t) 

Æ AC in a solenoid will do the trick! 
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Induced e.m.f. 
� Consider a loop of wire with radius r inside a long solenoid 

� Solenoid: 
� N=# of loops, l=total length Æ n=N/l 
� Isol = Isol(t)   

� What is the e.m.f. generated in the loop?  

� Find B inside solenoid:  

� E.m.f. generated in loop: 

Æ The e.m.f. will depend by the geometry of the setup and 
on the rate of change of the I over time
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Induced e.m.f. on solenoid itself
� What if the “loop” is the solenoid itself? 

� Will any e.m.f. be created?

� Remember Faraday’s law:   

� B inside solenoid:  

� Flux of B through each loop: 

� Flux of B through N loops:

Æ Induced e.m.f. on solenoid:    
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Back e.m.f.  

� Magnitude of induced e.m.f. on solenoid:

� How about the direction? And the effect?    

� Use Lentz’s law to predict direction of induced current  
� If Isol increases Æ B increases Æ flux increases 

Iloop will fight change Æ opposite direction as Isol

� If Isol decreases Æ B decreases Æ flux decreases 
Iloop will fight change Æ same direction as Isol

� Conclusion: 
The inductance always opposes the change in the current
The e.m.f. created is called back e.m.f. as it acts back on the circuit 
trying to oppose changes 
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Example of back e.m.f. (H17)

� Close switch: wire jumps Æ I flows (30 A) 
� Open switch: big spark due by back emf 

125 V

Fe

R
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Self Inductance L 

� Self-induced e.m.f. in the solenoid:

� Let’s examine this in detail:
� e.m.f. depends on change over time of current: dI/dt
� A bunch of constants depending on geometry called self inductance L

� For a solenoid: 

� Units: 

� cgs: 

� SI:
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Energy stored in inductors  

� Consider an inductor L in which we start flowing a current I
� As soon as the current starts flowing, a back-emf tries to fight this 

current back
� Power needed to fight the back-emf: 

� Calculate work to increase the current from 0 Æ I when t: 0 Æ t

� Energy stored in the inductor: 

. . .
IP I e m f IL
t

∂
= × =

∂

2

0 0 0

1
2

t t I

t t I

IW Pdt LI dt L IdI LI
t= = =

∂
= = = =

∂∫ ∫ ∫

21
2

W LI=



8

G. Sciolla – MIT  8.022 – Lecture 15 15

How is energy stored in inductors?  

� We created a magnetic field where there was none: work necessary
to create the magnetic field is the energy stored in the B itself 
� Same as energy stored in electric field of a capacitor
� Not surprising: special relativity!

� Energy density of magnetic field (solenoid example)  
� Energy stored in solenoid: UL=LI2/2 
� Self inductance of a solenoid: L=4π2R2N2 /lc2

� B created by solenoid: B=4πN /lc 

Æ

� Energy density of B:

� Similar to energy density of the electric field:  
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How do we calculate L in psets?   

Just some examples… 

� Strategy 1: 
� L is the proportionality constant between induced emf and variation 

over time of current: 

� Strategy 2: 
� Exploit the fact that energy stored in the magnetic field is the energy 

stored in the inductor: 
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Mutual inductance    

� Back to the loop inside the solenoid 
� Label solenoid with 1 and loop with 2

� e.m.f. induced on loop (ε2) depends on dI1/dt and constant M21

where M21 is the coefficient of mutual inductance
� For this particular configuration we already calculated that 

� Now do the opposite: run a current I2(t) in the loop and calculate 
e.m.f. induced on solenoid (ε1):

� How to calculate M12???
� No need to calculate it! Reciprocity theorem: M12=M21
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Reciprocity theorem     

� Consider 2 loops of wire: 

� Current I runs through loop 1. What is ΦB through loop 2 due to 1? 

� Now rewrite this result in terms of vector potential and use Stokes: 

� Since                         we obtain

� Same fluxesÆ if currents are the same: M12=M21
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Transformers     

� Devices to step up (or down) AC currents 
� Practical application of mutual inductance

� Simplest implementation: 
� Primary solenoid (black): N1 turns 
� Secondary solenoid (red): N2 turns

� I(t) in the primary will induce a varying ΦB through itself:  

� where ΦB=magnetic flux through single turn    

� Flux is the same in second solenoid Æ induced e.m.f. is:

� Comparing: 
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Demos on mutual inductance   
� Single turn around primary coil (H10)

� Emf: 208 V AC
� Primary coil: N1= 220 turns  
� Secondary coil: N2= 1 turn
� Effect: V goes down, but current goes up and melts the nail! 
� Explanation: Power = VI is conserved between the 2 coils 

� Variable turns around primary coil (H9)
� Same primary; show how current in secondary goes as we add loops

� High turn secondary (H11) 
� Emf: 208 V AC
� Primary coil: N1= 220 turns  
� Secondary coil: N2= 10,000 turn
� Effect: Small currents, but very large V will cause big sparks!
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Summary and outlook    

� Today: 
� Self inductance 

� Energy stored in inductor 

� Mutual inductance 

� And its applications: transformers

� Next time:
� Inductors in circuits

� Quiz II-preparation supplies available here!


