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8.022 (E&M) – Lecture 17
Topics:

Discussion of Exam 2 and make-up exam 

Back to E&M: 

RCL circuits: recap undriven RCLs, driven RCLs, inductance 
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Last time     

What happens when we put inductors in circuits?

RL circuits: exponential solutions 

LC circuits: oscillatory solution 

RCL circuits: damped oscillation 

RCL circuits are particularly interesting
Let’s see them in some more detail…  
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Undriven RCL circuits: recap
Kirchoff’s second rule: 

Does it look familiar? 

Mechanics: harmonic oscillator!
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Undriven RCLs: solution
Differential equation governing loop: 

Solve using complex number notation: 
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RCL circuits: solution
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RCL in weak damping limit
Initial conditions: 

Graphical representation of solution: 
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Energy
Energy of the circuit in the weak damping limit:

Since Q2
0/2C=total energy stored initially in the system

U decreases exponentially over time: as expected!
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Quality Factor  
Definition 1: the quality factor measures how many times the circuit oscillates 
before it loses a certain amount of energy

Definition 2: the quality factor measures the ratio between energy stored (in 
C and L) and average power dissipated (in R)   

Q factor can be defined for any system that creates vibrations. 
Acoustics: Q of a tuning fork is much higher than the Q of a table…

In the time =L/R the energy decreases by U(t)=1/e
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Today’s goal: 

Driven RCL circuits
~   is an AC e.m.f. 
AC voltage supplied to the circuit: 

Convenient assumption: 

NB: V0 is purely real!
How to solve this? Just generalize what we used for DC! 

Sum of voltage drops in loop is equal to emf (Kirchoff #2) 

The same current must pass through every circuit element
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AC current
Consider a B constant in magnitude and a loop rotating 
around its axis with angular velocity ω

If S is the area of the loop: 
Faraday:  

This is how AC power is generated. In U.S.: ν=60 Hz ω=377 
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AC emf + resistor R
Ohm’s law holds for AC too: 

Let’s plot I(t) and V(t) on the same graph: 

In a resistor the voltage and the current are in phase
(peak voltage occurs at the same time as peak current)
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Reminder: phasor notation
Any complex number
can always be represented as the product of a real number (magnitude) 

and a complex exponential: 

where  

and given Euler’s relation:

which can be easily proved using 
Maclaurin expansion
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y
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AC emf + R with phasors
The same information can be represented with phasors in the 
complex plane: 

In a resistor the voltage and the current are in phase
In phase means that both phasors are at the same angle 
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AC emf + capacitor C 
Connect AC emf across a capacitor C: 

Since V(t)=V0cosωt and I(t)= dQ/dt: 

I(t) LEADS V(t) by 90 deg / V(t) lags I(t) by 90 deg
(maxima in I(t) occur before maxima in V(t))
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Ohm’s law revisited and Impedance

Relation between I(t) and V(t) becomes more obvious when using 
phasor notation: 

For the current: 

Combining complex currents and voltages we can write: 
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AC emf + C: phasor representation

Given 

V(t) and I(t) can easily be represented in the complex plane: 

NB: I(t) is ahead of V(t) by 90 degrees: I(t) leads V(t) by 90 degrees

0 0 0( )     and    ( )  =  i t i t i t
CV t V e I t Z V e i CV eω ω ωω= =� �
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AC emf + inductor L 
Connect AC emf across an inductor L: 

Since V(t)=V0cosωt: 

I(t) LAGS V(t) by 90 degrees, or V(t) LEADS I(t) by 90 degrees
(maxima in I(t) occur before maxima in V(t))
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Impedance of inductors 

Using phasor notation: 

The current is: 

Combining complex currents and voltages we can write: 
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AC emf + L: phasor representation

Given 

V(t) and I(t) can easily be represented in the complex plane: 

NB: I(t) is 90 degrees behind V(t): I(t) lags V(t) by 90 degrees
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Driven RCLs using inductance
Inductance simplifies the study of driven 
RCL circuits 
Let’s work with complex numbers and use 
Ohm’s and Kirchoff’s extensions
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Driven RCLs: phasor notation
The complex current can be written as  

This can be written as:
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Dependence of φ from ω
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AC motor (H26)

2 RL circuits driven by 60 Hz AC voltage 

Coil 1: R=2.3 Ω, L=1.5mH 
Coil 2: R=2.5 Ω, L=31 mH

What is the ∆φ between the 2 currents?
Z1=R1+iωL1=2.3+i 377 1.5 10-3

Z2=R2+iωL2=2.5+i 377 31 10-3

∆φ=64 degrees

The difference in phase will create a rotating B field 
Eddie currents in the metal can will make it rotate!

Coil 1

Coil 2

~

~
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Dependence of I0 from ω
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RCL resonance (Demo L8) 

RCL circuit driven with variable frequency ω

L=50 mH 
C=0.3 µF

Measure VR on scope and tune frequency to maximize VR
What is the expect resonance frequency?

3
0

1
8.2  10   1.3 kHz 

LC
ω ν= = × ⇒ =

scope
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Demo L8: part 2

Same RCL circuit driven with variable frequency ω

Frequency is driven by a voltage Vin

L=50 mH 
C=0.3 µF

Display VR vs on the scope while sweeping Vin
What do you expect to see? 

scope

ω0=1.3 kHz
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Resonant RCL with light bulb (L6)

RCL circuit driven by AC voltage 

C can be adjusted using set of switches 
L can be adjusted moving the Fe core 
inside a solenoid

For each setting of C we can find an L that turn on the 
light bulb

What is that L? 
2

1L
Cω

=
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Summary and outlook    

Today:
Undriven RCL circuits

Energy stored and quality factor in weak damping limit  

Driven RCL AC circuits

Simple solution when introducing  complex impedance Z
ZR = R

ZC = 1/(iωC) 

ZL = iωL 

Next Tuesday:
More on driven RCLs: power, resonances, filters…




