
Topics: 

� 

� RL circuits 

� LC circuits 

� 

8.022 (E&M) – Lecture 16 

Inductors in circuits 

RCL circuits 
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Last time 

� 

� 

� Æ 

� 

� Self and mutual inductance 
� 

� 

Today is our 3rd 

G. Sciolla – MIT 8.022 – Lecture 16 

Our second lecture on electromagnetic inductance 

3 ways of creating emf using Faraday’s law: 
Change area of circuit S(t) 

Change angle between B and S AC generators 

Change B magnitude 

Energy stored in inductor 

Applications: transformers 

lecture on inductance: inductors in circuits 
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RL circuits: intuitive description 

� At t=0, close S1 : 
� ΦB 

� Since ΦB Æ 

� 

� 

� ΦB 

� 

� i Æ the current will die exponentially 

G. Sciolla – MIT 8.022 – Lecture 16 

Lentz’s law opposes change in through L 
(t=0)= 0, L will impede current flow I(0)=0 

As time passes, I will start flowing saturating at I=V/R 

After a long time, simultaneously open S1 and close S2: 
Lentz’s law opposes change in through L 
Back emf will keep current flowing for a while 
R diss pates power 
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RL circuits: quantitative description 

� At t=0: close S1 
� Kirchoff’s rule #2: 0
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Rewrite as: 
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RL circuits: quantitative description(2) 

� At t=t’: open S1 and close S2 
� 

� Graphically: 
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Kirchoff’s rule #2: IR L

Rewr te as: 
I I  t  L dI  dI  

=  −  
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RL circuits: interpretation of results 

� 

� 

� 

� 

emf) 

� 

� 

� 
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How do we interpret these results? 
Inductors cause currents to have an “inertia” 

If no current flowing: L forces I to build up gradually 
If current is flowing: L will do what it takes to make it continue (back

Asymptotic behavior when “charging” L 
At t=0, I=0, as if L were an open circuit 
At t=infinity, I=V/R, as if L did not exist   

t=0:  open circuit 
: L short c rcuit 
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RL circuits: time constant 

� 

� τ=RC 
� τ=L/R 

� NB: ti

� Check units 
� 2/cm)/(sec/cm)=sec 
� Ω = (V sec/A)/(V/A) = sec 

(1 ) 
R t
LV e

R 
−

− 

I(t) 

t 

R t
LV e

R 
− 

G. Sciolla – MIT 8.022 – Lecture 16 

Results of RL circuit are exponentials, as in RC circuits 
RC circuit: time constant 
RL circuits: time constant 

me constant is the time it takes the exponential function to 
decrease (increase) to 1/e (1-1/e) of its original (final) value 

cgs: [L]/[R]=(sec
SI:  [L]/[R]= H/
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LR time constant 

� Consider the following 
circuit 

75 Hz 
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� 

� V , VL, VR
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On the oscilloscope: 
input , I in the circuit 
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L 

C 

LC circuits 

� 

� 

� 

0
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Start with charged capacitor and close switch at t=0: 

Kirchoff’s second rule: 

How to solve this? Educated guess: 

Since I=-
LC 

cos sin ( ) Q t  =  −  =  −  

cos  
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LC circuits: solution 
� 

� l conditions: 
� Q(t=0)=Q0= A cos(0) + B sin(0) Æ 0 

� I(t=0)=0 = -ω0A sin(0) + ω0B cos(0) Æ 

� Complete solution: 

� 

0 0 

2 
2 

2 

( )  1  1
( )  ( )  

1Q t
dt C LL C 

ωω= −  ⇒  −  = −  ⇒  = 

0 0 

0 

0 
0 

0 

( )
( )  c( )

QdQ 
= t

dt L 

os 

C 

C 
QQ tV t t

C C
Q t  Q  t  

ω 

ωω ⇒ == = 

G. Sciolla – MIT 8.022 – Lecture 16 

Plug this in the differential equation: 

Determine constants A and B from initia
A=Q
B=0 

NB: current and voltages are off by 90 degrees 

(  )  
d Q t  Q t  Q t  

LC 

 cos  

I(t) = -  sin 
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LC circuits: solution 
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NB: Q and I have a phase of 90 deg 

G. Sciolla – MIT 8.022 – Lecture 16 

Graphical representation of the solution: 

V(t) 

I(t) 
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Energy conservation 
� 

� 

� Total energy: 

� 

� 
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Energy stored in the capacitor over time: 

Energy stored in the inductor: 

What is happening over time? 
Energy swings back and forth between C and L but at any moment in time 
the total energy is equal to the energy initially stored in the capacitor: 
Energy is conserved! 
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RCL circuits 
� 

� 

� 

� 

� 

� LC Æ 

� R Æ 

� 
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LC circuits don’t belong to this world: 
R is never exactly 0! 

So let’s concentrate on RCLs 
Start with a charged C 

Intuitively: 
oscillatory part: sin and cos solution  

dissipative part: exponential damping 

Rigorous solution: 

Use Kirchoff:  
dI  
dt  

Since I(t) =
dQ  
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RCL circuits: solution 
� 

� 

� Intuition tell

� 

� 

� 

NB: a can be complex! 
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How to solve this equation? 
Educated guess! 

s us that the solution must have an oscillatory term 
and a damping term 

Strategy #1: exponential * sin/cos functions: 

Very heavy on algebra!!! 

Strategy #2: complex exponentials 
Idea: the solution is the real part of a complex solution 

Much easier algebra!!! 

R  dQ  
L dt LC 

 cos  Q t  

Re  Q t  A e  e  Q t  Q t  
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Complex number notation 
� Complex number: number with both a real and an imaginary part 

� Complex plane representation z=(x,y) Æ 

� Another useful representation 

� Given Euler’s relation: 
� Prove it using Maclaurin expansion (see handout)

 with 1i= -z x i y= + 

x 

y 
z x i y= +x 

y 

2 2 y
Set magnitude r= x +y  and phas (cos sie =arct )g 

x 
nz r iθ θθ ⇒ =  +  

cos sinie iθ θ θ= +

 (Phasor representation)iz re θ⇒ = 

See handout on complex number 
+ sections next week 
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RCL circuits: solution (cont) 
Plug expected solution into the differential equation 
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The weak damping limit 
Æ Æ several 
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Weak damping limit: small R the damping is small 
oscillations occur before amplitude start decreasing in sizable way 

n(  cos(  ) ]  

W hen > > R/(2L) (dam ping l t), the second term can be gnored and 

( )  ~  n(  ) w  th  

final solution for "w eak dam ping": 

( )  ~ 
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( )  ~  n(  Q e  
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RCL in weak damping limit 
� 

� 
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Demo L2: Dumped RCL 
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Initial conditions: 

Graphical representation of solution: 

( )  ~  cos(  

( )  ~  n(  

Q e  

Q e  

Q(0)=Q =Acos( ) and I(0)=0=A 
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Summary and outlook 

� 

� RL circuits: exponential solutions 

� 

� 

� Next Tuesday: 
� Quiz # 2: good luck!!! 
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Today: 
What happens when we put L in circuits? 

LC circuits: oscillatory solution 

RCL circuits: damped oscillation 
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